
Intrusion Attacks on Automotive CAN and their Detection

Halley M. Paulson
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

paul1098@morris.umn.edu

ABSTRACT
The main highway of communication in a vehicle is the
Controller Area Network, commonly known by the acronym
CAN. Any vulnerability in this network could allow bad ac-
tors to block communication between vehicle subsystems,
risking the safety of the vehicle’s occupants. With the ever
growing list of vulnerabilities being exposed in the CAN, it
is critical to address its safety. This paper looks at one of the
known vulnerabilities in the data link layer of the CAN and
an Intrusion Detection System that could detect attacks on
this network. We detail a few processes of the CAN, arbi-
tration and error states, and how they are leveraged during
different attacks. We also explain the core component of
the Intrusion Detection System, the Detection Engine, and
discuss testing results.

Keywords
Controller Area Network, Intrusion Detection System, Fault
Injection, Long Short-Term Memory Network

1. INTRODUCTION
Modern vehicles are comprised of a multitude of sensors,

actuators, and controllers that all send and receive data,
which is why they are considered Internet of Things (IoT)
systems. Sensors take physical measurements, controllers re-
ceive sensor data and perform analysis, and actuators make
physical changes according to the controller’s instructions.
Vehicles have multiple subsystems that each have their own
sets of sensors, controllers, and actuators. An example of
one of these subsystems would the the Automatic Braking
System (ABS). The vehicle’s subsystems must be able to
send data back and forth in real-time for the car to function
properly. The Controller Area Network (CAN) makes this
possible. It allows all the subsystem’s controllers to send
data without a host computer. The issue with the CAN is
the amount of vulnerabilities it has.

Having been created in 1985, a time before cybersecurity
was even a consideration, the CAN’s protocols are not de-
signed to prevent, or even detect, attacks. In recent years,
many studies have exposed different vulnerabilities and how
they can be leveraged to manipulate vehicles. One vulnera-
bility in the CAN that is especially dangerous involves CAN

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2021 Morris, MN.

processes that are designed to organize the physical trans-
mission of data across wires and manage subsequent errors.
Researchers Murvay and Groza [3] show that this vulner-
ability can be manipulated to perform Denial of Service
(DoS) attacks. These DoS attacks prevent subsystems of
the vehicle from communicating with each other, which can
risk the safety of the vehicle’s occupants. Imagine if the
ABS couldn’t signal the car to stop; it could be extremely
dangerous. Since this vulnerability involves many physical
components and protocols, many of the currently proposed
solutions for securing the CAN don’t work. The CAN is also
a low-resource system, meaning it doesn’t have a lot of extra
computing power or memory to be able to run heavy secu-
rity protocols that typical networks can. So, there aren’t
any perfect patches for it, but there are proposed solutions.

An Intrusion Detection System (IDS) was proposed re-
cently that holds some hope in sealing the CAN [7]. A sys-
tem that monitors network traffic and picks up on anomalies
may be the CAN’s saving grace, especially since it claims to
be resource efficient. This IDS would allow the CAN to at
least identify when its being attacked, which is a huge step
in the right direction. It’s powered by a Long Short-Term
Memory network, a type of machine learning model. This
machine learning model has ensured success for a plethora
of systems.

We begin background information with section 2, explain-
ing the technologies involved with the CAN vulnerability [3]
and with the proposed IDS [7]. From there we move to sec-
tion 3, where we walk through DoS attacks performed on
the system that leverage the CAN vulnerability in different
ways. Next, we discuss how the proposed IDS works and
detail the experiments done to try and prove the system’s
validity in section 4. Finally, we wrap up with conclusions
in section 5.

2. BACKGROUND

2.1 The Controller Area Network
The Controller Area Network (CAN) is comprised of the

vehicle’s controllers which all run on protocols designed for
limited-resource IoT systems. Micro-controllers are just one
of the few different types of controllers that exist today, and
the majority of controllers in the CAN are micro-controllers.
Micro-controllers are mini computers integrated into chips
that control one small part of a greater system. In a vehicle,
a part of the system could be anything from the entertain-
ment system to a section of the engine.

The CAN physically consists of a CAN bus and CAN

Figure 1: CAN Bus Topology [3]

nodes. The CAN bus is physical wiring allowing communica-
tion between CAN nodes and is typically referred to as either
CAN High or CAN Low. Referring to Figure 1, a CAN High
bus carries data faster than a CAN Low bus. Each node
that participates in CAN communication requires a CAN in-
terface; a low-speed interface to communicate with a CAN
Low bus and a high-speed interface for a CAN High bus.
Interfaces are comprised of a CAN controller and a CAN
transceiver connected by 2 wires [3]. These interfaces are
most commonly installed as a module of a micro-controller
and is what allows communication between a CAN node and
bus through implementation of CAN protocols.

Data shared in the CAN is logically organized and pack-
aged as frames. Frames are patterns of bits, and bits are
just bursts of electricity at specific voltage levels. The volt-
age levels for transmitting bits are different depending on
the speed of communication, but the CAN frame is the same
regardless.

CAN frames are visible to every node connected to the
CAN bus since this is a broadcast network. There are a few
mechanisms in place to organize the chaos of broadcasting
and any errors caused from this method of communication.
The main mechanisms are arbitration and error states.

2.1.1 Arbitration
Arbitration is the organization of nodes taking and releas-

ing control of the bus. For nodes to transmit data on the
CAN bus, they need control of it. Nodes will watch the bus
to ensure that it is idle before they try to transmit data
and, as soon as a node takes control, the bus will signal that
it’s active. In the case that multiple nodes try to trans-
mit at the same time, the process of arbitration takes place.
Arbitration depends on the message priorities of the com-
peting frames. The message priority of a frame is a number,
included in the beginning of said frame, that signals the im-
portance of the data in the frame; the lower the number
the higher the priority [8]. The message priority is calcu-
lated using the initial bits of the frame and typically more
dominant bits (0’s) means higher priority. If the frame the
node is sending has a higher message priority, then it wins
arbitration and can continue transmitting the frame with-
out worrying about corruption. The loser with the lower
message priority frame has to watch the bus until it sees the
winner is finished transmitting before it can try again. This
is the main way the CAN organizes the flow of communica-
tion.

2.1.2 Error Handling
To keep errors under control, CAN nodes switch between

three different error states. The error state of a node is

determined by the value of one of its error counters, the
Transmission Error Counter (TEC). As previously stated,
CAN nodes take control of the CAN bus to transmit data. A
CAN node is constantly checking to make sure the intended
frame is written to the bus. A transmission error is when
the frame written to the bus is different than what the node
intended to write. The TEC is incremented when the node
observes a transmission error. It decrements the TEC when
successful transmissions are observed.

When the TEC is below 127 the node is in the Error Active
state, which is the default state. The node can send and
receive data normally in this state, and is expected to signal
the entire network when it notices errors.

A node will switch to an Error Passive state when the TEC
goes above 127. Like the Error Active state, it can send and
receive data normally, but it can’t notify the entire network
when it notices errors.

If the TEC goes past 256, the node switches to the Bus
Off state and can no longer communicate until it sees 11
consecutive recessive bits (1’s) on the CAN bus 128 times
[8]. Since the idle state of the bus is indicated with recessive
bits (1’s), this just means the node has to wait for the bus to
be idle for a specific amount of time before it can reset. Once
it observes that reset condition, it can clear its counters and
return to the Error Active state. This keeps problematic
nodes from interrupting communication.

2.2 Fault Injection
A fault is an error or failure. Fault injection is a verifi-

cation technique which induces artificial faults in a system
to evaluate the behavior of the system in response to those
faults [6]. Faults can be injected at the physical level by
using a fault injector tool to inject bits into frames, thereby
changing the intended message of the frame. Systems should
have protocols in place to successfully identify and handle
faults. While it is a testing technique, it is a tool bad actors
can use to change or block system functions in cybersecurity
attacks since fault injectors can be easily created either with
physical parts and software, or by remotely reprogramming
parts of an existing system.

2.3 Intrusion Detection Systems
Intrusion Detection Systems (IDSs) can either monitor

hosts or entire networks. A Host IDS looks at traffic coming
and going to a system. A Network IDS looks at traffic going
to and from all systems in a network. Host IDSs are more
effective and reliable, however Network IDSs have a greater
scope and are more resource-friendly - perfect for a resource-
limited system.

There are two IDS modes, online and offline. Online-mode
IDSs will alert as soon as a threat is detected, while Offline-
mode IDSs will collect and store data after an attack hap-
pens [2].

IDSs can be sorted into signature-based or anomaly-based
by the way they detect threats. Signature-based IDSs detect
threats by pattern-matching; comparing traffic to previously
recorded threats to see if any of it is the same. They have
low false alarms rates and are very efficient, but they are
limited by the records they compare to [2]. Anomaly-based
IDSs detect threats by identifying unusual network behavior.
Once they are trained, they compare real-time traffic to the
trained base-line and raise an alarm if the values are too
different. While these are useful in keeping up with new or

unknown threats, they tend to have high false alarm rates as
it is quite difficult to predict user behavior. For example, if
installed in a vehicle, an IDS could be used to a driver who
usually goes between 30 and 40 mph, but then suddenly the
driver is going between 80 and 100 mph. The IDS could
view this as anomalous and raise an alarm, thus creating
high false alarm rates.

2.4 Recurrent Neural Networks
To understand Recurrent Neural Networks (RNNs) it is

helpful to understand Feedforward Neural Networks (FNNs)
as they were the first and are the simplest type of Neural
Network. A FNN is made up of an input layer, hidden lay-
ers, and an output layer. They can only move information
forward from input to output layers.

Each layer is made up of cells connected to the next
layer of cells through edges. Each edge contains a weight.
Weights, typically called internal weights, are values that
decide how much effect inputs have on outputs. Weights
are updated during training. Training allows a model to
map inputs to desired outputs through the use of a training
dataset. Inputs from the dataset are fed through the model
and predictions are returned as an output. During a process
called back propagation, a loss function is used to calculate
the error rate of the model. This involves comparing outputs
of the model to the known expected results for the given in-
puts in the training dataset. Then an optimization function
is used, starting from the output layer and working towards
the input layer, to adjust the model’s weights in an effort to
lower the error rate. This is how the model “learns”.

Each cell contains one or multiple activation functions.
Activation functions introduce non-linearity, meaning it al-
lows the network to predict data that doesn’t fit into a linear
model. In a FNN, cells take a set of inputs, pass the sum of
inputs multiplied by weights through their activation func-
tions, and then feed the output to the next layer of cells.

RNNs are similar to FNNs, but are special in the way
they handle previous inputs. In the hidden layers, RNN
cells can loop their previous inputs into the next through
a collection of values called the hidden state. The hidden
state is updated after each element in the input sequence.
Since this allows past data to have an impact on the next
output, RNNs are considered to have a memory [5].

Say, for example, we have sequential data in the form
of a sentence - “I Fly A Plane” - and our model is trying
to understand its meaning. Without memory, the model
wouldn’t know what any of the previous words were. The
meaning of “Fly” depends on it coming after “I”. Likewise,
the meaning of “Plane” depends on it coming after “Fly”.
So, without memory, the model wouldn’t be able to have
a reliable understanding of the sentence’s meaning. With
memory, the model would be able to cataloging the sequence
of the sentence with every new input, which allows it to
remember the order of words. This makes RNNs a powerful
learning model.

RNN’s suffer from the Vanishing Gradient problem. The
Vanishing Gradient problem causes a model to learn less
as it accumulates layers. The nature of back propagation
leads to changes in internal weights becoming smaller and
smaller as the algorithm calculates from the output to the
input layer [4]. The changes to the internal weights eventu-
ally become insignificant which means that those layers stop
learning. This can lead models to become less accurate as

it becomes more complex.

2.4.1 Long Short-Term Memory Networks
A Long Short-Term Memory network (LSTM) is a type of

RNN that combats the Vanishing Gradient problem. This
model functions similarly to basic RNNs. The big differ-
ence is the calculations done inside each cell which allow the
model to keep information for longer.

Like RNNs, each cell has a hidden state, but LSTMs also
have a cell state. Both retain information from previous
inputs, but the cell state aggregates the entire sequence in
some form while the hidden state typically emphasizes the
most previous input. Gates are used to update the cell state,
instead of updating after each input. Gates are calculated
values. The forget gate specifically handles what data is
forgotten or kept. The input gate handles adding new data
to the cell state.

Both the previous hidden state and cell state values pass
through activation functions to update them. Calculating
the new cell state also involves both the forget and input
gates. The previous cell state values and the forget gate
go through an activation function to remove unwanted cell
state values. A similar process happens, using the input gate
instead of the forget gate, when determining what to add to
the cell state.

This process allows the LSTM to control what it remem-
bers and forgets, putting it above regular RNNs in perfor-
mance. For example, lets take our previous thought exper-
iment. Lets take the sentence - “I Fly A Plane”. LSTMs
are able to keep some of the information from processing
“I”, “Fly”, and “Plane” because their gates and algorithms
have decided they are absolutely critical in understanding
the meaning of the sentence. Since the model has a separate
process to determine and incorporate critical data, the Van-
ishing Gradient problem doesn’t have as much of an impact
on its continued learning. This makes LSTMs more accu-
rate and reliable when handling longer and more complex
sequences of data.

3. ATTACKING THE CAN

3.1 Attack Experiments
Murvay and Groza [3] conducted four different attacks on

the CAN with their personal fault injector. These experi-
ments were labeled Full Bus DoS, Directed DoS, Arbitration
Denial and Disrupting Synchronization. We will be looking
into the Full Bus DoS, Directed DoS and Arbitration Denial
attacks to illustrate the core vulnerability these experiments
reveal. The fault injector used in these attacks was a home-
made CAN node built using inexpensive and widely available
electronics, but it is possible to compromise and reprogram
an existing node in the network as well [3]. This means there
are multiple accessible entry points for bad actors. With the
right resources and time to learn, anyone with malicious in-
tent could create a fault injector and begin interfering with
vehicle communication.

3.1.1 Full Bus DoS
This attack was designed to completely stop communi-

cation on the CAN bus; no node would be able to send
or receive messages. It worked by configuring the fault in-
jector to continuously send dominant bits (0’s). The CAN
transceiver built into the fault injector had its own fault de-

tecting mechanism. The mechanism would trigger when it
noticed anomalies, such as continuous transmission of the
same bit, and interrupt the injector. To prevent this from
triggering, recessive bits (1’s) would occasionally have to be
sent.

Results showed this to be the simplest attack on the CAN.
Since the fault injector was constantly sending dominant bits
(0’s), the bus was constantly active and other CAN nodes
were left waiting until the bus was idle. Since no other nodes
could send or receive messages with the bus being used to
transmit bogus data, CAN communication was completely
denied and the attack was very successful.

3.1.2 Directed DoS and Arbitration Denial
The Directed DoS attack was designed to target frames

and cause specific CAN nodes to switch to the Bus Off state.
It worked by injecting a dominant bit at the start of the data
portion of the frame. This then caused a transmission error
which the target node promptly marked by incrementing its
TEC. After that, the node would try to retransmit, but once
again a bit would be injected. This cycle would continue
until the node switched to the Bus Off state.

The tricky aspect of this attack was the timing and prior
knowledge needed. Before the attack could even begin, Mur-
vay and Groza [3] gathered information pertaining to the
possible IDs of the frames that the target node sent so their
fault injector could monitor the bus for them. The next hard
part was the injection timing. The fault injector needed to
have enough computing power to transmit with the same
amount of time it takes the CAN to transmit a bit; it needed
to fit into the CAN bit timing.

On low-speed CAN, the attack succeeded in injecting bits
and causing enough errors that the node switched into the
Bus Off state. During this attack, the target node tried
retransmission 31 times, and each time a bit was injected to
cause an error and start the process over again. Eventually,
the TEC became high enough that it switched the node to
the Bus Off state. Results were different with high-speed
CAN. Murvay and Groza [3] succeeded with injecting bits,
but only into a specific sequence at top speeds. They also
needed a much more detailed understanding of the CAN
frames being sent from the node in order to identify the
sequence they could manipulate. With their setup, they
didn’t have the computing ability needed to flexibly inject at
such speeds like they could at low-speed CAN, and couldn’t
switch nodes into the Bus Off state. In these experiments,
they had better success at slower speeds, but upgrading the
setup would be simple enough and in all likelihood achieve
successful results at higher speeds.

With this same setup, Arbitration Denial attacks can be
achieved. The only difference between Directed DoS and
Arbitration Denial attacks is where the bit is injected. If it is
injected into the arbitration area of the frame, the beginning
bits, the message priority can be altered so the target node
loses arbitration and has to wait until the winning node
finishes transmitting. When this is done every time the node
tries to arbitrate for the bus it will lose every time. If it loses
every time it will always be waiting its turn and never be able
to send messages, therefore service is successfully denied to
the target node. While the Arbitration Denial experiment
is labeled differently, the target and results are the same as
a Directed DoS attack.

4. SECURING THE CAN

4.1 Proposed Intrusion Detection System
Tanksale [7] introduced an Anomaly-based IDS that ac-

commodates the resource-limited CAN. The IDS has two
main parts, an anomaly detection engine and a decision en-
gine. The detection engine is powered by an LSTM, refer to
2.4.1, prediction algorithm. It’s designed to predict values
based on previous CAN measurements. Those predictions
are compared to a threshold value to determine their labels.
If a predicted value is higher than the threshold value, it’s
marked as an anomaly. All anomaly flags are sent to the
decision engine, which decides if the anomalies make up an
attack or not. We will be focusing on the anomaly detection
engine and the prediction algorithm powering it.

4.2 Data Formulas
The IDS was designed to monitor multiple vehicle subsys-

tems for anomalies. To make that possible, the LSTM had
to be trained using values that represent multiple vehicle
subsystems. This is where the two formulas fit in; we will
call them Formula A and Formula B. These formulas bring
together CAN measurements from different subsystems of
the vehicle. Two different datasets were created from the
two formulas. The Formula A and Formula B datasets were
generated using the same CAN measurements that were col-
lected from 10 different cars, which all drove the same route
for a duration of 35 to 45 minutes [7].

Formula A was the first data formula. It depended on
only two different CAN measurements, engine speed and
accelerator pedal position.

F =
EngineSpeed

AcceleratorPedalPosition
(1)

Each data point in the Formula A dataset was calculated
using this ratio.

Formula B was much more detailed as it took into account
10 different CAN measurements as it generated the dataset.
Let x1: brake position, x2: brake pressure, x3: wheel speed,
x4: current gear, x5: lateral acceleration, x6: steering angle,
x7: accelerator pedal position, x8: longitudinal acceleration,
x9: engine coolant temperature, x10: intake air temperature.
The Pearson Correlation Coefficient, which is used in statis-
tics to determine the strength of a relationship between two
variables, is represented as corr(p, q).

F =
x1
x2

+
x3
x4

+ corr(x5, x6) + corr(x3, x2)+

corr(x7, x8) + |x9 − x10|+ corr(x1, x8)
(2)

Essentially, Formula B is the summation of ratios and mea-
sured relationships between multiple CAN measurements.
This formula more accurately reflects the nature of the CAN.

4.3 Preparing the Prediction Algorithm
To support the proposed IDS, the prediction algorithm

had to go through three phases: Pre-Training, Formula A
Testing, and Formula B Testing. In the ‘Pre-Training’ sec-
tion, the LSTM was trained and tested numerous times to
figure out the best hyperparameters, values used to control
the learning process, to use in training. In the ‘Formula A
Testing’ section, data from the Formula A dataset and the
hyperparameters found in the ‘Pre-Training’ section, were
used to test how well the algorithm could predict anomalies.

Figure 2: Pre-Training Algorithm Flowchart [7]

The ‘Formula B Testing’ section repeated this process, but
with Formula B to test for any improvements in anomaly
prediction.

4.3.1 Pre-Training
Recursion is used in this section to automate the process

of finding the best hyperparameters, and Figure 2 illustrates
this. In Figure 2, there are parameters labeled measure (θ),
threshold (ε), epochs, dropout rates, and prediction correct-
ness (Φ). These will all be explained shortly. We are actively
trying to find the best combination of epochs and dropout
rates. We also determine the threshold as a byproduct of
this process. In order to understand the process, we must
understand the parameters used.

An epoch is one full pass of an entire training dataset
through the learning model. This means the entire set of
data has had an opportunity to affect the model and update
its internal weights. Typically, there are multiple epochs
for training a learning model, so the full training dataset is
passed through the model multiple times. This exposes the
model to different combinations of data within the dataset
and reduces error [1]. We pass an array of epochs to the
recursive function.

The dropout rate is the percent of hidden nodes in the
learning model that are randomly ignored during training.
This is to combat over-fitting, predicting too close to a set
of data which can cause a model to predict inaccurately. We
pass an array of dropout rates to the recursive function.

The threshold (ε) is used to determine the labels of pre-
dictions.

The prediction correctness (Φ) is the percent of accurate
predictions the algorithm has made. This is calculated for
each combination of epochs and dropout rates.

The measure (θ) is how high the prediction correctness
needs to be before the algorithm stops looping. This value
doesn’t change once it’s set.

Now that we have explained the function’s parameters,
let us explain the process. First, the measure (θ) is set to
0.93 and the threshold (ε) is initialized at 0.1. We pass the
array {10,50,100} to epochs and the array {20%,30%,50%}
to dropout rates. 80% of the Formula A dataset is used to
train the LSTM and 20% is used to test. We use Formula A
in this section because, at the time, Formula B didn’t exist.
Then we run the function. For every combination of epochs
and dropout rates, we train and test the LSTM prediction
algorithm. Then, we take the calculated prediction correct-
ness (Φ) and compare it to the measure (θ). If the prediction

correctness (Φ) is less than the measure (θ), we increment
the threshold by 0.1 and loop again with the next combi-
nation. The function loops until the prediction correctness
(Φ) is greater than the measure (θ) for all combinations of
epochs and dropout rates. When the loop is finished, the
combination that maximizes the prediction correctness (Φ),
as well as the final threshold (ε), are returned.

What Tanksale [7] found was that the best combination
of epochs and dropout rates was 100 and 20%, and the final
threshold (ε) was 0.3. It produced a maximum prediction
correctness (Φ) of 0.9825, which is impressive considering the
lowest was 0.9301. These three values played an important
role in the next two sections.

4.3.2 Formula A Testing
Now, the hyperparameters and threshold (ε) from ’Pre-

Training’ are used to test how well the prediction algorithm
can predict anomalies. Remember, from section 4.2, that
Formula A is a ratio of the vehicle’s engine speed and ac-
celerator pedal position; anomalies are created by changing
the engine speed. Three forms of anomalies are created, one
form triples the engine speed, one form doubles the engine
speed, and one form has 1.5 times the engine speed. For the
array {1%,2%,5%,10%,15%,20%}, each value is a percent of
the Formula A dataset that is manipulated to be anomalous.
For each percent of anomalous data, tests are conducted on
all 10 cars to predict the three different forms of anomalies.

Tanksale [7] documented the results of each test in tables
such as Figure 3. Figure 3 shows the Accuracy and the False
Positive Rate (FPR) for all 10 cars. The Accuracy is how
often the prediction algorithm predicted results correctly.
The FPR is how often the algorithm predicted an anomaly
when there wasn’t one. Figure 3 reflects the test where 1%
of the data is anomalous in the form of tripled engine speed.

A more detailed illustration of a car’s results can be shown
through a Confusion Matrix, which is given in Figure 4. The
Confusion Matrix of Car 5 is of the same test, where 1%
of anomalous data is in the form of tripled engine speed.
In Car 5, the prediction algorithm accurately predicted 14
anomalous, marked as malicious in the matrix, frames and
predicted 1,642 normal frames. The algorithm predicted
28 anomalous frames when they were actually normal, and
predicted 3 normal when they were actually anomalous. Ac-
curacy from Figure 3 reflects the amount of correctly pre-
dicted normal frames, whereas FPR reflects the amount of
predicted anomalous frames when they were actually nor-
mal.

Overall, the IDS performed well with a reasonably low
FPR. Tanksale [7] did note a critical issue with Formula
A; it was too simple and training the LSTM with Formula
A data reflected that. An attacker could evade the IDS
if they alter both the engine speed and accelerator pedal
position while keeping the ratio the same. The anomalous
frames would essentially be disguised as normal frames in a
successful attack. The IDS also wouldn’t be able to detect
attacks on other subsystems of the vehicle since Formula A
only trained it to monitor two. Formula B was the next
step in improving the IDS and making the CAN harder to
penetrate.

4.3.3 Formula B Testing
Similar tests are conducted using Formula B data but with

new goals. The main goal was to make sure Formula B data

Figure 3: Results with 1% of x3 Engine Speed Anomalies [7]

improves the algorithm’s accuracy and resiliency to attacks
on multiple CAN measurements. There was also an effort
to see if anomaly placement throughout the dataset effected
prediction accuracy. Two sets of tests were done to ensure
reliable results. The first and second set of tests both in-
serted anomalies into the dataset to test different placement
patterns, but the CAN measurements manipulated were dif-
ferent in the first versus the second.

For the first set of tests, the longitudinal acceleration, ac-
celerator pedal position and brake position were changed
to create anomalies. The longitudinal acceleration was in-
creased 1.5 times its original values, the accelerator pedal
position was doubled, and the brake position was set to zero.
For one test, the anomalies were inserted randomly through-
out the test data; this was the pattern of insertion used in
the previous section. In another test, the anomalies were
inserted adjacent to each other in one random location. In
a final test, 50% of anomalies were inserted adjacent to each
other in a single random location while the rest where in-
serted adjacent to each other in a different random location.

In the second set of tests, the wheel speed, lateral acceler-
ation and steering angle were changed. The wheel speed was
changed to 0.7 times its original values, the lateral acceler-
ation was changed to 1.05 times its original values, and the
steering angle was increased by one degree. The same pat-
terns of insertion from the first set of tests were also tested
in this set.

Tanksale [7] found conflicting results in tests with ran-
dom anomaly placement. In both sets of tests, inserting
anomalies randomly in the dataset actually showed to de-
crease accuracy and increase FPR. While it only altered the
values by about 0.1 on average, the increase in FPR could
make a big difference when handling hundreds of thousands
of frames, and it’s concerning to move forward with Formula
B if it decreases the algorithm’s overall prediction accuracy.
However, Formula B allowed the prediction algorithm to de-
tect much more. With Formula A, the algorithm couldn’t
monitor more than two CAN measurements at a time and
was easily manipulated. Formula B allowed the algorithm
to monitor 10 different CAN measurements and detect more
complicated anomalies with minor loss of accuracy.

Where randomized placement decreased accuracy and in-
creased FPR, patterned anomaly placement boosted the ac-
curacy and decreased FPR. In such tests, Formula B al-
lowed the prediction algorithm to perform better. As seen
in section 3, attacks on the CAN involve injection patterns
in order to trick CAN mechanisms. So, training the predic-
tion algorithm with such patterns or similar ones may reflect

Figure 4: Confusion Matrix of Car 5 with 1% Anomalies [7]

more realistic attack scenarios. With these results and con-
siderations, Tanksale [7] concluded that Formula B did in
fact train the prediction algorithm better than Formula A
did.

5. CONCLUSIONS
The CAN has a data link layer vulnerability that can be

leveraged in different ways with off-the-shelf technology. Ex-
periments discussed in section 3 have shown that the at-
tacks on the CAN are straightforward because CAN pro-
tocols have no way to differentiate between a node with
faulty behavior and an attack. In section 4, an IDS was
discussed that can detect anomalies with acceptable accu-
racy and FPR. While the CAN vulnerability is well known,
the IDS is not fully finished or ready for deployment and
has yet to be field tested. While the idea of the decision
engine has been decided, the functionality still needs to be
implemented and tested. Better data formulas for training
the prediction algorithm in the detection engine also need to
be created [7]. Despite the continued development needed,
the IDS shows promising results. There exists a promising
solution to combat this difficult problem and it will only get
better with time.

6. ACKNOWLEDGMENTS
Thank you to Elena Machkasova for your support in this

process. Thank you to Ariel Cordes for taking the time to
read and review my paper.

7. REFERENCES
[1] J. Brownlee. Difference between a batch and an epoch

in a neural network, July 2018.

[2] S. Hajj, R. El Sibai, J. Bou Abdo, J. Demerjian,
A. Makhoul, and C. Guyeux. Anomaly-based Intrusion
Detection Systems: The requirements, methods,
measurements, and datasets. Transactions on Emerging
Telecommunications Technologies, 32(4):e4240, 2021.

[3] P.-S. Murvay and B. Groza. DoS attacks on Controller
Area Networks by fault injections from the software
layer. In Proceedings of the 12th International
Conference on Availability, Reliability and Security,
ARES ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[4] M. Phi. Illustrated guide to LSTMs and GRUs: A step
by step explanation, Sep 2018.

[5] M. Phi. Illustrated guide to Recurrent Neural
Networks, Jun 2020.

[6] G. Rodriguez-Navas, J. Jimenez, and J. Proenza. An
architecture for physical injection of complex fault
scenarios in CAN networks. In EFTA 2003. 2003 IEEE
Conference on Emerging Technologies and Factory
Automation. Proceedings (Cat. No.03TH8696),
volume 2, pages 125–128 vol.2, 2003.

[7] V. Tanksale. Anomaly detection for Controller Area
Networks using Long Short-Term Memory. IEEE Open
Journal of Intelligent Transportation Systems,
1:253–265, 2020.

[8] C. Watterson. Controller Area Network (CAN)
Implementation Guide. Analog Devices, 10 2017. Rev.
A.

