Intrusion Attacks on Automotive CAN and their Detection

Halley Paulson

Motivation

Controller Area Network (CAN) : controller communication standards and protocols

Intrusion Detection System (IDS) : system that monitors host or network traffic and alerts when there's malicious activity

Outline

Attacking The CAN

- → Background
- → Exposing the Vulnerability

Securing The CAN

- → Background
- → Identifying Threats

Conclusions

Acknowledgments

Questions

Attacking the CAN - Background

Background CAN

Developed in 1985!

- → CAN nodes send data through frames
- → All CAN nodes broadcast frames in real time
 - CAN nodes compete for control of CAN bus

Background CAN

Arbitration : organization of nodes taking and releasing control of CAN bus

- → Compares Message Priorities
 - Initial bits of a frame
- → Lower Message Priority wins

Background CAN

Error states manage CAN nodes to reduce errors in network

- → Transmission Error Counter (TEC)
- → Received Error Counter (REC)

Possible error states

- → Error Active [TEC ≤ 127]
- → Error Passive [127 < TEC < 256]
- → Bus Off [TEC ≥ 256]

Background Fault Injection

Fault Injection : verification technique to test system response to faults by inducing them

- → Bad actors employ technique maliciously
- → Software and hardware injectors
 - Software tests code and protocols
 - Hardware tests behavior of physical parts

Attacking the CAN - Exposing the Vulnerability

Exposing the Vulnerability

Critical Issues contributing to vulnerability

- → Too low-resource for encryption
- → Previously assumed to be impenetrable
 - Fault injectors can communicate with CAN
 - Vehicles have wifi

CAN mechanisms can be used against the system

- → Frames are manipulated to
 - Abuse arbitration
 - Forcibly change CAN node error states

Exposing the Vulnerability

Artificial faults are bits injected into frames strategically Full Bus DoS

- → Continuously send 0's on CAN bus
 - CAN bus always active
 - Prevented CAN nodes from sending frames

Directed Bus DoS

- → Injected 0's into frame's data segment until Bus Off state
- → Injecting into Message Priority segment blocks CAN node

Securing the CAN – Background

Background

Basic IDS types

Online vs Offline

→ Immediately notify

Network vs Host

→ Monitor traffic for entire network

Anomaly-based vs. Signature-based

- → Learn and predict based on normal network behavior
- → Great for new anomalies
- → High False Positive Rates (FPR)

Background Recurrent Neural Networks

Recurrent Neural Networks (RNNs) : type of machine learning model

- → Formed by layers of cells
 - Weights connect cells
 - Activation functions in each cell introduce non-linearity
- → Trained to predict sequential data
 - Maps inputs to predetermined outputs
 - Weights are adjusted
 - Loops previous inputs in cell's hidden state

Background Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs) : type of RNN

- → Cell state and output in each cell controlled by gates
 - Forget gate
 - Input gate
 - Output gate
- → Gates go through activation functions with inputs
 - 🔶 tanh() -
 - sigmoid()

Securing the CAN – Identifying Threats

IDS comprised of two main engines

- → Anomaly Detection Engine
 - LSTM Prediction Algorithm
 - Given a stream of network data, predict anomalies
 - Flagged anomalies go to Decision Engine
- → Decision Engine
 - Consumes anomaly patterns
 - Alerts network

Formulas created to train LSTM on multiple CAN measurements

- → Data came from 10 cars all driving same route for 35-45 minutes
 - Each measurement represents a CAN node
 - Measurements were recorded frames

Formula A

 $\frac{EngineSpeed}{AcceleratorPedalPosition}$

Formula B

→ Pearson Correlation Coefficient : corr(a,b)

$$+\frac{x_3}{x_4}+corr(x_5,x_6)+$$

 x_3 = wheel speed x_4 = current gear x_5 = lateral acceleration x_6 = steering angle

Hyperparameter : parameter used to control the training process

Best Values

- → Epochs = 100
- → Dropout Rate = 20%
- → Threshold (ϵ) = 0.3

Using Formula A dataset

- → How accurately can LSTM detect anomalies?
- → Does the % of anomalies in dataset effect accuracy?
- → How does performance vary from car to car?

Summary of Results

- → Test had 1% of Formula A dataset made anomalous
 - Anomalies created by tripling Engine Speed

	Accuracy	FPR
Car 1	0.9855	0.0140
Car 2	0.9864	0.0126
Car 3	0.9780	0.0209
Car 4	0.9789	0.0202
Car 5	0.9816	0.0168
Car 6	0.9864	0.0124
Car 7	0.9807	0.0189
Car 8	0.9868	0.0118
Car 9	0.9802	0.0188
Car 10	0.9803	0.0187

		Actual	
		Malicious	Normal
Predicted	Malicious	14	28
	Normal	3	1642

Confusion Matrix for Car 5 results

Using Formula B dataset

- → How does LSTM perform when three CAN measurements are changed at the same time?
- → Does anomaly placement in dataset alter performance?
- → Does LSTM perform better with Formula B compared to Formula A?

Summary of Results

- → Performed better with Formula A in similar tests
 - Formula B represents realistic attack
- → Anomaly placement boosts performance
 - With adjacent placement, Formula B performed better

Conclusions

Conclusions

CAN vulnerability

- → CAN protocols aren't designed to handle cyberthreats
 - Protocols can't tell difference between faulty behavior or malicious activity
- → Newer vehicles at higher risk
 - Poses a data risk but also a health risk
 - Could be worse than DoS attacks

Proposed IDS

- → Can help CAN identify attacks
 - Adjustments to CAN could be made
- → Accurate predictions and acceptable FPR in most tests
 - Formula B more resilient to realistic attacks
- → Still in development but a promising solution

Acknowledgments

A huge thank you to Elena Machkasova for her guidance and friends and family for their support.

References

S. Hajj, R. El Sibai, J. Bou Abdo, J. Demerjian, A. Makhoul, and C. Guyeux. Anomaly-based Intrusion Detection Systems: The requirements, methods, measurements, and datasets. 2021.

P.-S. Murvay and B. Groza. DoS attacks on Controller Area Networks by fault injections from the software layer. 2017.

M. Phi. Illustrated guide to LSTMs and GRUs: A step by step explanation, Sep 2018.

M. Phi. Illustrated guide to Recurrent Neural Networks, Jun 2020.

G. Rodriguez-Navas, J. Jimenez, and J. Proenza. An architecture for physical injection of complex fault scenarios in CAN networks. 2003.

V. Tanksale. Anomaly detection for Controller Area Networks using Long Short-Term Memory. 2020.

C. Watterson. Controller Area Network (CAN) Implementation Guide. 2017.