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Motivation

Controller Area Network (CAN) : 
controller communication 
standards and protocols

Intrusion Detection System (IDS) : 
system that monitors host or 
network traffic and alerts when 
there’s malicious activity

https://www.mdpi.com/1424-8220/20/17/4900
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Attacking the CAN - Background



Background
   CAN

Developed in 1985!

➔ CAN nodes send data through frames
➔ All CAN nodes broadcast frames in real time

◆ CAN nodes compete for control of CAN bus



Background
   CAN

Arbitration : organization of nodes taking and releasing control of 
CAN bus

➔ Compares Message Priorities
◆ Initial bits of a frame

➔ Lower Message Priority wins

01100110101 00110101011

= 
821

= 
427

Door Locks ABS

Winner



Background
   CAN

Error states manage CAN nodes to reduce errors in network

➔ Transmission Error Counter (TEC)
➔ Received Error Counter (REC)

Possible error states

➔ Error Active [ TEC ≤ 127 ]
➔ Error Passive [ 127 < TEC < 256 ]
➔ Bus Off [ TEC ≥ 256 ]



Background
   Fault Injection

Fault Injection : verification technique to test system response to 
faults by inducing them

➔ Bad actors employ technique maliciously
➔ Software and hardware injectors

◆ Software tests code and protocols
◆ Hardware tests behavior of physical parts 



Attacking the CAN - Exposing the Vulnerability



Exposing the Vulnerability Critical Issues contributing to vulnerability

➔ Too low-resource for encryption
➔ Previously assumed to be impenetrable

◆ Fault injectors can communicate with CAN
◆ Vehicles have wifi

CAN mechanisms can be used against the system

➔ Frames are manipulated to 
◆ Abuse arbitration
◆ Forcibly change CAN node error states



Exposing the Vulnerability Artificial faults are bits injected into frames strategically

Full Bus DoS

➔ Continuously send 0’s on CAN bus
◆ CAN bus always active
◆ Prevented CAN nodes from sending frames

Directed Bus DoS

➔ Injected 0’s into frame’s data segment until Bus Off state
➔ Injecting into Message Priority segment blocks CAN node



Securing the CAN - Background



Background
   IDS

Basic IDS types

Online vs Offline

➔ Immediately notify

Network vs Host

➔ Monitor traffic for entire network

Anomaly-based vs. Signature-based

➔ Learn and predict based on normal network behavior
➔ Great for new anomalies
➔ High False Positive Rates (FPR)



Background
   Recurrent Neural Networks

Recurrent Neural Networks (RNNs) : type of machine learning 
model

➔ Formed by layers of cells
◆ Weights connect cells
◆ Activation functions in each cell introduce non-linearity

➔ Trained to predict sequential data
◆ Maps inputs to predetermined outputs
◆ Weights are adjusted
◆ Loops previous inputs in cell’s hidden state

Input Output



Background
   Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs) : type of RNN

➔ Cell state and output in each cell controlled by gates
◆ Forget gate
◆ Input gate
◆ Output gate

➔ Gates go through activation functions with inputs
◆ tanh()
◆ sigmoid()

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21?gi=78610a07adca



Securing the CAN - Identifying Threats 



Identifying Threats IDS comprised of two main engines

➔ Anomaly Detection Engine
◆ LSTM Prediction Algorithm

● Given a stream of network data, predict anomalies
◆ Flagged anomalies go to Decision Engine

➔ Decision Engine
◆ Consumes anomaly patterns
◆ Alerts network



Identifying Threats Formulas created to train LSTM on multiple CAN measurements

➔ Data came from 10 cars all driving same route for 35-45 
minutes
◆ Each measurement represents a CAN node
◆ Measurements were recorded frames

Formula A

Formula B

➔ Pearson Correlation Coefficient : corr(a,b)

x₃ = wheel speed  x₄ = current gear  x₅ = lateral acceleration  x₆ = steering angle



Identifying Threats Hyperparameter : parameter used to control the training process

Best Values

➔ Epochs = 100
➔ Dropout Rate = 20%
➔ Threshold (𝜖) = 0.3



Identifying Threats Using Formula A dataset

➔ How accurately can LSTM detect anomalies?
➔ Does the % of anomalies in dataset effect accuracy?
➔ How does performance vary from car to car?

Summary of Results

➔ Test had 1% of Formula A dataset made anomalous
◆ Anomalies created by tripling Engine Speed

Confusion Matrix for Car 5 results



Identifying Threats Using Formula B dataset

➔ How does LSTM perform when three CAN measurements are 
changed at the same time?

➔ Does anomaly placement in dataset alter performance?
➔ Does LSTM perform better with Formula B compared to 

Formula A?

Summary of Results

➔ Performed better with Formula A in similar tests
◆ Formula B represents realistic attack

➔ Anomaly placement boosts performance
◆ With adjacent placement, Formula B performed better



Conclusions



Conclusions CAN vulnerability

➔ CAN protocols aren’t designed to handle cyberthreats
◆ Protocols can’t tell difference between faulty behavior or 

malicious activity
➔ Newer vehicles at higher risk

◆ Poses a data risk but also a health risk
◆ Could be worse than DoS attacks

Proposed IDS 

➔ Can help CAN identify attacks
◆ Adjustments to CAN could be made

➔ Accurate predictions and acceptable FPR in most tests
◆ Formula B more resilient to realistic attacks

➔ Still in development but a promising solution
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