Intrusion Attacks on Automotive CAN and their Detection

Halley Paulson
Motivation

Controller Area Network (CAN) : controller communication standards and protocols

Intrusion Detection System (IDS) : system that monitors host or network traffic and alerts when there’s malicious activity
Attacking The CAN

➔ Background
➔ Exposing the Vulnerability

Securing The CAN

➔ Background
➔ Identifying Threats

Conclusions

Acknowledgments

Questions
Attacking the CAN – Background
Background
CAN

Developed in 1985!

- CAN nodes send data through frames
- All CAN nodes broadcast frames in real time
 - CAN nodes compete for control of CAN bus
Arbitration: organization of nodes taking and releasing control of CAN bus

- Compares Message Priorities
 - Initial bits of a frame
- Lower Message Priority wins

![Diagram showing arbitration between Door Locks and ABS](image-url)
Error states manage CAN nodes to reduce errors in network

➔ Transmission Error Counter (TEC)
➔ Received Error Counter (REC)

Possible error states

➔ Error Active [TEC ≤ 127]
➔ Error Passive [127 < TEC < 256]
➔ Bus Off [TEC ≥ 256]
Fault Injection: verification technique to test system response to faults by inducing them

➔ Bad actors employ technique maliciously
➔ Software and hardware injectors
 ◆ Software tests code and protocols
 ◆ Hardware tests behavior of physical parts
Attacking the CAN – Exposing the Vulnerability
Critical Issues contributing to vulnerability

➔ Too low-resource for encryption
➔ Previously assumed to be impenetrable
 ◆ Fault injectors can communicate with CAN
 ◆ Vehicles have wifi

CAN mechanisms can be used against the system

➔ Frames are manipulated to
 ◆ Abuse arbitration
 ◆ Forcibly change CAN node error states
Artificial faults are bits injected into frames strategically

Full Bus DoS

➔ Continuously send 0’s on CAN bus
 ◆ CAN bus always active
 ◆ Prevented CAN nodes from sending frames

Directed Bus DoS

➔ Injected 0’s into frame’s data segment until Bus Off state
➔ Injecting into Message Priority segment blocks CAN node
Securing the CAN – Background
Basic IDS types

Online vs Offline

→ Immediately notify

Network vs Host

→ Monitor traffic for entire network

Anomaly-based vs. **Signature-based**

→ Learn and predict based on normal network behavior
→ Great for new anomalies
→ High False Positive Rates (FPR)
Recurrence Neural Networks (RNNs) : type of machine learning model

- Formed by layers of cells
 - Weights connect cells
 - Activation functions in each cell introduce non-linearity

- Trained to predict sequential data
 - Maps inputs to predetermined outputs
 - Weights are adjusted
 - Loops previous inputs in cell’s hidden state

![Diagram of RNN model]
Long Short-Term Memory Networks (LSTMs) : type of RNN

- Cell state and output in each cell controlled by gates
 - Forget gate
 - Input gate
 - Output gate

- Gates go through activation functions with inputs
 - tanh()
 - sigmoid()

Securing the CAN – Identifying Threats
Identifying Threats

IDS comprised of two main engines

➔ Anomaly Detection Engine
 ◆ LSTM Prediction Algorithm
 ● Given a stream of network data, predict anomalies
 ◆ Flagged anomalies go to Decision Engine

➔ Decision Engine
 ◆ Consumes anomaly patterns
 ◆ Alerts network
Formulas created to train LSTM on multiple CAN measurements

➔ Data came from 10 cars all driving same route for 35-45 minutes
 ◆ Each measurement represents a CAN node
 ◆ Measurements were recorded frames

Formula A

\[
\frac{\text{EngineSpeed}}{\text{AcceleratorPedalPosition}}
\]

Formula B

➔ Pearson Correlation Coefficient : \(\text{corr}(a,b) \)

\[
+ \frac{x_3}{x_4} + \text{corr}(x_5, x_6) +
\]

\(x_3 = \text{wheel speed} \quad x_4 = \text{current gear} \quad x_5 = \text{lateral acceleration} \quad x_6 = \text{steering angle} \)
Hyperparameter: parameter used to control the training process

Best Values

- Epochs = 100
- Dropout Rate = 20%
- Threshold (ϵ) = 0.3
Identifying Threats

Using Formula A dataset

➔ How accurately can LSTM detect anomalies?
➔ Does the % of anomalies in dataset effect accuracy?
➔ How does performance vary from car to car?

Summary of Results

➔ Test had 1% of Formula A dataset made anomalous
 ◆ Anomalies created by tripling Engine Speed

<table>
<thead>
<tr>
<th>Car</th>
<th>Accuracy</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9855</td>
<td>0.0140</td>
</tr>
<tr>
<td>2</td>
<td>0.9864</td>
<td>0.0126</td>
</tr>
<tr>
<td>3</td>
<td>0.9780</td>
<td>0.0209</td>
</tr>
<tr>
<td>4</td>
<td>0.9789</td>
<td>0.0202</td>
</tr>
<tr>
<td>5</td>
<td>0.9816</td>
<td>0.0168</td>
</tr>
<tr>
<td>6</td>
<td>0.9864</td>
<td>0.0124</td>
</tr>
<tr>
<td>7</td>
<td>0.9807</td>
<td>0.0189</td>
</tr>
<tr>
<td>8</td>
<td>0.9868</td>
<td>0.0118</td>
</tr>
<tr>
<td>9</td>
<td>0.9802</td>
<td>0.0188</td>
</tr>
<tr>
<td>10</td>
<td>0.9803</td>
<td>0.0187</td>
</tr>
</tbody>
</table>

Confusion Matrix for Car 5 results:

<table>
<thead>
<tr>
<th>Actual</th>
<th>Malicious</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Malicious</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Normal</td>
<td>3</td>
<td>1642</td>
</tr>
</tbody>
</table>
Identifying Threats

Using Formula B dataset

➔ How does LSTM perform when three CAN measurements are changed at the same time?
➔ Does anomaly placement in dataset alter performance?
➔ Does LSTM perform better with Formula B compared to Formula A?

Summary of Results

➔ Performed better with Formula A in similar tests
 ◆ Formula B represents realistic attack
➔ Anomaly placement boosts performance
 ◆ With adjacent placement, Formula B performed better
Conclusions
Conclusions

CAN vulnerability

➔ CAN protocols aren’t designed to handle cyberthreats
 ◆ Protocols can’t tell difference between faulty behavior or malicious activity
➔ Newer vehicles at higher risk
 ◆ Poses a data risk but also a health risk
 ◆ Could be worse than DoS attacks

Proposed IDS

➔ Can help CAN identify attacks
 ◆ Adjustments to CAN could be made
➔ Accurate predictions and acceptable FPR in most tests
 ◆ Formula B more resilient to realistic attacks
➔ Still in development but a promising solution
Acknowledgments

A huge thank you to Elena Machkasova for her guidance and friends and family for their support.
Questions?

M. Phi. Illustrated guide to LSTMs and GRUs: A step by step explanation, Sep 2018.

