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ABSTRACT
Retinal prosthetics hope to restore functional vision to the
millions of people around the world experiencing diseases
causing degradation of vision. Approaches in artificial intel-
ligence, namely computer vision and deep learning models,
have aided in the improvement of the vision restored in reti-
nal prosthetic devices and of specific challenges including
indoor and outdoor images, facial recognition, and collision
avoidance. This paper will provide a survey on how these
models have improved the quality of vision in retinal pros-
thetics and aided those with specific retinal degenerative
diseases. Techniques using computer vision are largely re-
sponsible for processing regions of interest in a scene, and
have proven effective at providing a better understanding
of environments in prosthetic vision. The needs of those
undergoing therapy vary and points towards medical chal-
lenges involved that need to be kept in mind when simulating
prosthetic vision for testing. The application of artificial in-
telligence in these devices has proven to be effective when
compared to previous methods of processing and have the
potential to provide functional sight for patients.
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1. INTRODUCTION
Hoping to aid those with retinal degenerative diseases

causing vision loss, a retinal prosthetic (RP) is designed to
restore functional vision. In the last decade, advancements
in processing power and artificial intelligence have improved
vision in RP systems. This paper presents a survey of how
artificial intelligence can be used in retinal prostheses to,
at least partially, restore vision to the visually impaired.
To achieve this, researchers have applied computer vision,
neural networks, and other deep learning methodologies to
improve upon previous models.

Retinal degenerative diseases affect millions and creates
an economic burden costing hundreds of billions of dollars
in the United States alone [12]. Both the economic burden
and the cost of comfort have driven researchers towards a vi-
able RP, resulting in over five hundred implanted prosthetics
over the last fifteen years with three regulation approved de-
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vices discussed by Ayton et al [4]. These devices are cleared
for treatment of two diseases, retinitis pigmentosa and age-
related macular degeneration, which cause the degradation
of light sensitive cells in the retina.

This paper first introduces background for the topic in-
cluding the pipeline to create an image for a retinal pros-
thetic, a few of the biological requirements of the eye, and
an overview of some artificial intelligence approaches. In
section 3, a description of the relevant subsets of AI (neural
networks and computer vision) will be introduced in addi-
tion to their role in retinal prosthetics. Section 4 will delve
further into the methodologies and testing used, which can
differ in machine learning approaches and if the testing was
performed with an implanted patient or by simulating pros-
thetic vision. Concerns that arise when researching the use
of a RP in the real world, in comparison to controlled envi-
ronments or simulations, will be discussed in section 5 fol-
lowed by future work and closing thoughts.

2. BACKGROUND
The earliest attempts to restore vision date back to the

1700’s when Charles Le Roy attempted to cure a patient’s
blindness with electrical stimulation [4]. Since then a myr-
iad of improvements have been made in both the ability to
process and to deliver information for patients with a reti-
nal prosthetic. This section will cover these improvements
and the role they play in the context of a retinal prosthetic
(RP), in addition to necessary biological components of the
eye and system architecture of current models.

2.1 Basic Functions of the Retina
Responsible for receiving and processing light, the retina

is a thin layer of tissue lining the interior of the back of the
eye. One of many layers in the retina, the photoreceptive
layer is composed of rods and cones that are responsible for
sensing light, and producing black-and-white or color vision.
After the light has reached the retina, the light is registered
by the photoreceptive cells and triggers a series of chemical
reactions. These reactions are passed on to the ganglion
cells, commonly referred to as retinal ganglion cells (RGCs),
which is the final output of neurons in the retina. It is the
responsibility of the RGCs to convert these chemical signals
into neural impulses which are sent to the brain. The brain
then registers and decodes these impulses to determine the
image and its features.

2.2 System Architecture of Current Models
Current RP models typically consist of four system com-



Figure 1: Retinal prosthetic system structure [1]

ponents, shown in labels 1–4 in Figure 1. First, a camera
is used to capture images in the field of view. Once these
images are gathered, the data is passed to an external unit
for processing. The processing device is responsible for two
tasks. The first is deciphering the images received by the
camera system. Once processed, the device computes the
patterns needed to stimulate the implanted electrode array
and cells in the retina. Upon completion, the processing
unit will send the pattern through a wire to a receiver used
to activate the implant. Inside of the eye is an implant,
attached to the retina, which serves as the mechanism for
stimulation of the cells. These signals for the implant could
be sent through a wire passing through the skin behind the
ear. Some are run externally to a pair of glasses used to
stimulate the implant; others are run subdermally (beneath
the skin) to the implant itself. The stimulated RGCs create
neural impulses and follow the biological processes outlined
in 2.1 sending the signals to the brain for image processing -
see label 5 in Figure 1. When the user would like to deacti-
vate the prosthetic, a switch can be toggled on the external
device.

2.3 Types of Retinal Prostheses
There are a number of shared approaches when consider-

ing the development of a RP; the placement of the implant
can lead to differences in the vision provided, including dis-
tortions in the image [4, 7]. This needs to be taken into
account when simulating prosthetic vision for testing, which
is discussed further in section 4.1.

Epiretinal prostheses place an electrode array implant on
the inner retinal nerve fibers. Although most commonly
used in the real world, this method does have its downsides,
namely the distortions that may occur when targeting the
cells for stimulation [12, 4]. This is due to the direct stimula-
tion of RGCs which can result in the accidental stimulation
of unwanted cells in the region. Despite potential distortions
this method continues to see use in the world, most likely
due to its ease of access for surgeons and reduction in risk of
damaging the retina. Positioned further inside the eye, and
closest to the damaged cells, a subretinal prosthetic places
the implant behind the damaged retina [4]. This approach
sends signals to the middle and outer parts of the retina,
taking advantage of the network in the retina and poten-
tially reducing distortions. Considered a novel approach by
[4], suprachoroidal models place the implant further inside
the eye than subretinal models. These approaches can sim-

plify the surgical complexity reducing risk. The distance
for signals to travel and evoke the RGCs is greater in this
method, however, which may result in more distortions and
require stronger electrical signals. Regardless, clinical trials
regarding this method have been promising [4].

2.4 Producing Phosphenes
The replication of highly detailed vision is not yet achiev-

able, instead what researchers hope to produce when provid-
ing therapy to the visually impaired are known as phosphenes.
A phosphene is the presence of light in vision, despite no
light entering the eye. Phosphenes are not uncommon in in-
dividuals and can be invoked in a number of ways. To expe-
rience this most individuals may use a mechanical method
by exerting pressure on, or rubbing, ones closed eyes pro-
ducing patterns of light. The activation of RGCs allows the
appearance of these phosphenes to appear in patients with
a RP; the presence of which allows these colorless shapes of
light to be ”built” into the shape of an object (see Figure 4
for a simulated version). In the case of a RP, phosphenes are
likely produced via stimulating the electrodes of the implant
near the retina. However, non–invasive techniques like mag-
netic or chemical stimulations have begun to be explored,
albeit less intensively than more common implanted meth-
ods.

2.5 Interpreting Regions of Interest
When examining an image there are often regions of inter-

est (ROI) that warrant examination such as facial features,
objects in or out of motion, and even subtle features such
as depth. When processing an image, time becomes a dom-
inant constraint when considering the capability of retinal
prosthetics. At present it is difficult to recreate a captured
scene with precision, much less in real time. As such, quickly
identifying and relaying these points of interest serves as a
prime focus for artificial intelligence models when determin-
ing what information to send to the implant. The rest of this
subsection describes processes and themes used to quickly
and effectively identify ROIs in an image.

2.5.1 Image Segmentation
Also known as pixel-level classification, image segmenta-

tion divides an image into groupings of pixels. A collection of
pixels, more formally known as an image object, are grouped
based on a similar property such as color, depth, or intensity.
This process results in a series of image objects, producing
grouped attributes of interest composing the image. One
attribute provided in these segments is the outline of the
image object gathered via edge detection, a process tasked
with identifying the contours of objects in images based on
differences from other pixels in the region.

When considering pursuits in artificial vision, edge de-
tection and image segmentation can play an effective role
in providing understanding of a patient’s environment, in-
cluding recognition of objects such as furniture or hazards
like potential collisions. Utilized in the design of automated
robots and self–driving cars, the data provided from pro-
cessed image objects helps determine what information in a
scene is necessary when considering the time constraints of
retinal prosthetics.

2.5.2 Object & Facial Recognition
The presence of objects in an image itself warrants at-



tention, but when considering the applications of computer
vision systems the nature of the object can also be crucial.
Some objects may provide relevant details about the scenery
such as stationary objects like benches and buildings; oth-
ers may be dynamic, people or vehicles for example which
may be in motion. These details illuminate potential haz-
ards as well as areas of interest in the image. Regardless of
whether the result of this information is utilized by a ma-
chine or person, this ability to discern dangers or interests
grants greater situational awareness. This increased situa-
tional awareness allows for the completion of tasks such as
identifying an object before grabbing it or making note of a
potential collision, two abilities that were previously absent
or impossible for the visually impaired.

Facial structures can be an object composed of numerous
points of interest capable of fine tuned movement. This
level of detail can be a challenge to recreate, but there are
promising developments such as methodology proposed in
[13] for low vision systems like RPs.

2.5.3 Scene Reconstruction
A component of computer vision systems, scene recon-

struction aims to recreate a scene including details like depth.
This recovery of depth can serve a myriad of purposes such
as aiding in object identification and detailed recreation of
environments [6]; however, the recreation of an environment
does not always need to be highly detailed. When consid-
ering applications limited on time a scene may be recon-
structed in such a way that the edges of objects, produced
via image segmentation, reproduce a passable representation
of the scene[7, 11]. A continuing challenge that appears in
artificial vision is the ability to determine which objects in
a scene are most significant.

We can see how a scene can be composed in Figure 2,
based on methodologies proposed in [11]. A camera is used
to capture an image, in this case an indoor scene. The in-
putted image is then analyzed in two parts: the objects in
the image and the layout. To define the layout of the image
previous work suggests detecting what are known as struc-
turally informative edges (SIE). These are the edges and
intersections that are formed by walls, floor, and other struc-
tures that give a room orientation. In the Figure 2 we can
see an SIE extraction of a floor and two walls meeting. The
objects for the scene are segmented using a convolutional
neural network, a type of artificial intelligence described in
3.2. The model classifies images using probability scores
to refine the dimensions of the object and apply masks, or
shapes of the object for highlighting, for each object. Once
the masks have been applied the contours of the masked
objects are highlighted and then replaced or stacked to cre-
ate an image containing the objects. The result, known as
object mask segmentation (OMS), is combined with the lay-
out segmentation, SIE, to create a full scene. This result can
then be converted into a format simulating prosthetic vision.

2.5.4 Optical Flow Estimation
Already constrained by time however, dynamic objects in

an environment pose numerous challenges for artificial vision
systems. Also known as scene flow estimation, optical flow
estimation is used to approach the task of tracking objects
in a scene. Image segmentation can help in this process,
tracking the silhouette of the object, like the approach taken
in [6].

Figure 2: Scene reconstruction flow. Based on [11]

It is important to note that optical flow captures the ap-
pearance of motion and not the actual motion of an object.
This difference can be explained with the barber pole illu-
sion portrayed in Figure ??. A barber pole is a cylindrical
sign with helix shaped stripes angling towards the top of the
sign. As the sign spins it appears the stripes are moving up
the sign, this is the optical flow of the sign whereas the rota-
tional movement of the sign (similar to a top) is the motion
field. Although actual motion of illusions such as the barber
pole will not be accurately represented by optical flow, the
appearance of motion is often a fairly accurate portrayal and
is useful for RPs.

One of the challenges associated with dynamic objects is
the occurrence of occlusions, where one object may be ob-
scured by another. The presence of such occlusions can make
it difficult to separate objects in the scene resulting in poor
image segmentation. Occluding one object with another can
be expected when dealing with dynamic objects, especially
in uncontrollable environments like outdoor scenes. To work
with this challenge optical flow algorithms may be used, pos-
sibly to understand the depth of the scene and layering of
objects. Understanding the depth of the environment allows
the possibility to prioritize recognition of an object based on
its layer in comparison to other objects; the less occluded the
layer the greater chance there is for recognition [11].

3. NEURAL NETWORKS IN RETINAL PROS-
THESES

Computer vision (CV) techniques are the focus of recent
approaches in RP systems, utilizing various neural networks,
usually convolutional neural networks (CNNs). Both tech-
nologies have been studied for decades with the first NN
developed in 1950 known as the SNARC [9]. Later, in
the sixties, the strive for computer vision started, a sys-
tem meant to mimic the visual system of humans including
three-dimensional structures. What has largely held back
the advancement of these technologies since they were pio-
neered is the lack of computing power. However, continuing
advancements have allowed the progression and application
of these technologies.

3.1 Computer Vision
Utilized in applications such as self-driving cars, medi-

cal diagnoses, and manufacturing, computer vision processes
information from media based data including images and
video. Using this data, the computer is able to garner a
better understanding of the objects or scene it is presented



with as input. With a deeper understanding the computer is
more capable of completing automated tasks or presenting
findings to an operator. This process can be broken down
into three steps 1) input of image based media, often gath-
ered via a camera 2) processing of image data, utilizing a
NN for pattern finding 3) the processor returns the findings
to the requester for further actions. Often using NNs as the
basis for the model, CV requires large amounts of data to
extract features or patterns unlike the human visual system
which passively collects information. This means applica-
tions of computer vision may excel at tasks like detecting
defects in parts on an assembly line but are less effective
at generalized tasks such as object identification in varying
settings which is necessary for providing understanding to
patients undergoing retinal prosthesis.

3.2 Neural Networks
A subset of machine learning, neural networks (NNs) con-

sist of a series of nodes, each used to perform a calculation.
These calculations are used to identify patterns and classify
data, inspired by the structure of biological neural systems.
A typical neural net is composed of an input layer, an out-
put layer, and may contain zero or more hidden layers. A
layer which gets its name due to the implication that the
nodes and computation are private to the NN. The input
layer is responsible for the initial intake of data for process-
ing, which is then passed to the following layers via the edges
or synapses that connect the nodes or neurons. The infor-
mation is typically passed to the hidden layers which apply
computational transformations. Each node in this case will
contain the input, a weight, and bias. Weight being a param-
eter of NNs that reflects the importance of a feature when
computing an output and bias being a constant representing
the difference between the function’s output and expected
output. The computed value of the transformations is then
passed to an activation function which the output and if the
information should be passed to the next node. If the value
is satisfactory the node activates, passing the information
to the next neuron in the series. The inclusion of an activa-
tion function adds non-linearity to the model allowing the
capability to solve non-trivial problems.

Artificial intelligence models like neural networks require
large data sets and training to learn what features or pat-
terns to analyze. To begin training the model the weights
mentioned earlier are randomized and initially the output
will likely not be very accurate. At this point we can be-
gin feeding training data into the model and calculate the
outputs in a process named forward propagation. The goal
at this stage is to determine how well the model is able to
predict the output. This is done with a loss function, also
known as a cost function and is used to compute the error
of the output versus the expected answer. At this point the
goal shifts to minimizing the loss, which means better pre-
dictions from the model. One way to improve the model is
to alter the earlier mentioned weights via a process named
backpropagation. Abstracting away some of the mathemat-
ics, backpropagation sends the error information backwards
updating the weights in the model in hopes of reducing loss.
The optimization of these weights is what is referred to as
training, or teaching the model. This is done using opti-
mization techniques like gradient descent which are outside
the scope of this paper. The result of these practices is the
model learning to be more accurate. One vulnerability in

the training process however is what is known as overfit-
ting, or the model being too well fitted to the training data.
Because the model is so well prepared due to its training it
is inaccurate or unable to process new incoming data. Con-
sider the scenario where a model is meant to recognize dogs
and is provided with a series of pictures of dogs, all with
the characteristic of spots and drooping ears. This could re-
sult in the model assuming all dogs need to have spots and
droopy ears, limiting the flexibility of the model.

The subset of neural networks we will be concerned with
are known as convolutional neural networks (CNN). These
fall under the umbrella of deep learning, which are gener-
ally described as a neural network with a large amount of
hidden layers, IBM says at least three [2]. In addition to
more hidden layers convolutional neural networks also have
different structures. These neural networks are first com-
posed of a convolutional layer, although there can be more
than one of this type of layer. This is also where the greater
part of computation is completed and serves as the building
blocks for the CNN. There are two parts needed here, the
data, and a filter. In the case of an image input we could
consider data such as height, width, color, and depth in a
color image. With this data we can apply a feature detector
sometimes called a kernel or filter, a small matrix of weights
applied to the entire image. It will move across the image to
checking if basic pieces of the feature are present, perhaps
a spot of light or a particular . This is known as a convolu-
tion. The feature detector looks at a patch of the image at a
sliding its way through the image until having examined the
totality. For each segment what is known as a dot product
is produced and is a calculation of the input pixels and the
filter. Once the feature detector has made its way through
the image what is outputted is a collection of dot products,
known as a feature map. In the end the convolutional layer
will convert the image into numerical values so the model
can extract patterns.

Following the convolutional layer is the pooling layer which
is also referred to as downsampling. Here, the model reduces
parameters in the input. In some ways this layer is similar to
the convolutional layer with the largest difference being that
when the pooling process sweeps over the image the filter
does not have any weights. Instead, the filter applies an ag-
gregate function, or calculation, to the values which then are
then used to populate the output array. There are two com-
monly used types of pooling, the more popular max pooling
and then average pooling. Max pooling will select the most
prominent feature from the feature map, whereas average
pooling calculates an average of the present features. Unlike
in the convolutional layer which looks at the entire image,
the pooling layer removes unnecessary noise from the image.
Although this action is responsible for the majority of lost
data it does benefit a CNN by improving efficiency, reducing
complexity, and reducing risk of overfitting the model.

The final layer of these neural networks are the fully-
connected layer. Here the classification of the extracted fea-
tures happens based on the what was gathered from previous
layers. Typically the fully-connected layer uses an activation
function such as softmax, a function that normalizes the out-
puts by assigning probabilities to the sum of the weighted
values to classify inputs. A generic pipeline for a CNN can
be seen in Figure 3 using a stuffed animal as an example.
In the case of classification models, like those used in im-
age recognition, the outputs may be a list of probabilities



displaying the models best estimations.

4. METHODS
In this section different options for testing prosthetic vi-

sion is discussed and how they can be used to give researchers
a platform for experimenting with new approaches. This
is followed by applications of artificial intelligence and how
they have been used to improve artificial vision.

4.1 Testing
When it comes to testing the effectiveness of generating

visuals for the visually impaired there are a few methods.
The first approach revolves around working with patients
who have been implanted with a RP. Individuals implanted
with a RP are rare however, making testing those who are
currently undergoing treatment difficult for any groups not
currently developing a RP.

For interested research parties who are unable to find
implanted participants, a simulation tool, such as pulse–2–
percept [5], can be used to represent the retina. Using such a
simulation platform allows researchers to view the output of
the shape of the phosphenes, in the case of pulse–2–percept,
rather than a pixelated image like some simulated prosthetic
vision (SPV).

An example of SPV can be seen in [11] which uses the
SIE-OMS processing discussed in 2.5.3 depicting a series of
indoor scenes, a portion of which are displayed in Figure
4. Examining the simulated outcomes of the images, we see
the outlines of the objects are not smooth and are missing
pieces of light or phosphenes. This is to mimic the dropout
or degeneration of light sensitive cells patients undergoing
prosthesis may experience depending on the stage of the dis-
ease. Dropout rates are at the discretion of the researching
party, although dropout rates tend to range between 10%
and 30% [8, 10].

As an intermediary measure between simulations and im-
plants, some researchers opt to test retinal prosthetic devices
on participants who still possess their vision such as work
in [7] from the University of California. Although this ap-
proach expands the potential pool of participants for study,
it also requires the need to set parameters. Factors such as
the distance of RGC bodies and distance from the stimu-
lation site can differ between patients [7]. As a result, re-
searchers are required to operate in broad spectrums to more
accurately account for varying conditions.

4.2 Improving Artificial Vision With AI
Using NNs with CV techniques researchers have improved

RP’s by refining facial features, improving environment rep-
resentation, and reducing collisions with hazard detection.
Here a discussion of recent approaches and results will be
explored.

Facial Recognition
Faces are a frequent and detailed part of everyday life and it
can be useful to recognize those who are a common presence
in our lives. Work done in [13] shows how the magnifica-
tion of facial features like the nose and inclusion of external
features like hair can help with facial recognition. To ac-
complish this, Jing Wang et al. presented SPV images of
celebrities and public officials in China to twelve patients
who retained their sight. Patients would then be required
to identify the subject as hastily as possible or respond in

the negative. The images were processed using four differ-
ent techniques to magnify regions of interest, all utilizing
CV feature extraction to identify the face in the image and
magnify its features. Three of the techniques proposed use
magnification of features to increase recognizability in com-
parison to the previously used style of directly lowering the
resolution. This was shown to improve recognition accuracy
in all three magnification techniques. An increase in com-
putational power has allowed the use of these techniques,
however some are still too computationally expensive for use
in a RP system at present. Research in [13] demonstrates
a variation of the Viola Jones Facial Recognition technique
using statistical face recognition proved to increase identifi-
cation accuracy in participants while usable in a RP system.
Both the Viola Jones approach and face matting recognition
(the third magnification technique explored) offered greater
detail, but are too computationally expensive. Despite re-
quiring stronger computational power in the external pro-
cessing unit, their work has displayed how CV can be used
to improve magnification of features and increase the ability
to distinguish between similar faces for those with a RP.

Reconstructing Scenes
Introduced in section 2.5.3, advancements have been made
in how scenes can be reconstructed using structurally infor-
mative edges as layout features. Using a CNN to classify
objects and highlight their contours, methodologies used in
[11] demonstrate how segmentation can be used to effectively
reconstruct an indoor scene. A pool of eighteen subjects be-
tween the ages of 20 and 57 with normal vision were shown
indoor scenes portrayed as SPV images on a computer screen
for 10 seconds. The participant would then verbally com-
municate their identification of the room, resulting in a not
answered or NA response if the 10 second limit was sur-
passed. The images were processed using direct and edge
methods, two techniques previously used in retinal prosthe-
ses, as well as the SIE-OMS method proposed using struc-
turally informative edges and object masking. These trials
showed that the proposed method significantly outperforms
earlier approaches with participants correctly identifying ob-
jects 62.78% of the time compared to direct or edge methods
which measured 36.83% and 19.17% respectively. Addition-
ally, a noticeable improvement in the ability to recognize
the room presented was shown when using SIE-OMS and
resulted in fewer NA responses from participants.

Natural scenes taking place outdoors pose their own chal-
lenges and the greater goal of providing understanding of a
scene or environment remains an issue. Research proposed
by Han et al. explores how utilizing deep learning to simplify
scenes using segmentation can provide greater understand-
ing of a scene when compared to previous methods relying on
saliency or depth. A pool of 45 students with normal sight
acted as participants in the study, which was performed re-
motely. The students were asked to watch videos which had
been converted to an SPV format and determine whether
cars and people were present in the scene as well as provide
a level of confidence in their answer. The images were pro-
cessed using four strategies including saliency, depth, object
segmentation, and a combination of the three using CV al-
gorithms. A comparison of accuracy and precision between
the techniques is displayed in Table 1. In this study accu-
racy measures the number of correct predictions and pre-
cision measures the number of correct predictions divided



Figure 3: Convolutional neural network pipeline [3]

Figure 4: Simulated prosthetic vision of indoor scenes [11]

Condition Accuracy Precision

Saliency 0.51 0.53
Depth 0.54 0.56
Segmentation 0.68 0.73
Combination 0.66 0.72

Table 1: Accuracy and precision of vehicle and person detec-
tion by participants [7]

by the number of trials with a person or vehicle present.
Results showed segmentation techniques outperformed pre-
vious methodologies when it came to identifying people and
vehicles in outdoor settings. The combination strategy was
used to determine the effectiveness of combining the infor-
mation from the saliency, depth, and segmentation models;
this proved not to have any effect however, and was only
slightly worse than the segmentation strategy.

5. PRACTICAL CONSIDERATIONS
Developing a RP comes with the inherent issue of meeting

individual needs in a changing world. Experiences from one
visually impaired person to the next can differ by medical
status, environments, and tasks to be performed. This sec-
tion delves into a few of these diversities and how to address
them.

5.1 Variations in Environment
Environments needing to be reproduced for the visually

impaired can vary in numerous ways, the separation between
indoor and outdoor scenes perhaps the most distinguishable.
Such environments may differ by number of dynamic objects
(if there are objects capable of movement at all), contrast
created by light sources and shadows, or their layout [7].
An outdoor scene may include pedestrians and vehicles in

motion, whereas one’s office may be composed of static ob-
jects such as a desk and office supplies. Certain workplaces
may also be predictable spaces with repeating tasks, further
simplifying vision tasks.

5.2 Patient Differences
When considering the use of a retinal prosthetic, biologi-

cal differences in the patient can lead to different results and
effectiveness. Although there are varying diseases and parts
of the eye which can lead to loss of vision, only two diseases
are eligible for RP treatment. The diseases currently eligi-
ble for retinal prostheses are retinitis pigmentosa and age
related macular degeneration, retinal degenerative diseases
which cause the breakdown of the photoreceptive layer [4,
11, 7].

The nature of these diseases means that patients under-
going treatment are in different stages of degeneration and
there is no universal solution when considering therapy. Dif-
ferences in placement of the implant, amount of RGCs re-
maining, and stimulation method may result in differences
in the shape as well as presence of phosphenes.

6. CONCLUSIONS
A survey of processes used to improve the vision of reti-

nal prosthetics using AI has been presented, displaying the
growing capability of a modern prosthetic for therapeutic
treatment. Advancements in artificial intelligence and hard-
ware have driven modern techniques which allow the appli-
cation of neural networks and computer vision to operate
within the time constraints required of a RP. Additionally,
the differences in patients undergoing treatment is explored,
outlining challenges when developing a device for implanta-
tion. Despite advancements in segments of technology previ-
ously inhibiting the growth of RP’s, many of the challenges
still remain such as segmentation in moving images. Some
techniques which could prove successful are still not fast
enough to be practical (such as the facial recognition study
described in 4.2). Progress in the fields of processors and
artificial intelligence have provided great strides towards a
functional prosthetic to produce vision in the last decade.
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