Improving Retinal Prosthetics Through Artificial Intelligence

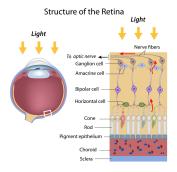
Jacob Perala

University of Minnesota Morris

November 13, 2021

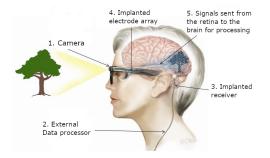
Jacob Perala Improving Retinal Prosthetics Through Artificial Intelligence

Outline


Background

- Relevant Biology of The Retina
- System Structures of A Retinal Prosthetic
- Image Analysis Techniques With AI
- Understanding Digital Media With AI
- AI In Retinal Prosthetics

The Retina


Responsible for receiving and processing light

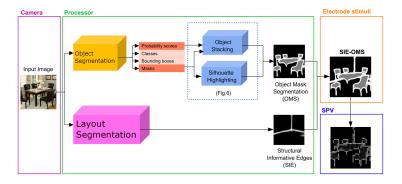
- The photoreceptive layer is composed of rods and cones, responsible for sensing light
- Ganglion cells in the retina output signals to the brain

Retinal Prosthetic System Structure

- Camera
- Telemetry unit
- Processing device
- Electrode implant

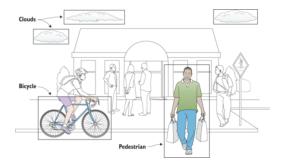
Simulating Vision of Retinal Prosthetic Patients

- Simulates the visual experience of a patient with a retinal prosthetic
- Pulse–2–Percept
- Phosphenification

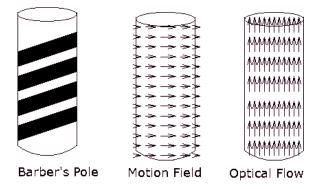


Partitions an object in an image into sets of segmentsRelies on edge detection techniques to define contours

Scene Reconstruction


Uses segmented objects and layouts to construct a sceneIndoor scenes pose different challenges from outdoor scenes

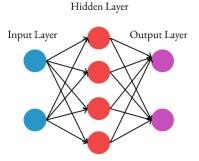
Jacob Perala Improving Retinal Prosthetics Through Artificial Intelligence


Object Detection & Recognition

- Detects objects in a scene
- Process responsible for identifying objects
- Objects have differing importance in detail (i.e. cars vs faces)

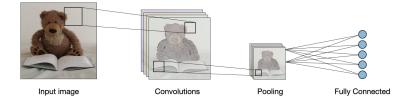
Optical Flow & Motion Estimation

- Used to determine the apparent movement of objects in a scene
- Estimates motion by pixel brightness or feature tracking



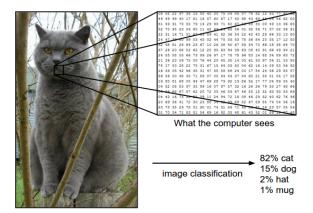
Outline

- Background
- Understanding Digital Media With AI
 - Neural Networks
 - Computer Vision
- Al In Retinal Prosthetics


Neural Networks (1/2)

Named after and follows the structure of the human brainUsed to classify and find patterns in data

Neural Networks (2/2)


Deep learning is a classification of neural networksConvolutional Neural Networks

Computer Vision

Made to mimic the human visual system

Uses AI to find patterns to determine the content of an image

Applying AI to Improve Artificial Vision

Improving image segmentation speed and accuracy

- Identifying objects and avoiding collisions
 - Expanding scene reconstruction capability

Condition	Accuracy	Precision
Saliency	0.51	0.53
Depth	0.54	0.56
Segmentation	0.68	0.73
Combination	0.66	0.72

Classification Methods	Overall Accuracy(%)
Adaboost	77.50
MLP	32.50
SVM	61.25
NeuCube	90.50

Figure: Table 1. Based on Han et al., 2021

Figure: Table 1. Based on Ge et al., 2017

- Computation of moving and occluded objects
- Prioritization of objects in a scene
- Variations in environments

References I

Amidi, A., & Amidi, S. (n.d.). Convolutional neural networks cheatsheet.

Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. *International Federation of Clinical NeurophysiologY*, 131(6), 1383–1398.

Beyeler, M., Boynton, G., Fine, I., & Rokem, A. (2017). Pulse2percept: A python-based simulation framework for bionic vision.

https://doi.org/10.25080/shinma-7f4c6e7-00c Elgendy, M. (2020). *Deep learning for vision systems*.

References II

Ge, C., Kasabov, N., Liu, Z., & Yang, J. (2017). A spiking neural network model for obstacle avoidance in simulated prosthetic vision. Information Sciences. 399, 30–42. https://doi.org/https://doi.org/10.1016/j.ins.2017.03.006 Guo, F., Yang, Y., Xiao, Y., Gao, Y., & Yu, N. (2019). Recognition of moving object in high dynamic scene for visual prosthesis. IEICE TRANSACTIONS on Information and Systems, E102-D, 1321-1331. https://doi.org/10.1587/transinf.2018EDP7405 Han, N., Srivastava, S., Xu, A., Klein, D., & Beyeler, M. (2021). Deep learning-based scene simplification for bionic vision. Augmented Humans Conference 2021, 45–54. https://doi.org/10.1145/3458709.3458982

Sanchez-Garcia, M., Martinez-Cantin, R., & Guerrero, J. J. (2020). Semantic and structural image segmentation for prosthetic vision (1st ed.). *PLoS ONE*, *15*. https://journals.plos.org/ plosone/article?id=10.1371/journal.pone.0227677 University, S. (n.d.). Cs231n: Convolutional neural networks for visual recognition.