Shawn K Reuter

University of Minnesota, Morris

2021

Introduction

- Educators around the US
 - ▶ integrate CS into K-12
 - computational thinking skills
 - Funds or experienced teachers
- Board games
 - Cheap Solution
 - Defined rules and procedures

Outline

- Background
 - Self Determination Theory
 - Why use Board Games
 - Four phase model of interest
- Introducing Coding
- Python the Board Game
- ► Help Desk Board Game
- ► Final Thoughts
 - Discussion
 - Conclusion

Self Determination Theory

- ► Three psychological needs
 - Autonomy control and agency over actions
 - Competence behaviors as successful actions
 - ▶ Relatedness interact foster relationships with others
- Driven towards activities
 - Intrinsic motivation natural drive
 - Extrinsic motivation external sources
 - Passion Board Games
 - Do homework points

Why use board games

Background

- ► 'A game is a system in which players engage in an artificial conflict defined by rules, that results in a quantifiable outcome.' - Salen and Zimmerman Rules of Play
- 'With game-based learning, we work toward a goal, take action, experience consequences of our actions and make mistakes in a risk-free setting [1].'
- Increased motivation
 - ► Tangential learning

Introducing Coding Python the Board Game Help Desk Board Game Final Thoughts

Triggering Interest to Tracking

- Four phase model of interest
 - ▶ 1-2 Situational or extrinsic
 - ▶ 3-4 Individual or intrinsic

Order/Phase	Description
1: Triggered	Short term change in cognitive and affective
	processing.
2: Maintained	Engage with the triggering incident for an ex-
	tended period of time.
3: Emerging	An internal state of interest in the subject
	and an association with positive feelings, stored
	knowledge, and stored value.
4: Well Developed	An enduring affinity for the subject and contin-
	ued engagement over long periods of time.

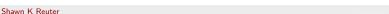
Background

Introducing Coding - 8 week unit

- ▶ Learn On the Brink 2 weeks
- ► Implement game in Scratch 3 weeks
- Design their own levels 2 weeks
- Sharing projects 1 week

//Code On the Brink

- Developed by Mark Engleberg published by Thinkfun
- Player specifies actions control panel
- ▶ Moving forward, turning 90, standing still



Introducing Coding Python the Board Game Help Desk Board Game Final Thoughts

Scratch

- Free website for kids to learn coding (Image below from [4])
- Create games and animations
- Scratch Foundation Non-profit organization

Primary Goals - 8 week unit

- Increase intrinsic interest in CS
 - ▶ Playing Board Game = Coding Scratch
- Pre and Post-hoc Survey
 - 32 likert scale items

	Pre		Post			Post-Pre
Teachers	М	Med	М	Med	N	Z
Shawn	4.45	5.00	3.45	3.44	29	-3.49***
Mandy	4.30	4.50	4.26	5.00	30	-0.93
Shelly	3.84	3.88	4.16	4.50	28	2.25*

Qualitative Analysis

- Discourse Analysis
 - Comparing teacher utterances
- Interest teacher talk
 - Statements leading lesson
 - Structure and content varied
- Coding scheme
 - Label content and function
 - Bottom-up approach
- Codes assigned
 - One analyst
 - Second analyst looked over codes

Analysis of Teachers

- Direct instruction
 - lecturing long monologues
- Connections
 - familiar tangential learning
 - intrinsic motivation
- Lesson trajectory
 - Where are we
 - ► Where are we going

Teachers	Direct Instruction	Connections	Lesson Trajectory
Shawn	40	Calculator	10
Mandy	23	Minecraft	NA
Shelly	24	Code.org	12

Primary Goal

- Explore use of board games
 - Improve student's knowledge of Python
- 'Will students embrace board games in the computer science classroom to improve their knowledge of the Python programming language?'
- 'Will lecturers embrace board games in the computer science classroom as a tool to improve the student's knowledge of the Python programming language?'

- 2-10 players
 - Best played with 4-6
- Materials
 - spinner
 - ► Tablet 400 Python
 - Pen and paper to answer
- Two Phases
 - Player spin read instructions
 - Collect answers correct 'bit dollar'
 - Discussion of question and answer

Methods - Playtesting

- ▶ 16 participants Groups of 4
 - 2 lecturer groups
 - 2 Student groups
- Semi-structured interviews
 - enjoyment, collaboration, communication, socialisation, involvement, and hands-on heads-on

Findings - Interviews

- Enjoyment
 - Enthusiastically engaged without any hesitation
- Collaboration
 - Not supported well
- Communication
 - Agreed option to discuss answers improve retention
- Socialization
 - Group engagement and spontaneous engagement will increase
- Interactive involvement
 - Elements of the game ensure interactive involvement
- Hands-on Heads-on
 - Involves all players, questions had right amount of difficulty

Development Process - Iterative Model

- Determine Goals
 - Knowledge or skills
- Design
 - ► Align mechanics
 - Actions value
- Implementation
 - Construct simple objects
- Playtest
- Evaluate

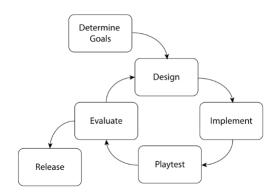


Figure 1: Iterative Design Model

Determine Goals

- Single-player videogame
- ► Inspired by Diner Dash
 - ► Time management clients come up
 - ▶ Player troubleshoot different problems
- Representative of a collaborative and interpersonal
- Knowledge and skills
 - ► Troubleshooting problems in person and remote, dealing with clients of different personality types, understanding interactions with clients affects the larger organization
 - Problem solving, communication and teamwork

First Iteration (1/2)

- Design
 - Self-contained
 - ▶ White board card game
- ► Implementation
 - ► Three main components
 - Client cards
 - Problem cards
 - Satisfaction gauge blue to red
 - Every round
 - Client card move down
 - Faster solve more reputation
 - Couldn't solve client card slide off

First Iteration (2/2)

Playtest

- Development team two rounds with difficulty
- Playable not great
- Students playtest
- Restrictive behavior on clues on problem cards
- Clumsy realistic back and forth
- Evaluate
 - ► Structure confusing
- ▶ Complete → facilitator

Second Iteration (1/2)

- Design
 - Guide for facilitators
 - List common problems
 - Actions solve an issue
 - Asking the client a question or another player for help, troubleshooting task on the client's device, looking up info online
- Implementation
 - Client Cards SUNY ID
 - Problem cards CampusID
 - ► Satisfaction gauge

Second Iteration (2/2)

Playtest

- Student overview rules
- Drew client and problem cards
- 2 action limit turn
- Ran out ways troubleshoot
- Evaluate
 - Changed limit actions
 - Asking players help
 - Driving engagement
 - Focusing on interactions

Discussion

- Similarities
 - Engaging
 - Educate players subject material
- Differences
 - Different age groups
 - Different papers
- ► Self Determination Theory
 - Autonomy, competence, relatedness

Conclusion

- Engaging students directly
- Medium of art
- Inherently educational
 - Creation educational
 - opportunities to professors
- 'The definition of a good game is therefore "one that teaches everything it has to offer before the player stops playing." -Raph Koster A Theory of Fun

Acknowledgements

- ► K.K Lamberty
- Students

References

- 1 C. Babcock. Developing a help desk board game.volume Part F131713, pages 139–144. Association forComputing Machinery, 10 2017.
- 2 E. A. Dewey.TRIGGERING STUDENT INTERESTIN CLASSROOM SUBJECTS THROUGH THE USEOF BOARD GAMES. 2020.
- 3 D. B. Jordaan. Board games in the computer scienceclass to improve students' knowledge of the pythonprogramming language. In2018 InternationalConference on Intelligent and Innovative ComputingApplications (ICONIC), pages 1–5, 2018.
- 4 V. R. Lee, F. Poole, J. Clarke-Midura, M. Recker, andM. Rasmussen. Introducing coding through tabletopboard games and their digital instantiations acrosselementary classrooms and school libraries. pages787–793. Association for Computing Machinery, 2 2020.

Final Thoughts