
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Tyler Rowland

Scaling and Load-Balancing Applications with
Kubernetes

Tyler Rowland
rowla070@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Containerized applications have become the best way to
create application. Kubernetes is a tool used for automation
of management and deployment of these applications. In
this paper I will look at two studies on load-balancing and
horizontal scaling. These two papers look at how each aspect
increases the performance of applications.

Keywords: Kubernetes, containers, applications, Load-bal-
ancing, Scaling

1 Introduction
We use computer applications everyday, whether it is on our
phones, laptops, or even televisions now. Applications have
become an integral part of our lives.

Deploying and management of the application led to long
nights and delayed releases. Also these applications could
only be deployed on-premises, on a server in a data center.
Engineers had to manage the application by looking at the
number of user requests and network traffic to make sure
the server wouldn’t become overwhelmed. Engineers would
then use load-balancing and scaling to make sure the servers
could run efficiently. In a data center is a server becomes
overwhelmed it could shut down, which causes downtime for
applications. Cloud computing allows engineers to only have
to manage the application being used and not have to worry
about a server. Data centers are more expensive than cloud
computing in the sense that you have to pay for the gear
and the manpower to run them. Cloud computing, though
cheaper, takes a lot of understanding of how to manage the
money being spent. Changes to the application can all be
done remotely, because there is no need to physically connect
to anything in the data center. For example, an application
called ‘Shoe Guru’ in the early 2000s ran their application in
their data center in Silicon Valley. There were many devel-
opers that worked on this application, some worked at night
to make sure everything was running fine in the data center.
Whereas others worked the typical 9 to 5 work day looking
at how to improve their application. Within the last 5 years
developers of this application started looking at cloud com-
puting and the advantages it brings. From there they moved
‘Shoe Guru’ to the cloud, which allows the developers only
focus on improving of their application.

Cloud computing has brought on a new type of applica-
tion. Containerized applications have become very popular
since the boom of cloud computing. These applications run
in containers. Containers are a standard unit of software
that packages up code and allows applications to run faster
and more consistent between environments. Containerized
applications give us the option to run applications in the
cloud, on-premises, or both. Also deploying these apps are
much easier, which was what was so intriguing to software
development teams such as Shoe Guru.

Kubernetes is used to manage these types of applications.
Kubernetes was first released in 2015 by Google [5]. While
Google was the first company to create and use a Kubernetes
engine, software companies such as Red Hat, VMware, and
Cloud computing competitors have their own versions as
well. Big applications have been using Kubernetes because
of the scalability or load-balancing and easy deployment. Ku-
bernetes is a containerized application tool that automates
the deployment and management process. Before, develop-
ers were very focused on the back-end of their application.
They constantly made sure that it could handle an increased
amount of traffic, and that everything was working correctly
in their servers. Kubernetes is used so developers can focus
on how an application looks and feels as well as integration
of new features.
Kubernetes implements features to improve the deploy-

ment and management of applications. In this paper we are
going to describe some of these features and how they im-
prove the management of applications. Load-balancing and
scaling help to improve not only managing applications, but
also helps to increase the performance. These two features
will be the main aspects of the paper.

In this paper we will first explore the necessary terminol-
ogy to understand load-balancing and scaling in Kubernetes
in section 2. Included will be the hierarchy of Kubernetes
units, API server, and CPUs. Section 3 will look at scaling,
more specifically CPU usage and response time of a single
server versus multiple servers. This section also will look
at the results of the study that we looked at. Lastly, Section
4 will dive into the load-balancing aspect of the paper. The
study evaluated in this section explores distribution of the
workload. The discussion will involve CPU utilization and



Scaling and Load-Balancing Applications with Kubernetes

throughput of two clusters. Finally, the conclusion which
will sum up this paper.

2 Background
In this section we are going to dive into the features that
Kubernetes provides for big applications. Aspects such as
load-balancing and scaling will be explored first, followed
by an explanation of the Kubernetes hierarchy. Then we
will look at the API server that Kubernetes uses. Finally is
a section about other concepts needed to understand the
paper.

The first feature we are going to explore is load-balancing.
Load-balancing controls the network traffic of an application
and distributes it to other replicated applications. This is
so the application doesn’t become too overwhelmed. This
is helpful because in Kubernetes it is all automated. When
the application uses too many resources and becomes slow,
Kubernetes distributes this traffic to the different nodes and
pods in the cluster. Load-balancing is the feature that con-
trols this, which is done to avoid bottlenecks. A bottleneck
happens when there is a workload imbalance in the worker
nodes. Which, in turn, leads to decreased performance of the
system [4].

Horizontal scaling is very similar to load-balancing in the
sense that it helps to take the burden off of a machine. Where
load-balancing distributes network traffic; horizontal scaling
refers to changing the number of machines. When there is a
large amount of requests or traffic, Kubernetes changes the
number of machines to handle the load efficiently. If needed
this can all be done automatically which is why so many big
companies use Kubernetes.

2.1 Client-Server Architecture
Figure 1 shows the client server architecture in Kubernetes.
In this case there are 3 nodes in the cluster, one master
node and two worker nodes. User requests play a big part
in the structure of this paper, as well as the usage of load-
balancing and scaling. The user requests come from the users
in the figure. These requests are sent over the internet to
the Kubernetes cluster. The master node then distributes
those requests to a worker node, where the requests are split
up to each pod, container, and application. For example, in
the Shoe Guru application, multiple users send requests to
the application to order pairs of shoes. These requests are
received and authenticated by the master node of Shoe Guru
then distributed to the worker nodes for them to handle.
In the case of deployment, this is all set up by the users

but done by Kubernetes. The user specifies in the master
node the details of the deployment. The master node then
deploys the application in the worker nodes. From there
the worker nodes are in charge of managing the application
that’s deployed.

Figure 1. Client Server architecture [3]

API server

Kubelet

Master Node

Worker node Worker node

Cluster

Container

Pods 

Nodes

APP AAPP A APP B APP B

Kube-ProxyKube-Proxy Kubelet

Figure 2. Kubernetes Hierarchy [4]

2.2 Concepts and the Kubernetes Hierarchy
Kubernetes uses containers, clusters, and pods to run its ap-
plications. A container is where the application is deployed.
A container is a standard unit of software that packages
up code and allows application to run fast and more con-
sistent between environments [1]. Containers nest inside
pods and one or more containers makes up a pod. A pod
is the smallest execution unit, meaning it is the smallest



Tyler Rowland

unit that is deployed by Kubernetes. The pods in Kubernetes
share storage, which in the case of one of the pods getting
shut down, the shared storage allows for back up for the
pods. [4]. Applications in Kubernetes are typically replicated.
This means there are multiple pods in each node that con-
tain the same application. The containers in Figure 2 contain
these applications. These replicated applications are used
for load-balancing. Kubernetes distributes the workload to
these applications to improve performance. User requests
are also handled in these replicated application pods. Each
pod in Kubernetes also contains it’s own data storage con-
tainer or data store. These data stores contain aspects of the
application that the user can write data to or get data from.
Usage of data stores is to ensure consistency throughout the
Kubernetes cluster as well as the application.
Pods are run inside of nodes. Nodes in Kubernetes can

either be a physical server or a virtual machine. Looking
at the Shoe Guru app, at the beginning of their existence
a node would have been a physical server in a data center.
Now Shoe Guru uses virtual machines for their nodes. There
are 2 types of nodes in Kubernetes: master nodes and worker
nodes. In a cluster there can only be one master node, but
there can be as many worker nodes as desired. The master
node contains pods that are needed to keep the cluster run-
ning and available for requests. This node controls all of the
management of the Shoe Guru application. Worker nodes
contain pods, containers, and applications. They are used
to handle all of the network traffic and user requests of the
Shoe Guru application.
The master node controls the entire Kubernetes cluster.

Inside the master node in Figure 2 there is the API-server.
The API-server does two things in Kubernetes. First it is
used to receive the user requests and services from the user.
From there, the API distributes those request to the other
aspects of the cluster. The API-server also can be used to
change the number of nodes, pods, and containers used in
the cluster [4].
Inside the worker nodes in Figure 2 there are two pods

labelled kube-proxy and kubelet. Kube-proxy contains the
network rules for communicating with the application pods.
Kubelet manages all of the containers in the node while also
talking with the master node about status of the worker
node it is in. Typically there can be as many worker nodes
as desired and are all managed by the one master node.
When we talk about a Kubernetes cluster we mean all

of the nodes, pods, containers, and applications as well as
what’s inside of them. A Kubernetes cluster has it’s own
dedicated cluster IP address. A cluster IP is an IP address that
that the cluster uses for things like management and expo-
sure to the internet. Typically when pods are restarted there
IP addresses change. This leads to inconsistent communica-
tion with the pods. A cluster IP gives developers consistent
communication with every aspect of Kubernetes.

2.3 API Server
An API is an Application Programming Interface. In Ku-
bernetes the API server handles all of the user requests and
services. From there, the API server communicates to kubelet
and kube-proxy in each worker node to determine the load-
balancing and scaling needed to complete the request effi-
ciently and effectively. Figure 2 shows this communication
as the master node contains the API server.

For example, Shoe Guru on any given day has 3 application
pods in the nodes. Black Friday is coming up soon and there
is going to be a dramatic increase in the number of users.
Without Kubernetes, the developer would have to manually
scale the number pods or applications and distribute requests
to them. With Kubernetes this process is all automated. The
developer first specifies the maximum CPU usage a pod can
have, say 80%. Once CPU usage on a pod hits that threshold
the API server than reaches out to a controller which adds
more pods. Then the new pods are given user requests to
complete. This returns the pods’ CPU usage back to desired
levels. After Black Friday the number of users return to
normal but there are still the extra pods from the scaling.
This causes an extremely low CPU usage and a surplus of
pods which all would have to be paid for. Kubernetes will
then scale the number of pods back to 3. This results in a
similar CPU usage as before Black Friday.

2.4 CPUs and Millicores
Central Processing Unit or CPU measure the compute pro-
cessing in a server or other type of machine. In Kubernetes
they can be referred to as compute resources [2]. "Compute
resources are measurable quantities that can be requested,
allocated, and consumed." [2].

In Kubernetes CPU usage ismeasured in Cores, also known
as Virtual CPUs (vCPU). Cores are similar to other units of
measurement like inches or meters. The similarity is more
in the sense of the prefix used to describe the amount. For
example one thousandth of a meter is a millimeter, in the
case of Kubernetes one thousandth of a core is a millicore.
So if a pod is using 2000 millicores of CPU it is technically
using 2 cores.

3 Horizontal Scaling
One of the most prominent features of Kubernetes is the
ability to scale an application across multiple servers. This is
done to take some of the workload off of our servers. Scaling
in Kubernetes is called Kubernetes Horizontal Pod Autoscal-
ing (KHPA). KHPA is used to increase or decrease the number
of containers and pods based on the number of concurrent
users. KHPA takes the target input as a percentage of CPU
usage. The output is the target number of pods. What this
means is KHPA takes in how much CPU usage a machine is
using. It then gives the cluster the number of pods needed
to easily run the workload.



Scaling and Load-Balancing Applications with Kubernetes

Task CPU usage CPU usage
Single Server Multiple Servers
(in millicores) (in millicores)

1 576.00 209.00
2 526.00 369.00
3 498.00 333.00

Average 533.33 303.66
Table 1. CPU usage

Response Time(ms) Single Server Multiple Servers
(no scalability) (with scalability)

Get data (first task) 00:00:44 00:01:07
Get data (second task) 00:00:40 00:01:06

Table 2. Response Time [3]

For example, in the Shoe Guru application on Black Friday.
The developers specify that the input or the percent of CPU
usage is 80 percent. The output of this algorithm is increasing
the number of pods by 1 in order to handle the requests.

In a 2019 study, Dewi, et al [3] evaluates how Kubernetes’
horizontal scaling increases the performance of servers. Dewi,
et al focuses on increasing concurrent users that are access-
ing academic data. In accessing this data, users request 3
types of services: get data service, send data service, and
delete data service. These services are used throughout the
evaluations. There are also two types of scenarios that Dewi,
et al evaluates in the study. The first is a single server, which
does all of the request for it’s scenario. Also there is a mul-
tiple server evaluation which includes three servers. One
hosts the master node, where the other two host the worker
nodes. This cluster uses Kubernetes horizontal scaling.

3.1 CPU usage
Table 1 compares CPU usage between a single server and
multiple servers (using scalability). The CPU usage in this
study is measured in millicores.

The scenario in this study uses a simulated behavior com-
posed of 3 tasks. Each task includes 150 users making 11
requests each. The simulation included 1,650 user requests
being handled by single server as well as multiple servers.
The users continuously and simultaneously send 2 requests
that get data, one request that deletes data, and seven re-
quests that send data. Each task in this evaluation does these
requests in a different order to ensure consistency.

3.2 Response Time
This scenario focuses on the response time to the user re-
quests comparing a single server to multiple servers. The
evaluation includes two tasks in which users only request
get data services. Each task receives the same amount of
get data requests. The study does multiple tasks to look for

consistency and calculate an average. Table ?? compares the
response time of 150 users making 11 requests each. This
scenario compares these response times on a single server
versus multiple servers using scalability. The scenario with
multiple servers scales the containers when these requests
come in. Scaling the containers comes with a delay which is
included with the response time of the multiple servers clus-
ter. As the number of request increase, the expectation is that
this scaling delay begins to be less influential. This scaling
is done once the CPU usage hits 80 percent. [3] Kubernetes
does this so the containers do not become overwhelmed.

3.3 Results
The scenario evaluating CPU usage shows that on average,
CPU usage with a single server is almost double the CPU
usage with multiple servers meaning each server in the clus-
ter is using half the amount of CPU compared to the single
server. This is because the workload is being scaled across
multiple different servers. As we see in Table 1 this takes a
lot of the burden off of the servers. In the first task the differ-
ence of CPU usage is 367 millicores. [3] This is the largest
difference of usage. In comparison, on average the difference
is 230 millicores. [3]
Table 2 shows us that single server has faster response

times when responding to 1,650 user requests. [3] With mul-
tiple servers there is a delay though. The delay is due to the
master node scaling the containers of the worker node. As
the number of requests increases the scaling time becomes
less of a factor. [3]
These two aspects of scaling are being studied because

it helps to make machines more efficient and effective. Re-
sponse time and CPU usage are two issues that Kubernetes
is trying to be made better. Scaling ties into this because it
is supposed to make these two aspects more efficient and
more effective. While the response time does not show how
efficient Kubernetes is, the CPU usage shows the effective-
ness of Kubernetes. The CPU usage for this single server
is at 80% [3]. When adding more requests the scaling delay
should become less influential. This is because the multiple
servers cluster is doing much less work than the single server.
With that being said, as the number of requests increase the
single server will become more overwhelmed. Therefore it
will take more time for the single server to respond to those
requests.

4 Load-balancing
For load-balancing Kubernetes uses algorithms to decide the
leader of the cluster. The leaders and followers in Kubernetes
are an application pod within the different nodes. In each
node there are multiple replicated applications as talked
about previously. For load-balancing purposes, each pod that
the replicated applications are in have 2 more containers
that are used for this purpose. One container is used for



Tyler Rowland

the leader election, meaning the sole responsibility of this
container is to be involved in the leader election with other
replica pods. The second container is used to handle all of the
client requests being sent over the network. This container
is crucial to understand what type of requests a pod can
receive. If there is a read request both leaders and followers
can serve it. Whereas a write request can only be handled by
the leader pod. In the case of a write request, followers will
direct all of the requests to the leaders of the nodes. Each
of these pods save and retrieve the data requested by the
user from the data store. For example the write requests are
saved in only the leader pods data store because every write
request is directed to the leader pods. Whereas read requests
are retrieved from all of the pods data stores because all pods
can handle read requests.
Nguyen and Kim [4] talk about 3 different algorithms

that could be used in leader selection. While these three al-
gorithms have different election processes, there are many
similarities. Leaders send "heart-beats" to its followers con-
tinuously. This is to ensure each follower knows who the
leader is. The election process typically begins when a fol-
lower doesn’t receive the heart beat from the leader for a
specific period of time. From there the pods try to become
the leader. Each algorithm is different in the race to become
the leader. At the end of the election process the pod that is
now called the leader begins to send the heart beats out to
it’s follower.

4.1 CPU utilization
Nguyen and Kim compare the CPU utilization between a
cluster with concentrated leaders and another cluster with
balanced leaders [4]. They evaluate distributing 5 leader pods
across 3 worker nodes. The concentrated leaders cluster in
this study have all five leader pods in node 1, and nodes 2
and 3 in this cluster don’t have any leaders. Whereas the
balanced leaders cluster distributes the leader pods across
the worker nodes, with two leaders in nodes 1 and 2 and one
leader is in node three [4].

The scenario used here is constructed with 4 clients send-
ing write requests for 150 seconds simultaneously to each
cluster, requests are then distributed to the different worker
nodes in each cluster [4]. The write requests used require the
leaders of the worker nodes to do the majority of the work.
The followers though, still have to direct those requests to
the leaders of the nodes, which is why CPU utilization is
not zero. In the concentrated leaders cluster the majority of
the traffic is directed to node 1 because that is where all of
the leaders are. In the balanced leaders cluster the traffic is
distributed fairly evenly because the leaders are distributed
to all 3 nodes.
Figure 3a shows the CPU utilization within the concen-

trated leaders cluster. Figure 3b shows again the CPU uti-
lization within the balanced leaders cluster. Within the con-
centrated leaders cluster all of the leader pods are inside

Figure 3. CPU utilization (a) Concentrated vs. (b) Balanced
leaders [4]

of node 1. Because all of the requests are being handled by
the leader applications, the CPU utilization of node 1 is 60
percent higher than the other two nodes [4]. This causes a
bottleneck in the cluster. Node 1 is consuming much more
resources than nodes 2 and 3 so it becomes overwhelmed.
On the flip side, Figure 3b shows the CPU utilization for

the balanced leaders cluster. The figure shows how balanced
the CPU utilization is across the nodes. For nodes 1 and 2
the CPU utilization is approximately 60 percent meaning the
nodes are fairly balanced [4]. Node 3 only had one leader
application so the utilization is less. With distributed lead-
ers the evaluation shows how sharing the CPU usage with
Kubernetes is effective. This helps increase the throughput
of the systems, which is shown in the next section.

4.2 Throughput
The second evaluation from Nguyen and Kim focuses on
their study [4] which is represented in Figure 4. This evalua-
tion looks at the throughput (requests processed per second)
comparing concentrated and balanced leaders clusters. For



Scaling and Load-Balancing Applications with Kubernetes

Figure 4. Throughput Concentrated vs. Balanced leaders [4]

this evaluation clients would simultaneously send write re-
quests to the leaders. The number of clients increased from 1
to 32, where each client sent 2,000 requests to each leader [4].
Nguyen and Kim run this evaluation on the same clusters as
the CPU utilization evaluation.

In the evaluation of the concentrated leaders cluster, once
the number of clients reach 4, the number of requests pro-
cessed per second begins to stay relatively the same. This is
due to a bottleneck once the number of clients is greater than
4. The requests in this scenario all go to one node because all
of the leaders are in that one node. Throughput then relies
solely on the capacity of the single node.

In the balanced leaders cluster the evaluation shows that
as the number of clients increase, throughput increases more
consistently. In this scenario the requests are distributed
across all nodes because there are leaders in all three nodes,
so the throughput relies on capacity of three nodes instead of
just one. Distributed workload allows for higher productivity
because there is a lower chance of a bottleneck [4]. Meaning
the chance of a bottle neck happens when the load gets
even bigger than 32 clients, instead of after 4 clients. The
study shows that throughput is increased in the scenario of
balanced leader, illustrating the importance of distributing
leaders throughout nodes instead of having one node with
all of the leaders.

4.3 Results
This study by Nguyen and Kim demonstrate a direct correla-
tion between CPU utilization and throughput. On one hand,
the lopsided CPU utilization creates a bottleneck because of
the workload imbalance, which in turn leads to decreased
performance shown in the throughput evaluation. In this
evaluation once the number of clients gets to 4 the request
per second stays fairly constant. With all of the requests
going to only one node, the cluster cannot keep taking more

requests because the node is almost at its maximum CPU
utilization.
In the case of the balanced leaders, the distribution of

the workload creates a much better effect. Because the lead-
ers are distributed fairly evenly between the three nodes,
the CPU utilization of the nodes are similar. The lower and
more even CPU utilization allows the cluster to have im-
proved performance, which is demonstrated in throughput
evaluation. As the number of clients increase the throughput
increases at fairly large, positive rate. The throughput after
receiving requests from one client is 48.7 percent higher with
balanced leaders compared to with concentrated leaders [4].
This shows that without increasing the number of clients,
the throughput is still higher in the balanced leaders cluster.

These results demonstrate the importance of load-balancing.
When only one node is doing all of the work, the cluster
cannot reach improved performance. Load-balancing allows
nodes and cluster to have the best performance. With the
different leader selection algorithms and the configuration of
distribution, Kubernetes helps clusters improve performance
through load-balancing.

5 Conclusion
Kubernetes is becoming a widely used containerized applica-
tion tool. It is being used for the automation of many aspects
of management and deployment. These are two aspects that
engineers have spent a lot of time on, and Kubernetes helps
do that automatically. This paper focuses more on the man-
agement aspects of Kubernetes, including features such as
horizontal scaling and load-balancing which are used to in-
crease performance. Scaling pods horizontally focuses more
on elasticity, or how much workload can an application han-
dle before becoming overwhelmed. Horizontal scaling comes
from Kubernetes horizontal pod auto scaling (KHPA). This
algorithm automates the horizontal scaling process and helps
to create elasticity. Whereas load-balancing focuses on dis-
tributing network traffic to the different replica application
pods created. This comes from leader selection algorithms
which elects a leader to control the traffic. Distributing this
traffic leads to increased throughput and decreased CPU
utilization.

Acknowledgments
I would like to thank Nic McPhee and Elena Machkasova for
the support and feedback throughout this process. As well
as my classmates for the feedback they have provided.

References
[1] Docker Contributors. [n.d.]. Use containers to Build, Share and Run your

applications. https://www.docker.com/resources/what-container
[2] Kubernetes Contributors. [n.d.]. Managing Resources for Con-

tainers. https://kubernetes.io/docs/concepts/configuration/manage-
resources-containers/

https://www.docker.com/resources/what-container
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


Tyler Rowland

[3] Lily Puspa Dewi, Agustinus Noertjahyana, Henry Novianus Palit, and
Kezia Yedutun. 2019. Server Scalability Using Kubernetes. In 2019 4th
Technology Innovation Management and Engineering Science Interna-
tional Conference (TIMES-iCON). 1–4. https://doi.org/10.1109/TIMES-
iCON47539.2019.9024501

[4] Nguyen Nguyen and Taehong Kim. 2020. Toward Highly Scalable Load
Balancing in Kubernetes Clusters. IEEE Communications Magazine 58,
7 (2020), 78–83. https://doi.org/10.1109/MCOM.001.1900660

[5] Wikipedia contributors. 2021. Kubernetes — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Kubernetes&
oldid=1049396434. [Online; accessed 12-October-2021].

https://doi.org/10.1109/TIMES-iCON47539.2019.9024501
https://doi.org/10.1109/TIMES-iCON47539.2019.9024501
https://doi.org/10.1109/MCOM.001.1900660
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1049396434
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1049396434

	Abstract
	1 Introduction
	2 Background
	2.1 Client-Server Architecture
	2.2 Concepts and the Kubernetes Hierarchy
	2.3 API Server
	2.4 CPUs and Millicores

	3 Horizontal Scaling
	3.1 CPU usage
	3.2 Response Time
	3.3 Results

	4 Load-balancing
	4.1 CPU utilization
	4.2 Throughput
	4.3 Results

	5 Conclusion
	Acknowledgments
	References

