
The Impact of Dynamic Difficulty Adjustment on Player
Experience in Video Games

Chineng Vang
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

vang2660@morris.umn.edu

ABSTRACT
Dynamic Difficulty Adjustment (DDA) is a process by which
a video game adjusts its level of challenge to match a player’s
skill level. Its popularity in the video game industry contin-
ues to grow as it has the ability to keep players continuously
engaged in a game, a concept referred to as Flow. How-
ever, the influence of DDA on games has received mixed re-
sponses, specifically that it can enhance player experience
as well as hinder it. This paper explores DDA through
the Monte Carlo Tree Search algorithm and Reinforcement
Learning, gathering feedback from players seeking to under-
stand what about DDA is alluring and discouraging. How
player experiences are affected by DDA in competitive mul-
tiplayer video games is also an area of interest, so a survey
of player responses to DDA in multiplayer video games is
also examined.

Keywords
Dynamic Difficulty Adjustment, Flow, Monte Carlo Tree
Search, Reinforcement Learning

1. INTRODUCTION/BACKGROUND
The challenge a game provides to players is connected to

what makes the game fun. Games that are too easy be-
come dull and uninspiring over time. Similarly, games that
are too difficult are not encouraging either. Creating a bal-
anced challenge for players is a daunting task for game de-
velopers because the skill level of players vary. An obstacle
perceived as difficult to one player may be easy to another
player and vice versa. The use of DDA allows a video game
to gauge the skill level of a player, and then alter game pa-
rameters attempting to provide an appropriate challenge to
said player. [10]

The goal of DDA is to balance a game so a player remains
engaged and motivated to continue playing. The state of
mind players enter when this is achieved is called Flow. The
idea of Flow and Flow Theory was studied by Mihaly Csik-
szentmihalyi in the 1970s. He defined Flow as a mental state
of energetic focus in which a person is completely immersed
in the activity that they are trying to accomplish. [2]

Flow among players is what DDA implementations aim to
reach. More specifically, each implementation tries to bal-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2021 Morris, MN.

Figure 1: A model of Flow with the Flow Channel being
between frustration and boredom. [6]

ance a video game to maintain players in the Flow Channel
(see Figure 1). The Flow Channel lies between frustration
(when the challenge of a game is too difficult for lower skilled
players) and boredom (when the challenge of a game is too
easy for higher skilled players). Investigating how players
respond to different implementations and aspects of DDA
can give game developers valuable insight about what ele-
ments of a video game improve a player’s game experience
and as a result, keeps them in the Flow Channel. [6]

In this paper, Section 2 uses the Monte Carlo Tree Search
(MCTS) algorithm as a foundation for three different ver-
sions of DDA. Each version is tested on players, then players
give feedback on which version of DDA was most realis-
tic, most difficult, and most enjoyable. Section 3 looks at
how reinforcement learning can be used to implement DDA
in turn-based games. Three versions of the reinforcement
learning algorithm SARSA (explained further in Subsection
3.1) are experimented on players. The success, challenge,
skillfulness, and effort that players experience while playing
against each version is measured by player feedback. Section
4 explores how DDA affects multiplayer play. Players are
surveyed about their preferences of DDA use in multiplayer
video games. The key focus of the survey is that players
respond from both a high performance perspective, if they
are good at the game, and a low performing perspective, if
they are not good at the game. The survey finds a stark
contrast in how players perceive the use of DDA depending
on if they are good at the game or not.



Figure 2: The states and actions for the game tree of Tic-tac-
toe. [9]

2. MONTE CARLO TREE SEARCH
DRIVEN DDA

The study done by Demediuk et al. implements three ver-
sions of DDA based on Monte Carlo Tree Search (MCTS),
a search algorithm designed to efficiently discover the most
promising courses of action leading the computer (AI) to vic-
tory. Each version alters MCTS in different ways to adjust
the game difficulty to specific experiment parameters.

Games can be represented by game trees. Each node in
a game tree is a game state, certain situations in a game
that can be reached by taking certain actions. Each action
is represented as branches in the game tree (see Figure 2). It
is common for a game to have complex game trees, such as
chess and checkers. Complexity comes from the tree being
large, as large game trees take a long time to traverse. What
makes MCTS beneficial is that unlike other popular search
algorithms, the entire game tree does not have to be com-
pletely traversed in order for the AI to determine a course
of action, improving efficiency.

As MCTS traverses a game tree, it builds a statistics
(stats) tree for the game, which is used to help the AI de-
cide what to do. Each node in the stats tree encodes the
sequence of actions taken in the game tree up to that node.
Each node also has an estimate associated with it, represent-
ing the likelihood it leads the AI to a winning state. Based
on the stats tree being built, the AI will take actions in the
game tree with the highest estimates in the stats tree. There
is no stats tree at the start of the game, so MCTS (at the
root node of the game tree) chooses random actions to begin
a game. Then it repeats four steps to build the stats tree
(see Figure 3):

• Selection: Each node in the stats tree holds an esti-
mate of the likelihood that it leads the AI to a win-
ning game state of the game tree. Nodes with higher
estimates are called promising nodes and are selected
to be investigated further.

• Expansion: Adding a new child node to promising
nodes of the stats tree representing an action in the
game tree MCTS will investigate.

• Simulation: An entire simulation of the game is tested
choosing actions starting from the root node of the
stats tree to the node being evaluated. Random ac-
tions are taken, following the node being evaluated,
to simulate the rest of the game. The simulation pro-

Figure 3: Selection, Expansion, Simulation, and Backpropa-
gation of Monte Carlo Tree Search. [8]

duces a value associated to the path taken in the stats
tree.

• Back-propagation: The value produced by the simula-
tion is used to update the estimates of the nodes along
the path of the stats tree being evaluated. Simula-
tions leading to the AI to win increases the estimates
of nodes.

When the AI needs to make a decision, the above pro-
cess can halt and choose the best course of action available
at that time (i.e. choosing the node with the highest esti-
mate). [4]

2.1 DDA Implementations with MCTS
MCTS is used as the foundation for the three versions of

DDA. As discussed in Section 1, DDA’s goal is to maintain
players in the Flow Channel. Demediuk et al. hypothesize
that a player winning 50% of the time will accomplish this
goal, so whichever version comes closest to winning half their
games should provide the most balanced gameplay. Each
version either changes how actions are chosen from MCTS
or alter how the stats tree is built in MCTS. They then mea-
sure how close to the goal each implementation got which is
discussed in Subsection 2.2.

2.1.1 DDA with CSAS
The first version of MCTS is based on Challenge Sensitive

Action Selection (CSAS) which uses reinforcement learning
and Q-tables [5]. Every action taken from a state of a game
tree has a reward (also called value). If an action is taken by
the AI, the AI receives the corresponding value. The value is
a measure to how well the action taken helps the AI towards
winning. In reinforcement learning, as the AI traverses a
game tree, a Q-table keeps track of these state-action values.
The rows of the Q-table hold states and columns hold actions
to take at each state. The Q-table helps guide the AI to
make decisions as the game progresses, with the beginning
of the game having randomized values.

This version of MCTS (called CSAS) has the AI begin
a game by choosing the mean valued action in the Q-table
instead of the highest valued action. The mean is usually
a middle ground, presenting an average challenge to play-
ers (see Figure 4). After a certain number of mean valued
actions have been taken, CSAS evaluates if the difficulty
needs to be increased or decreased depending on the player’s



Figure 4: A sample Q-table with state-action values. The
mean valued action of the state is circled. [4]

gameplay. If there needs to be an increase, values one level
higher than the current one will be chosen in the stats tree.
Likewise, values one level lower than the current one will
be chosen if the difficulty needs to decrease. If the game
is already well balanced in difficulty, there will not be any
change. [4]

2.1.2 DDA with ROSAS
The second version of MCTS is based off of Reactive

Outcome Sensitive Action Selection (ROSAS). Recall that
MCTS chooses the action with the highest estimate in the
stats tree. ROSAS deviates from choosing the action with
the highest estimate and chooses an action trying to get
the health bars of the AI and player to match. In a fight-
ing game, each character has a health bar with a specified
number of hit points. A character losing all their hit points
means that character loses. Based on the hit points in the
health bar for the AI and the player, the action trying to
match their hit points (referred to as matching health bars)
will be taken. Higher valued actions will be chosen if the AI
is losing, becoming a more difficult opponent for the player.
Lower valued actions will be chosen if the computer is win-
ning, giving the player the advantage. ROSAS differs from
CSAS because ROSAS makes adjustments to the player with
every action trying to match its health bar to the player’s.
CSAS takes more time to adjust to the player, waiting until
a specified number of actions are taken before reevaluating
difficulty. [5]

2.1.3 DDA with ATROSAS
The third version of MCTS is based on Adaptive True

Reactive Outcome Sensitive Action Selection (ATROSAS).
ATROSAS has the same goal as ROSAS, which is to have
the AI and player match health bars. CSAS and ROSAS
alter how MCTS chooses action, but ATROSAS changes
how MCTS builds the stats tree. In the Simulation step of
MCTS, if the node being evaluated causes the difference in
hit points between the AI and player to shrink, then the node
receives a higher value since it is making the game closer.
If the node causes the difference in hit points to increase,

then the node receives a lower value.1. Essentially, instead
of the estimates in the stats tree representing the likelihood
of winning, ATROSAS alters this so that they represent the
likelihood of matching the health bars of the AI and player.
Like MCTS, ATROSAS then chooses the action with the
highest estimate, the action most likely to match the health
bars. [4]

2.2 Experiment/Results
The experiment had 31 participants of varying skill level

play the fighting game against each version of MCTS as well
as a standard MCTS version of the game. The participants
then gave feedback on their experience answering the follow-
ing questions:

• On a scale of 1-5 how difficult was this opponent? (1
being least difficult, 5 being most difficult)

• On a scale of 1-5 how enjoyable was playing against
this opponent?

• On a scale of 1-5 how realistic of a challenge was this
opponent?

Observing the three versions of MCTS, the ATROSAS
version won 51% of the time and was voted as the most dif-
ficult version of the three. ROSAS won 46% of the time,
and CSAS won 41% of the time. To reiterate, the goal of
DDA is to keep the player in the Flow Channel. This was
hypothesized to be accomplished with a challenge where the
AI and player each win 50% of the time. So it was expected
that ATROSAS would come closest to providing the most
balanced gameplay (which would have been seen in high rat-
ings of player feedback) because it came closest to winning
50% of the time. But a surprising finding of the study is
that even though ATROSAS came closest to winning 50%
of the time, ROSAS turned out to have the highest average
of players vote it the most enjoyable and realistic to play
against (see Figure 5).

Even though the ATROSAS implementation was the
strongest of the three versions, as it had the highest win
rate, ROSAS was ultimately favored by the players despite
it not coming closest to a win rate of 50%. This result
alludes to how DDA can certainly make the AI match (or
even surpass) a player’s skill. However, the players’ favor of
ROSAS over ATROSAS suggests that players want to feel
challenged to a certain extent as well as win more than half
their games. This illustrates that if DDA is too strong, it
can negatively impact a player’s game experience. DDA is
supposed to provide a challenge, not aim to win. But if
a player wins often, which is an observation of the CSAS
version only winning 41%, player engagement may drop off.

3. REINFORCEMENT LEARNING IN
TURN-BASED GAMES

Pokémon is a popular video game that utilizes a turn-
based battle system. In turn based games, either the player
or AI will choose an action, then the other will respond with
their own choice of action.2 Difficulty in Pokémon is intro-
1For specific details about how the value is calculated, see [4]
2In the experimental fighting game in Subsection 2.1, the
game is in real-time. It updates continually, with no pauses
or phases unlike with turn-based games



Figure 5: Particpants’ response to enjoyment of the DDA
implementations. The blue area is the distribution of scores.
The red line is the mean, and the green line is the median. [4]

duced by battling stronger Pokémon, strength being deter-
mined by levels and statistics such as attack and defense
points to name a few. A limitation to this approach is that
the strength of these opponents are fixed and do not adapt
to the player’s skill or experience. This lack of flexibility can
be uninteresting to players as the game can become far too
easy or conversely, far too difficult. In any case, it is not an
effective contributor to maintaining players in Flow.

Pagalyte et al. [6] take a different approach with turn-
based games by using a reinforcement learning algorithm
to implement DDA on an experimental turn-based battle
simulator. In the simulator, the player’s character and AI’s
character are battling each other, trying to make the other’s
hit points reach 0. The simulator is essentially a turn-based
fighting game.

3.1 DDA Implementation with Reinforcement
Learning

In reinforcement learning, the AI needs to create a strat-
egy of how it will choose an action depending on the situa-
tion that it is in. This strategy is called a policy. This de-
cision making by the AI follows the framework of a Markov
decision process which has the following elements:

• Agent: The decision maker for the AI. It is represented
by the AI’s character in the game.

• Environment: A contained world in which the player
and agent interact with each other. The environment
has game states that the agent can reach by taking
certain actions. In this case, we are considering the
battle simulator to be the environment.

• State(s): A situation in the environment which the
agent can reach by taking certain actions.

• Actions: The possible decisions the agent can choose
from at a certain state of the environment.

• Reward: The outcome of the agent choosing an action
at a certain state. The reward is given to the agent,

Figure 6: States of the environment. Each state is a different
combination of hit points between the player and agent. [6]

informing it about whether or not the action taken is
helps the agent towards winning. [3]

In the simulator (the environment), there are 16 states
defined by the health bar of the player and agent. Each
health bar has 75 hit points, and the 16 states correspond
to a different combination of the how many hit points the
player and agent have (see Figure 6).

DDA in the simulator is implemented with the SARSA
algorithm. SARSA (state-action-reward-state-action) is a
reinforcement learning algorithm with the purpose of deter-
mining a policy for the agent to follow.3 When the agent
needs to choose an action to take, it will either choose an ac-
tion with the highest reward aiming to win, or explore other
states in the environment by randomly choosing an action
to take (with the agent not trying to win). These concepts
are called exploitation and exploration respectively. [11]

The experiment tests different rates of exploration and ex-
ploitation to observe which configuration(s) best keep play-
ers in a state of Flow. The rates being tested are (50,50),
(30,70), and (70,30). (70,30) denotes that 70% of the time,
the agent will explore and 30% of the time it will exploit.

3.2 Experiment/Results
Two studies were conducted using the battle simulator im-

plemented with the SARSA agent. The scope of this paper
is focused on one of those studies, which is about the game-
play experience of players. The research question associated
with the study is: Does a reinforcement learning approach
improve the game experience in terms of a player’s flow?

Ten players of different ages and skill levels participated
in the study. Five types of games were played in the battle
simulator:

• Easy: The simulator does not include SARSA and the
game is preset to some easy difficulty

• Hard: The simulator does not include SARSA and the
game is preset to some hard difficulty

• 50-50: The simulator includes SARSA. The exploration
vs exploitation rate is set to (50,50)

3The mathematical details of SARSA are beyond the scope
of this paper. More details on it can be found in [7]



Figure 7: The feedback from players in the study from Sub-
section 3.2. Each row consists of a gameplay component (suc-
cess, skill, challenge or effort), game type, mean and standard
deviation. The mean values in bold are between or equal to
1.5 and 2.5 which is how balanced gameplay is defined. [6]

• 30-70: The simulator includes SARSA. The exploration
vs exploitation rate is set to (30,70)

• 70-30: The simulator includes SARSA. The exploration
vs exploitation rate is set to (70,30)

The Easy and Hard game types both do not have any DDA
influence. This is tied to the idea of presetting a game to
remain easy or hard the entire game, which is a technique
of introducing challenge aside from DDA. Since the game
types without DDA do not adjust the player’s performance,
it is hypothesized that the game types including SARSA
(i.e. game types with DDA) would lead to a more balanced
gameplay experience for the players.

Four components of player gameplay were the focus of
this study: success, skill, challenge, and effort. Every player
played each game type three times. Once they finished,
they gave feedback on a questionnaire including the follow-
ing questions associated with each component: Did you feel
successful playing against each game type? How skillful or
competent did you feel playing against each type? Was the
game type challenging for you? Do you think a lot of effort
was needed to play against each game type?

The questionnaire collected feedback with the Likert scale
where 0 means “not at all” and 4 means “extremely”. From
Figure 7, the mean values in bold are between or equal to
1.5 and 2.5. Values in this range represent that players per-
ceived the component as balanced under the game type. For
example, row five of the first column of Figure 7 has a mean
of 2.2. So in the game type including SARSA and an explo-
ration vs exploitation rate of (70,30), players felt a balanced
amount of success, since the mean is 2.2 and 1.5 ≤ 2.2 ≤ 2.5.

The challenge and effort components have similar trends.
The Easy game type offered players the least challenge and
effort, while the Hard game type offered players the great-
est challenge and required the players’ greatest effort. In
comparison to their counterparts, the game types including
DDA were able to provide a more balanced experience in
terms of challenge and effort.

A particular observation is that the 30-70 game type had
no scores in what was deemed a balanced range, although
it did have high scores for both challenge and success. This
could imply that even though the 30-70 game was more chal-
lenging, players perceived a greater amount of success as a
result of overcoming the challenge. This is not necessarily
a negative outcome of the experiment, but it does not align

with the goal of providing balanced gameplay. Regarding
the other game types including DDA, the 50-50 and 70-30
game types had mean values between 2.2 and 2.5 for each
component. The consistency of the data being within the
range of a balanced experience suggests that a reinforce-
ment learning agent can certainly provide an engaging and
balanced challenge to players, helping sustain them in the
Flow Channel.

4. DDA AND MULTIPLAYER PLAY
In a single player game, the challenge to a player is the

AI. The level of difficulty can be controlled. In multiplayer
games, games where players face off against one another, the
challenge to a player is the other player(s). The question for
game developers is then how to implement DDA and provide
a balanced challenge for each player, but at the same time
not inhibit the gameplay experience of other players.

In a study by Baldwin et al., around 150 participants were
surveyed about their perspective on usage of multiplayer
DDA (MDDA) in video games. Player performance has mo-
ments of high level and low level gameplay, especially when
competing against other people. To account for the range
of gameplay, players gave feedback from a high performance
perspective (HPP) and low performance perspective (LPP).
The players are questioned about instances of MDDA. An
instance is defined as “a gameplay feature in competitive
multiplayer video games designed to reduce the difference in
challenge experienced by all players through adjusting the
potential performance of certain players”. [1] Essentially, in-
stances are opportunities to balance a game so all players
face the same level of challenge. An example of this is in the
racing game Mario Kart. Players that are losing the race
can receive a blue shell which slows down the racer in first
place when used. This allows the other racers the chance to
catch up to the leader.

4.1 MDDA Framework
An MDDA framework is defined with seven components

revolving around how and when instances are utilized in
multiplayer play. The survey asked the participants ques-
tions revolving around these components.

The first three components focus on when players are able
to benefit from an MDDA instance and who receives it. The
first component is Determination. A design decision must
be made about if the MDDA instance should be instituted
pre-gameplay or during gameplay. Pre-gameplay means the
instance is instituted before a game starts and is based on
a player’s past performance(s). During gameplay means the
instance is used during gameplay and is based on the current
performance of a player. A related component to Determi-
nation is Automation. Automation deals with if the system
gives players instances, or if players can give themselves in-
stances (like a handicap). In some fighting games, players
can choose to begin with a lowered health bar, giving the
other player a handicap. In this case, the instance is man-
ually applied. The third component is the Recipient of an
MDDA instance. This component is only applicable if there
are teams of players. Will a struggling player on a team
receive an MDDA instance? Or will an entire team receive
the boost?

The next two components are about how to access an
MDDA instance. The Skill Dependency component focuses
on whether or not a player needs to act with some degree of



skill in order to utilize an MDDA instance. If the instance
requires a player be skill dependent, then it provides players
with the opportunity to benefit from the MDDA instance,
the instance is not guaranteed. If no skill is needed, then the
instance is skill independent. User action is the next com-
ponent. To activate an MDDA instance, does the player
need to interact with the game in any way? Or does the
system enhance a player’s gameplay without the player do-
ing anything? User Action is not to be confused with Skill
Dependency. User Action is simply about whether or not a
player needs to interact with the game, such as pressing a
button, to activate an MDDA instance. Skill Dependency
can be described as a player having to earn an MDDA in-
stance.

The remaining two components are about the Duration
and Visibility of an MDDA instance. The Duration com-
ponent is about how long an MDDA instance lasts. The
instance can either be used once (single-use), more than
once (multi-use), or used continuously over a brief period of
time (time-based). The final component is Visibility. This
concentrates on which players are explicitly told by the sys-
tem that an MDDA instance is being received. Either the
player receiving instance is notified, non-recipients are noti-
fied (which can include the recipient), or the system notifies
no one about the instance being given.

4.2 Participant Feedback
The feedback from participants can be sectioned into three

categories of interest: player control, personal benefit, and
awareness of MDDA instances.

4.2.1 Player Control
A trend from the feedback emerged among the compo-

nents of Duration, Skill Dependency, and User Action. From
a HPP, players reported a positive game experience when
MDDA instances were skill dependent, required user-action,
and were single-use. They would prefer that all players have
a single opportunity (not guaranteed) to receive assistance
at a time of their choice. This resonates with the idea of
skillful players wanting minimal system assistance.

From a LPP, players did not provide as much inclination
as players from a HPP in regard to control of MDDA in-
stances. Unlike their counterparts, they had a greater tol-
erance for MDDA influence in multiplayer video games as
it helps them perform better. One consensus between HPP
and LPP players is the Automation component of an MDDA
instance. By letting the game automate MDDA instances,
players cannot abuse game assistance to elevate their game-
play. Additionally, players were discouraged by being given
the choice to use an MDDA instance as choosing to use it
connotes weak gameplay skills.

4.2.2 Personal Benefit
Players from a LPP found overall enjoyment in compo-

nents allowing MDDA instances to help them perform better
than they could without it. This means preferring multi-use
MDDA instances over single-use and time-based ones. Skill
independence was also favored by LPP players, because they
could take advantage of an MDDA instance without having
to earn it. Players from a HPP found enjoyment when the
impact of MDDA instances were minimal as it allows their
skill to not be overshadowed by game assistance. Examples

again being single-use instances that are skill dependent.

4.2.3 Awareness of MDDA Instances
The Visibility component was important to players from

both a HPP and LPP, because it allows transparency with
MDDA usage. If LPP players are told they are being given
an MDDA instance, then they have a better chance to make
use of the assistance. If LPP players are aiming to improve
at a game, then being told when they are being assisted
can help them gauge their skill level. If HPP players are
informed of an MDDA instance presence, then they can try
to account for the added effects of a player receiving the
MDDA instance. This also can give them a boost of confi-
dence in their own skill at the game, knowing they do not
have to rely on system assistance.

Section 2 and Subsection 3.1 both conducted experiments
with implementations of DDA. Despite only a survey revolv-
ing around MDDA instances being done, players’ feedback
on their past experience and biases when it comes to MDDA
is valuable. Game designers can gain substantial insight into
what players are desiring in terms of game balancing during
multiplayer play.

5. CONCLUSIONS AND FUTURE WORK
DDA usage continues to grow in the video game indus-

try. The studies analyzed in this paper have shown how
DDA can be effective in providing a balanced and enjoy-
able game experience for players, but game developers must
consider whether or not it impedes too heavily on players’
gameplay. DDA implementations that are too strong, with
the intention of winning rather than providing a challenge,
can discourage lesser skilled players from continuing to play.
Especially in multiplayer play, players who perform highly
and value control are hesitant to accept their gameplay (or
their opponents) being interfered with, because success is
not entirely dependent on one’s own skill.

The studies looked at in this paper used simple experimen-
tal games in their experiments. Future research about DDA
currently being used in complex games and different genres
of games can help us better understand what elements of
a game keeps players in the Flow Channel and potentially
lead to wider acceptance of DDA. [6] The motivations of
why players play video games is another topic of interest.
The idea of casual play focuses on adventuring and playing
relaxed. How does DDA impact those types of players? [4]
In any case, the future of DDA in video games holds plenty
to be excited about when considering the increasing com-
plexity of video games as well as the evolving technology
used to create it.

Acknowledgments
I would like to thank my advisor Kristin Lamberty, Elena
Machkasova, Nic McPhee, and Tim Snyder for their insight
and wisdom over the research process.

References
6. REFERENCES
[1] Alexander Baldwin, Daniel Johnson, and Peta Wyeth.

Crowd-Pleaser: Player Perspectives of Multiplayer
Dynamic Difficulty Adjustment in Video Games. In
Proceedings of the 2016 Annual Symposium on



Computer-Human Interaction in Play, CHI PLAY ’16,
page 326–337, New York, NY, USA, 2016. Association
for Computing Machinery. Accessed:
9-September-2021. URL: https://doi-
org.ezproxy.morris.umn.edu/10.1145/2967934.2968100,
https://doi.org/10.1145/2967934.2968100
doi:10.1145/2967934.2968100.

[2] Daniel Berube. The Flow Theory Applied to Game
Design, Apr 2019. Accessed: 17-October-2021. URL:
https://thinkgamedesign.com/flow-theory-game-
design/.

[3] deeplizard. Markov Decision Processes (MDPs) -
Structuring a Reinforcement Learning Problem
Youtube, Sep 2018. Accessed: 15-October-2021. URL:
https://www.youtube.com/watch?v=my207WNoeyA.

[4] Simon Demediuk, Marco Tamassia, Xiaodong Li, and
William L. Raffe. Challenging AI: Evaluating the
Effect of MCTS-Driven Dynamic Difficulty
Adjustment on Player Enjoyment. In Proceedings of
the Australasian Computer Science Week
Multiconference, ACSW 2019, New York, NY, USA,
2019. Association for Computing Machinery. Accessed:
3-September-2021. URL: https://doi-
org.ezproxy.morris.umn.edu/10.1145/3290688.3290748,
https://doi.org/10.1145/3290688.3290748
doi:10.1145/3290688.3290748.

[5] Simon Demediuk, Marco Tamassia, William L. Raffe,
Fabio Zambetta, Xiaodong Li, and Florian Mueller.
Monte Carlo Tree Search Based Algorithms for
Dynamic Difficulty Adjustment. In 2017 IEEE
Conference on Computational Intelligence and Games
(CIG), pages 53–59, 2017. Accessed:
3-September-2021.
https://doi.org/10.1109/CIG.2017.8080415
doi:10.1109/CIG.2017.8080415.

[6] Elinga Pagalyte, Maurizio Mancini, and Laura
Climent. Go with the Flow: Reinforcement Learning
in Turn-based Battle Video Games. In Proceedings of
the 20th ACM International Conference on Intelligent
Virtual Agents, IVA ’20, New York, NY, USA, 2020.
Association for Computing Machinery. Accessed:
7-September-2021. URL: https://doi-
org.ezproxy.morris.umn.edu/10.1145/3383652.3423868,
https://doi.org/10.1145/3383652.3423868
doi:10.1145/3383652.3423868.

[7] Pankaj Porwal. SARSA (State Action Reward State
Action) Learning - Reinforcement Learning - Machine
Learning - Youtube, Apr 2020. Accessed:
20-October-2021. URL:
https://www.youtube.com/watch?v=FhSaHuC0u2M.

[8] Rahul Roy. Ml: Monte Carlo Tree Search (MCTS),
Jan 2019. Accessed: 2-November-2021. URL:
https://www.geeksforgeeks.org/ml-monte-carlo-tree-
search-mcts/.

[9] Stannered. File:tic-tac-toe-game-tree.svg, Apr 2007.
Accessed: 10-October-2021. URL:
https://commons.wikimedia.org/wiki/File:Tic-tac-toe-
game-tree.svg.

[10] Matheus Weber and Pollyana Notargiacomo. Dynamic
Difficulty Adjustment in Digital Games Using Genetic
Algorithms. In 2020 19th Brazilian Symposium on
Computer Games and Digital Entertainment

(SBGames), pages 62–70, 2020. Accessed:
7-September-2021.
https://doi.org/10.1109/SBGames51465.2020.00019
doi:10.1109/SBGames51465.2020.00019.

[11] Wikipedia. State–action–reward–state–action, Sep
2021. Accessed: 10-October-2021. URL:
https://en.wikipedia.org/wiki/State-action-reward-
state-action.


