The Impact of Dynamic Difficulty Adjustment on Player Experience in Video Games

Chineng "Cookie" Vang

University of Minnesota Morris - November 13, 2021

Introduction

- What makes video games fun to play?
- Dynamic Difficulty Adjustment (DDA) is a process used to alter the challenge of a video game in real time
- Not a new concept, but a controversial one

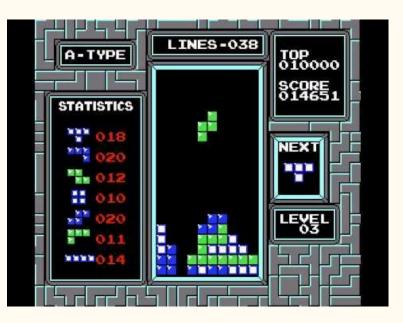
https://www.kotaku.com.au/2011/03/the-maker-of-mario-kart-justifies-the-blue-shell/

Outline

- Background Information
 - $\circ \quad \text{Context of DDA}$
 - Flow Theory
 - Controversy of DDA usage
- Implementations of DDA and player feedback
 - Monte Carlo Tree Search (MCTS)
 - \circ Reinforcement Learning
 - Multiplayer DDA
- Conclusion

Background Information

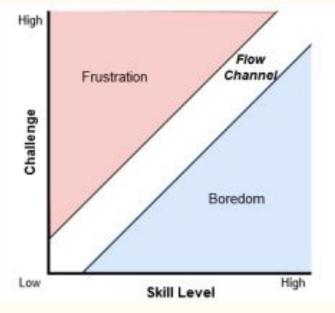
- What does DDA look like?
 - Changing the environment/enemies
 - Altering player ability
- What are other methods of implementing challenge without DDA?



https://www.youtube.com/watch?v=rUCN84SviLc

Background Information

- Goal of DDA
- Flow Theory
 - Flow: A mental state of energetic focus where a person is entirely immersed in completing a task
 - Mihaly Csikszentmihalyi (1970's)
 - Flow Channel



Source: Pagalyte (2020)

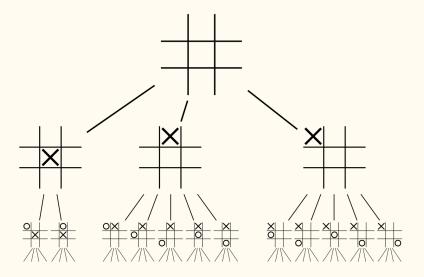
Background Information

- The argument for DDA
 - Helps create balance in a video game
 - Challenge longevity
- The argument against DDA
 - System interference overshadows player skill
 - Perceived bias towards in multiplayer video games (a.k.a cheating!!)

Outline

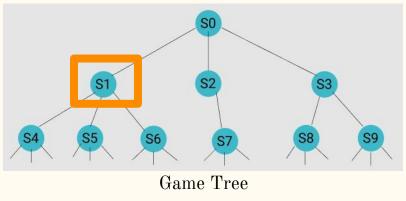
- Background Information
 - Context of DDA
 - Flow Theory
 - $\circ \quad {\rm Controversy \ of \ DDA \ usage}$
- Implementations of DDA and player feedback
 - Monte Carlo Tree Search (MCTS)
 - $\circ \quad {\rm Reinforcement} \ {\rm Learning} \\$
 - Multiplayer DDA
- Conclusion

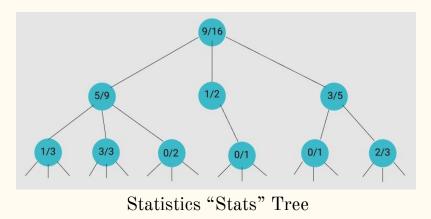
- Experimental fighting game
- What is a game tree?
 - States (nodes of tree)
 - Actions (branches of tree)



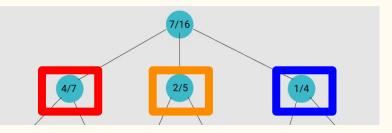
https://commons.wikimedia.org/wiki/File:Tic-tac-toe-game-tree.svg

- Monte Carlo Tree Search (MCTS)
 - Builds statistics tree based off of game tree
 - Uses statistics tree to help the computer make best decisions available
 - 3 versions of MCTS to implement
 DDA





- Challenge Sensitive Action Selection (CSAS)
 - CSAS starts by picking the mean valued action
 - Reevaluate difficulty
 - O Increase difficulty → Choose actions with a higher value than current one
 - $\circ \quad \text{Decrease difficulty} \rightarrow \text{Choose actions with a}$ lower value than current one



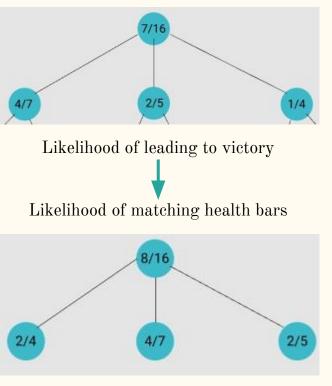
- Reactive Outcome Sensitive Action Selection (ROSAS)
 - ROSAS always picks an action trying to get the computer's health bar to match the player's

Player

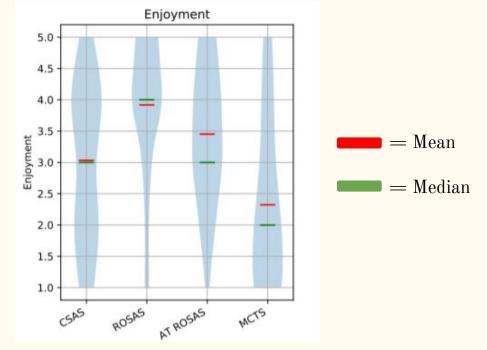
Computer

https://www.youtube.com/watch?v=0G53iYQ2ZHg

- Adaptive True Reactive Outcome Action Selection (ATROSAS)
 - Wants computer's health bar to match the player's
 - Best available action chosen (like MCTS)
 - Alters how stats tree is built in MCTS

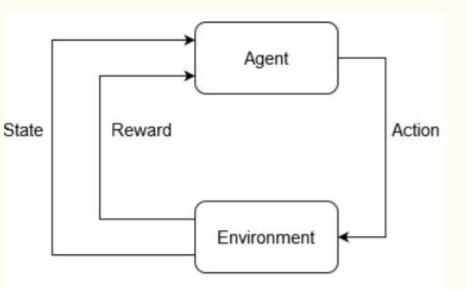


- Hypothesis: DDA is best implemented when players win 50% of the time
- Results:
 - $\circ \quad {\rm CSAS \ won \ 41\% \ of \ the \ time}$
 - $\circ \quad {\rm ROSAS \ won \ 46\% \ of \ the \ time}$
 - \circ ATROSAS won 51% of the time
- Enjoyment, Realism, Difficulty



Source: Demediuk (2019)

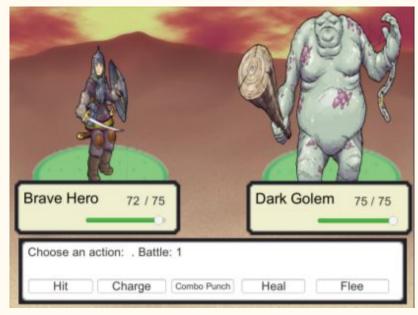
- Experimental turn-based fighting game
- Elements of a Markov decision process
 - \circ Environment
 - Agent
 - \circ State(s)
 - \circ Actions
 - \circ Rewards



Source: Pagalyte (2020)

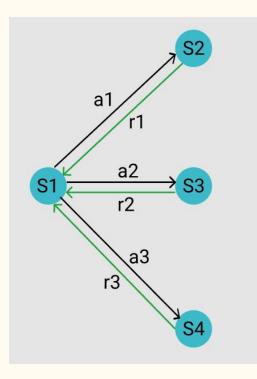
State	Player HP	Agent HP	
0	75	==	
1	[51-74]	==	
2	[31-50]	==	
3	16-30	==	
4	1-15	==	
5	<agent hp<="" th=""><th>[66-74]</th></agent>	[66-74]	
6	<agent hp<="" th=""><th>46-65</th></agent>	46-65	
7	<agent hp<="" th=""><th>31-45</th></agent>	31-45	
8	<agent hp<="" th=""><th>[16-30]</th></agent>	[16-30]	
9	<agent hp<="" th=""><th>[1-15]</th></agent>	[1-15]	
10	66-74	<player hp<="" th=""></player>	
11	46-65 <player hi<="" th=""></player>		
12	31-45	<player hp<="" th=""></player>	
13	[16-30] <player hp<="" th=""></player>		
14	[1-15]	<player hp<="" th=""></player>	
15	0	-	
16	-	0	

Source: Pagalyte (2020)



Source: Pagalyte (2020)

- Q-learning vs SARSA algorithm (state-action-reward-state-action)
- Exploration vs Exploitation
 - \circ (50,50)
 - o (30,70)
 - o (70,30)
 - 70% exploring, 30% exploiting



- Versions of games experimented
 - Easy (no DDA)
 - Hard (no DDA)
 - o 50-50
 - o <u>30-70</u>
 - o 70-30
- A "balanced" version of the game: $1.5 \le \mu(average) \le 2.5$

Average Responses to Different Types of Games

	Success	Skill	Challenge	Effort
Easy	3	2.8	0	0.1
Hard	1.5	2.3	3.6	3.3
50-50	2.5	2.5	2.2	2.3
30-70	3.1	2.8	3	2.8
70-30	2.2	2.5	2.5	2.5

Source: Pagalyte (2020)

*Player feedback was based on the Likert scale where a 0 means "not at all" and a 4 means "extremely"

DDA and Multiplayer Video Games

- Trickier to implement DDA in multiplayer video games
- Multiplayer DDA (MDDA) "instance"
 - A gameplay feature in multiplayer games designed to reduce the difference in challenge experienced by all players

DDA and Multiplayer Video Games

Component	Attributes	
Determination	 Pre-gameplay Gameplay 	
Automation	 Applied by system (automated) Applied by player(s) (manual) 	
Recipient	Individual Team	
Skill Dependency	Skill dependent Skill independent	
User Action	Action required Action not required	
Duration	 Single-use Multi-use Time-based 	
Visibility	 Visible to recipient Visible to non-recipients Not visible 	

Components of an MDDA Instance

- High performing perspective (HPP)
- Low performing perspective (LPP)

Source: Baldwin (2016)

DDA and Multiplayer Video Games

- Player Control
 - HPP: More control to minimize DDA impact (single-use and skill dependent)
 - LPP: No particular preference
 - \circ HPP and LPP: Automation
- Personal Benefit
 - What about the components made gameplay enjoyable?
 - LPP: Multi-use and skill independent
- Awareness of MDDA instances
 - Visibility of DDA
 - \circ ~ Players want to know when the game is being altered

Outline

- Background Information
 - Context of DDA
 - Flow Theory
 - $\circ \quad \text{Controversy of DDA usage}$
- Implementations of DDA and player feedback
 - Monte Carlo Tree Search (MCTS)
 - Reinforcement Learning
 - Multiplayer DDA
- Conclusion

Conclusion

- The research suggests favorable player feedback of DDA
 - More engaging than games without DDA
 - $\circ \quad {\rm Can \ provide \ balanced \ gameplay}$
- When does DDA become a problem?
 - \circ ~ When DDA's presence is too strong/negates skill
- Future work

Acknowledgements

• I would like to thank Kristin Lamberty, Elena Machkasova, Nic McPhee, and Tim Snyder for their insight and wisdom over the research process. I would also like to thank my family and friends for their support and belief in my work

References

- Alexander Baldwin, Daniel Johnson, and Peta Wyeth. Crowd-Pleaser: Player Perspectives of Multiplayer Dynamic Difficulty Adjustment in Video Games. (October 2016)
- Elinga Pagalyte, Maurizio Mancini, and Laura Clement. Go with the Flow: Reinforcement Learning in Turn-based Battle Video Games. (October 2020)
- Simon Demediuk, Xiaodong Li, Marco Tamassia, and William Raffe. Challenging AI: Evaluating the Effect of MCTS-Driven Dynamic Difficulty Adjustment on Player Enjoyment. (January 2019)

Questions?