Using Temporal Session Types to Analyze
Time Complexities of Concurrent Programs

Joseph Moonan Walbran

Division of Science and Mathematics
University of Minnesota Morris
Morris, Minnesota, USA

18 November 2021

Problem

Suppose you are the Morris Telegraph Company

You have a network of telegraph stations

e Each station sends, receives, and processes Morse code
messages in various ways

How long does it take a message to get through the network?

Problem

Concurrent program —
A program with several parts running at the same time

Hard to tell how long a concurrent program will take to execute

* Many pieces interacting

® Some can run in parallel
® Some need to wait until other pieces are ready

¢ Tricky to figure out the timing of interactions

Need: a good way to work out the timing between pieces of
concurrent programs

Solution

Das et al. (2018) give a way to analyze the timing of interactions
between parts of a program.

® Big idea: adding timing information to datatypes
e Specifically, they introduce temporal session types

e for describing channels of communication
® “message rate” becomes part of the type system

Layers

e r-calculus
® A simple, minimalist concurrent programming language
® From 1992, developed by Milner et al.
e Session types
® A way to typecheck w-calculus
® From 1993, developed by Kohei Honda
e Temporal session types
® Session types extended with timing information

® From 2018, developed by Das et al.

Outline

e r-calculus

Session types
® Temporal session types

e Conclusion

m-calculus

m-calculus: motivation

Need a way to represent concurrent programs

Want it to be:
® general
® precise
e small

Several such systems exist

Das et al. use w-calculus
® From the early 1990s

¢ Good at modeling independent processes that send
messages back and forth
® servers on the web
® processes in Unix

m-calculus: what is it?

What is w-calculus?
A very small programming language

Three main constructs:

® Processes
® Like small programs

e Channels

e Labels
® The data you send over channels
® A finite set of symbols
® E.g., for Morse code: { DOT, DASH, NEXT_LETTER, $ }

w-calculus: elementary operations

Defining a process Spawning a process
processName (channell, channel2) = a() =

operationl; a();

operation2; al()

operation3;
operation4

w-calculus: elementary operations

Sending a label Receiving a label

sayHi (outChannel) = invert (inChannel, outChannel) =
outChannel .DOT; case inChannel
outChannel.DOT; | DOT =>
outChannel .DOT; outChannel .DASH;
outChannel .DOT; invert (inChannel, outChannel)
outChannel .NEXT_LETTER; | DASH =>
outChannel .DOT; outChannel .DOT;
outChannel .DOT; invert (inChannel, outChannel)
outChannel.$; | NEXT_LETTER =>
close outChannel outChannel .NEXT_LETTER;

invert (inChannel, outChannel)
| s =

outChannel.$;
wait inChannel;
H | close outChannel

The message “Hi” in Morse code

m-calculus: what’s next?

We have: a simple way to describe concurrent programs
Goal: figure out the times at which messages are sent over a channel
Next step: describe the interactions over a given channel

¢ This description is called the session type of the channel

e Eventually will include timing information
e But for now just says who’s sending messages to whom

Session types

Session types: what are they?

Session types are:
e Datatypes describing channels
e More complicated than int or string
e But they serve the same purpose:
® Says what operations does this channel supports

® The typechecker makes sure you'’re using each channel correctly

Session types: what are they?

Session types describe the structure of how two processes
interact over a channel

e E.g., “send two labels, then receive one label, then repeat”.
Like a very small network protocol

® A contract for how processes should talk to each other

* The typechecker makes sure you follow that contract

Session types: how are they written?

Internal choice Closing a channel
@ { 1
ATy,) .
B: T, is a type saying to close

| the channel immediately.
is a type meaning we can choose to:

¢ send label A and then do an
action of type Ty

¢ send label B and then do an
action of type T,

Session types: example

sayHi (output) = sendMessage = ©{
output .DOT; .
output .DOT; DOT : sendMessage,
output .DOT; DASH : sendMessage,
output .DOT;
output .NEXT_LETTER; NEXT_LETTER : sendMessage,
output .DOT; $ -1
output .DOT;
output.$; }

close output

The channel output has type sendMessage

Session types: how are they written?

External choice

&{
ATy,
B: 1>

}

means we should be prepared to
either:

e receive label A and then do an
action of type T4

® or receive label B and then do
an action of type T

Waiting for a channel to close
4

means “wait for the other person
to close this channel”.

Session types: example

invert (input, output) =

case input
| DOT =>

output .DASH;

invert (input, output)
| DASH =>

output .DOT;

invert (input, output)
| NEXT_LETTER =>

output .NEXT_LETTER;

invert (input, output)
s =>

output.$;

wait input;

close output

sendMessage = &{
DOT : sendMessage,
DASH : sendMessage,
NEXT_LETTER : sendMessage,
$:1

}

readMessage = &{
DOT : readMessage,
DASH : readMessage,
NEXT_LETTER : readMessage,
$: L

The channel input has type readMessage
The channel output has type sendMessage

Session types: non-example

invert (input, output) =

case input
| DOT =>

output .DASH;

invert (input, output)
| NEXT_LETTER =>

output .NEXT_LETTER;

invert (input, output)
| s =>

output.$;

wait input;

close output

sendMessage = &{
DOT : sendMessage,
DASH : sendMessage,
NEXT_LETTER : sendMessage,
$:1

}

readMessage = &{
DOT : readMessage,
DASH : readMessage,
NEXT_LETTER : readMessage,
$: L

The channel input does not have type readMessage
The channel output has type sendMessage

Session types: what’s next?

We have: the structure of interactions over a channel
Goal: figure out the times at which those interactions happen

Next step: add timing information to session types

Temporal session types

Temporal session types: what are they?

New session type: delay

oT

means that an action of type T will occur after one second

Temporal session types: example

Each I/O operation takes one second

By convention, delays occur after the operation

sayHi (output)
output .DOT;
output .DOT;
output .DOT;
output .DOT;

output .NEXT_

output .DOT;
output .DOT;
output.$;
close output

(delay
(delay
(delay
(delay
LETTER; (delay
(delay
(delay
(delay
(delay

1)
1)
1)
1)
1)
1)
1
1)
1)

timedSendMessage = @{
DOT : otimedSendMessage,
DASH : otimedSendMessage,
NEXT_LETTER : otimedSendMessage,
$: o1

The channel output has type timedSendMessage

One “o” in timedSendMessage, so
message rate = one label per second

Temporal session types: example

What about invert (input, output)?

invert (input, output) = e Slightly harder
case input
I DOT => ® |ssue: timing of output will

output .DASH;

invert (input, output)
| pasH = * But, if we know the timing of

output .DOT; . C

invert (input, output) input, we can find the timing of
| NEXT_LETTER => output

output .NEXT_LETTER;

invert (input, output)
| s =>

output.$;

wait input;

close output

depend on timing of input

Temporal session types: example

invert (input, output) =
case input
| DOT =>
output .DASH;
invert (input, output)
| DASH =>
output .DOT;
invert (input, output)
NEXT_LETTER =>
output .NEXT_LETTER;
invert (input, output)
| s =>
output.s;
wait input;
close output

Suppose we know that input has
this temporal session type:

readMessageSlowly = &{
DOT : o readMessageSlowly,
DASH : o"readMessageSlowly,
NEXT_LETTER : o readMessageSlowly,
$:0"L

Here, o" is a delay of n seconds.

Temporal session types:

invert (input, output) =
case input
| DOT =>
output .DASH;

invert (input, output)
| DASH =>
output .DOT;

invert (input, output)
| NEXT_LETTER =>
output .NEXT_LETTER;

invert (input, output)
| $ =>
output.$;

wait input;
close output

(delay
(delay
(delay

(delay
(delay
(delay

(delay
(delay
(delay

(delay
(delay
(delay
(delay
(delay

example

1) readMessageSlowly = &{

k) DOT : o readMessageSlowly,

DASH : o"readMessageSlowly,
NEXT_LETTER : o readMessageSiowly,
k) $:0"L

}

1)
1)
X) Can sketch out where delays are:

® 1 second after each I/O operation
1; ® k seconds where invert is idling
) ® Note: spawning a new process is
1) instantaneous
1)

Temporal session types:

invert (input, output) =
case input
| DOT =>
output .DASH;

invert (input, output)
| DASH =>
output .DOT;

invert (input, output)
| NEXT_LETTER =>
output .NEXT_LETTER;

invert (input, output)
| $ =>
output.$;

wait input;
close output

(delay

example

1) readMessageSlowly = &{

(delay 1) n
(delay k) DOT : o'readMessageSilowly,
DASH : o"readMessageSlowly,

(delay 1) NEXT_LETTER : o readMessageSlowly,
(delay 1) . n
(delay k) $:o0L

}
(delay 1)
(delay 1) Delay between successive reads must equal
(delay k) n
(delay 1) Solve for k in terms of n:
(delay 1) .
(delay k) T+1+k=n
(delay 1) k=n-2
(delay 1)

Temporal session types:

invert (input, output) =
case input
| DOT =>
output .DASH;

invert (input, output)
| DASH =>
output .DOT;

invert (input, output)
| NEXT_LETTER =>
output .NEXT_LETTER;

invert (input, output)
| $ =>
output.$;

wait input;
close output

example
(delay 1) k=n-—2
(delay 1)
(delay k) What next?
(delay 1) k can’t be a negative amount of time. So,
(delay 1)
(delay k) k>0
n—2>0
(delay 1) n>2.
(delay 1) -
(delay k)
So, there must be at least 2 seconds between
(delay 1) inputs.
(delay 1) (Otherwise, invert won't be able to read
(delay k) fast enough.)
(delay 1)
(delay 1)

Temporal session types: example

invert (input, output) =
case input
| DOT =>
output .DASH;

invert (input, output)
| DASH =>
output .DOT;

invert (input, output)
| NEXT_LETTER =>
output .NEXT_LETTER;

invert (input, output)
[s =>
output.$;

wait input;
close output

(delay
(delay
(delay

(delay
(delay
(delay

(delay
(delay
(delay

delay
delay
delay
delay
delay

1)
k)

1)
1)
k)

1)
1)
k)

1)
1)
k)
1)
1)

What next?

Find the temporal session type of output
® |nitial delay: 1 second

® Delay between writes:

1+ k+ 1= n seconds

Temporal session type:
osendMessageSlowly

where

sendMessageSlowly = &{
DOT : o sendMessageSlowly,
DASH : o'sendMessageSlowly,
NEXT_LETTER : o”sendMessageSlowly,
$:0™M

Temporal session types:

invert (input,
case input

| DOT =>
output .DASH;

output) =

invert (input, output)
| DASH =>

output .DOT;

invert (input, output)

| NEXT_LETTER =>
output .NEXT_LETTER;

invert (input,
| s =>
output.$;

output)

wait input;
close output

example
(delay 1)
(delay 1)
(delay k) |nsummary:
(delay 1) Maximum message rate of input:
(delay 1) 2 labels/second
(delay k)

Message rate of output:

(delay 1) n labels/second
(delay 1) (same as input)
(delay k) Latency of output:
(delay 1) 1 second
(delay 1)
(delay k)
(delay 1)
(delay 1)

Conclusion

What do we have?

1. A way to find the timing of interactions between parts of a
concurrent program

2. A way to mechanically verify that the timing is correct
® Given:
® r-calculus source code
® atemporal session type for each channel

a typechecker can verify the channels actually have the session
types indicated.

What we don’t have (yet):
1. Implementations
2. A way to deduce temporal session types from source code

Questions?

[1] L. Caires.
Types and logic, concurrency and non-determinism.
Technical Report MSR-TR-2014-104, Microsoft Research, September 2014.

[2] L. Caires and F. Pfenning.
Session types as intuitionistic linear propositions.
In P. Gastin and F. Laroussinie, editors, CONCUR 2010 - Concurrency Theory, pages 222—-236,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[3] A. Das, J. Hoffmann, and F. Pfenning.
Parallel complexity analysis with temporal session types.
Proc. ACM Program. Lang., 2(ICFP), July 2018.

[4] D. Garg and F. Pfenning.
Type-directed concurrency.
In M. Abadi and L. de Alfaro, editors, CONCUR 2005 — Concurrency Theory, pages 6—20,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[5] K.Honda.
Types for dyadic interaction.
In E. Best, editor, CONCUR’93, pages 509-523, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

[6] R. Milner, J. Parrow, and D. Walker.
A calculus of mobile processes, |.
Information and Computation, 100(1):1-40, 1992.

	Overview
	pi-calculus
	Session types
	Temporal session types
	Conclusion

