# Applications of Generative Adversarial Networks in Single Image Datasets

Dylan E. Cramer crame160@morris.umn.edu Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

# **Introduction: Applications and Motivations**

- Create new images
  - o Learn what qualities make an image appealing

# **Introduction: Applications and Motivations**

- Create new images
  - Learn what qualities make an image appealing
- Restore lost detail to an image with super resolution

#### **Super-resolution**







Source: Shaham (2019)

# Introduction: Applications and Motivations

- Create new images
  - o Learn what qualities make an image appealing
- Restore lost detail to an image with super resolution
- Image harmonization

#### Harmonization



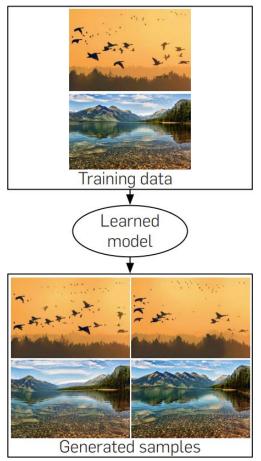




Source: Shaham (2019)

### **Introduction: The Generative Problem**

- Study a collection of training examples
- Learn the probability distribution that generated them
- Generate new examples that are indistinguishable from the real ones



Source: Goodfellow (2020) & Shaham (2019)

# **Introduction: ConSinGAN**

Single image

# Introduction: ConSinGAN

- Single image
- SinGAN (Single Image Generative Adversarial Network)

Input

Constant of the second

Generated Images





SinGAN

### Introduction: ConSinGAN

- Single image
- SinGAN (Single Image Generative Adversarial Network)
- Concurrent SinGAN (ConSinGAN): faster and preferred by users over its predecessor SinGAN

SinGAN

ConSinGAN

Input



#### Generated Images



### **Outline**

#### 1. Background

- a. Machine Learning
- b. Neural Networks
  - i. Convolutional Neural Networks (CNNs)
- c. Generative Adversarial Networks (GANs)

#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results

#### 3. Conclusion

### **Outline**

- 1. Background
  - a. Machine Learning
  - b. Neural Networks
    - i. Convolutional Neural Networks
  - c. Generative Adversarial Networks

#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results
- 3. Conclusion

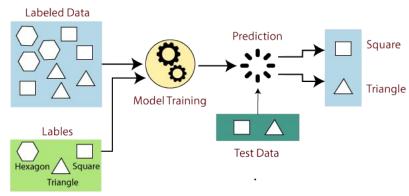
# **Machine Learning Models**

- A model makes predictions without being explicitly programmed
- Has parameters whose values start randomly
- Values adjusted through the process of training
- Hyperparameters control the rate of adjustment
  - Learning rate is an example of a hyperparameter

# Supervised Learning vs Unsupervised Learning

#### Supervised Learning

- Requires a labeled dataset
- Learns to associate the labels with the inputs
- Used for problems such as classification



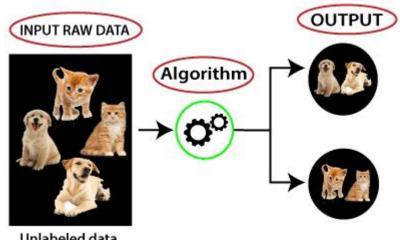
https://www.javatpoint.com/supervised-machine-learning

# Supervised Learning vs Unsupervised Learning

- Supervised Learning
  - Requires a labeled dataset
  - Learns to associate the labels with the inputs
  - Used for problems such as classification

#### **Unsupervised Learning**

- Only requires the input
- Learns patterns or properties of the data
- Outputs associations between the dataset, such as its probability distribution



Unlabeled data

https://www.iavatpoint.com/unsupervised-machine-learning

## **Outline**

#### 1. Background

- a. Machine Learning
- b. Neural Networks
  - i. Convolutional Neural Networks
- c. Generative Adversarial Networks

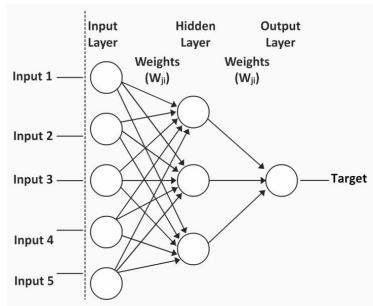
#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results

#### 3. Conclusion

### **Neural Networks**

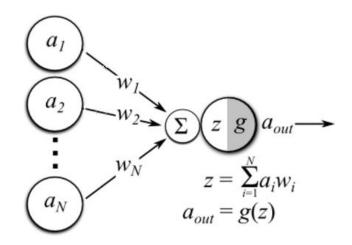
- An artificial neural network (ANN) is composed of layers of nodes:
  - An input layer
  - Any number of hidden layers
  - An output layer
- Edges of nodes defined by weights



https://subscription.packtpub.com/book/machine-learning/9781 838828974/1/ch01lvl1sec05/a-sample-neural-network-model

### **Neural Networks**

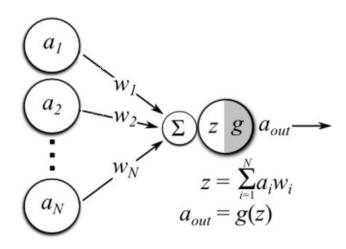
- An artificial neural network (ANN) is composed of layers of nodes:
  - An input layer
  - Any number of hidden layers
  - An output layer
- Edges of nodes defined by weights
- Nodes
  - Activation function determines how much the node effects the nodes it's connected to in the next layer



https://machine-learning.paperspace.com/wiki/weights-and-biases

### **Neural Networks**

- An artificial neural network (ANN) is composed of layers of nodes:
  - An input layer
  - Any number of hidden layers
  - An output layer
- Edges of nodes defined by weights
- Nodes
  - Activation function determines how much the node effects the nodes it's connected to in the next layer
- Weights adjusted after each iteration through a loss function
  - Loss is calculated by the difference between the expected output and real output



https://machine-learning.paperspace.com/wiki/weights-and-biases

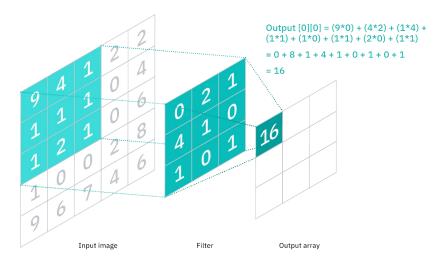
# **Convolutional Neural Networks (CNNs)**

- Type of ANN specialized for image classification and processing
- Three main types of hidden layers:
  - Convolutional layers
  - Pooling layers
  - Fully connected layer

# **Functions of CNN Layers**

#### Convolutional layers

- Performs feature extraction
- Filter strides across an image
- Outputs feature maps

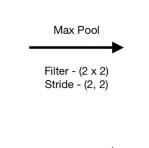


https://www.ibm.com/cloud/learn/convolutional-neural-networks

# **Functions of CNN Layers**

- Convolutional layers
  - Performs feature extraction
  - Filter strides across an image
  - Outputs feature maps
- Pooling layers
  - Combines feature maps
  - Dimensionality reduction using pooling



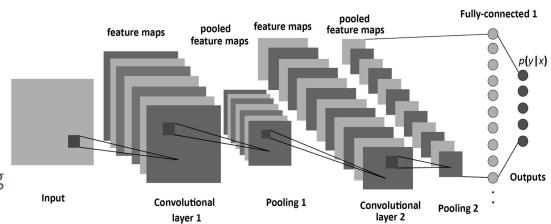




cnn-introduction-to-pooling-layer

# **Functions of CNN Layers**

- Convolutional layers
  - Performs feature extraction
  - Filter strides across an image
  - Outputs feature maps
- Pooling layers
  - Combines feature maps
  - Dimensionality reduction using pooling
- Fully connected layer
  - Performs classification using the connections to previous layers



https://www.mdpi.com/1099-4300/19/6/242

### **Outline**

#### 1. Background

- a. Machine Learning
- b. Neural Networks
  - i. Convolutional Neural Networks
- c. Generative Adversarial Networks

#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results

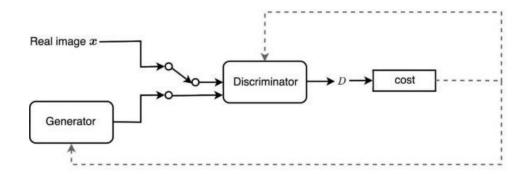
#### 3. Conclusion

# **Generative Adversarial Networks**

- Applies game theory to the field of deep learning
- Composed of two parts:
  - Generator starting off with random noise
  - Discriminator trained on the dataset

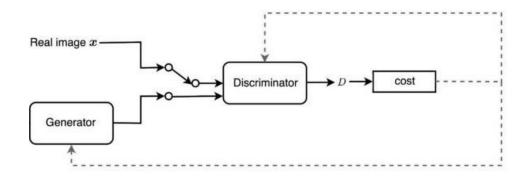
### **Generative Adversarial Networks**

- Applies game theory to the field of deep learning
- Composed of two parts:
  - Generator starting off with random noise
  - Discriminator trained on the dataset
- One network's gain is the other's loss



### **Generative Adversarial Networks**

- Applies game theory to the field of deep learning
- Composed of two parts:
  - Generator starting off with random noise
  - Discriminator trained on the dataset
- One network's gain is the other's loss
- Training is indirect, unsupervised



### **Outline**

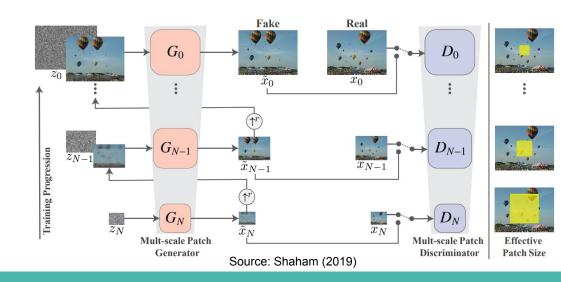
- 1. Background
  - a. Machine Learning
  - b. Neural Networks
    - i. Convolutional Neural Networks
  - c. Generative Adversarial Networks

#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results
- 3. Conclusion

# **Contextualizing Methods with SinGAN**

- Stages of Convolutional GANs that build a pyramid
  - First generator starts with random noise, small resolution
  - Up scaled result plus noise inputted into next stages generator



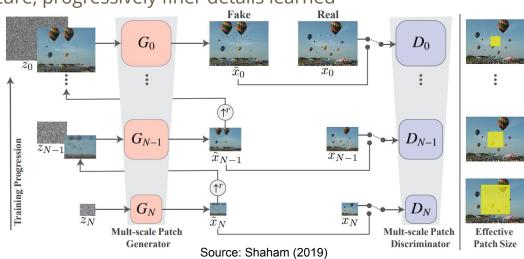
# **Contextualizing Methods with SinGAN**

- Stages of Convolutional GANs that build a pyramid
  - First generator starts with random noise, small resolution
  - Up scaled result plus noise inputted into next stages generator
- Resolution increases with each stage, patch size (filter size) decreases
  - First stages learn the image structure, progressively finer details learned



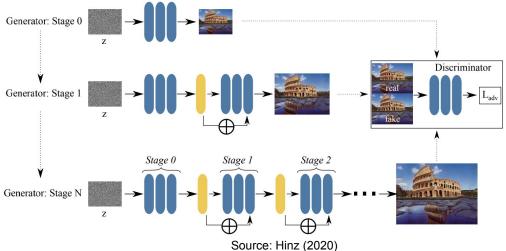
# **Contextualizing Methods with SinGAN**

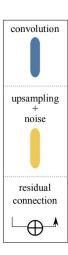
- Stages of Convolutional GANs that build a pyramid
  - First generator starts with random noise, small resolution
  - Up scaled result plus noise inputted into next stages generator
- Resolution increases with each stage, patch size (filter size) decreases
  - First stages learn the image structure, progressively finer details learned
- Weights of each completed stage are frozen



### **ConSinGAN Methods**

- Trains multiple stages in parallel
  - More realistic images
  - Less training time
- Scales up feature maps from previous stages

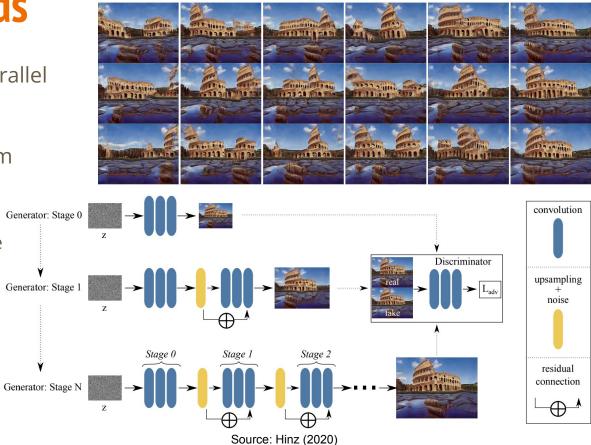




#### Number of Concurrently Trained Stages

# **ConSinGAN Methods**

- Trains multiple stages in parallel
  - More realistic images
  - Less training time
- Scales up feature maps from previous stages
- Allows for tradeoffs
  - More stages, less variance



# **ConSinGAN Methods**

- Trains multiple stages in parallel
  - More realistic images
  - Less training time
- Scales up feature maps from previous stages
- Allows for tradeoffs
  - More stages, less variance
- Scales the learning rate
  - **Emphasises lower stages**
  - Reduces overfitting
  - Scaled by  $(\delta^{N} * learning rate)$



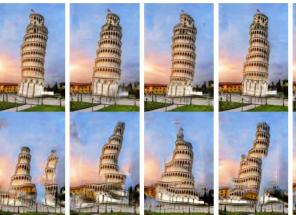
Generator: Stage 0

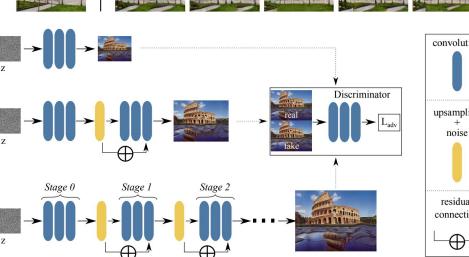
Generator: Stage 1

Generator: Stage N

Input









### ConSinGAN Results: SinGAN's Test

- 'Places' dataset
- Training image is shown next to the generated image.
  - Users are asked to choose the real image
  - Confusion is the % of users that chose the generated image

| Model     | Confusion ↑  | SIFID ↓         | Train Time | # Stages | # Parameters |
|-----------|--------------|-----------------|------------|----------|--------------|
| ConSinGAN | 16.0% ± 1.4% | $0.06 \pm 0.03$ | 24 min     | 5.9      | ~660k        |
| SinGAN    | 17.0% ± 1.5% | $0.09 \pm 0.07$ | 152 min    | 9.7      | ~1.34m       |

**Table 1.** Results of the user study and SIFID on images from the 'Places' dataset [3].

### **ConSinGAN Results: SinGAN's Test**

- 'Places' dataset
- Training image is shown next to the generated image
  - Users are asked to choose the real image
  - Confusion is the % of users that chose the generated image
- Single Image Frechet Inception Distance (SIFID) used for quantitative analysis
  - Compares the distribution of a pre-trained network's activations between the sets of generated and real images
  - Lower scores shown to correlate with higher quality images

| Model     | Confusion ↑  | SIFID ↓         | Train Time | # Stages | # Parameters |
|-----------|--------------|-----------------|------------|----------|--------------|
| ConSinGAN | 16.0% ± 1.4% | $0.06 \pm 0.03$ | 24 min     | 5.9      | ~660k        |
| SinGAN    | 17.0% ± 1.5% | $0.09 \pm 0.07$ | 152 min    | 9.7      | ~1.34m       |

**Table 1.** Results of the user study and SIFID on images from the 'Places' dataset [3].

### ConSinGAN's Test

- LSUN dataset
- Generated images from both models are shown next to each other
  - Users are asked to choose which image is better
  - First study chooses one image randomly from the set of generated images of SinGAN and ConSinGAN, likely from different training images
  - Second study pairs images from the same training image

| Model     | Random ↑     | Paired ↑     | SIFID ↓         | Train Time | # Stages | # Parameters |
|-----------|--------------|--------------|-----------------|------------|----------|--------------|
| ConSinGAN | 56.7% ± 1.9% | 63.1% ± 1.8% | $0.11 \pm 0.06$ | 20 min     | 5.9      | ~660K        |
| SinGAN    | 43.3% ± 1.9% | 36.9% ± 1.8% | $0.23 \pm 0.15$ | 135 min    | 9.1      | ~1.0M        |

**Table 2.** Results of the user studies and SIFID on images from the LSUN dataset [3].

## **Outline**

- 1. Background
  - a. Machine Learning
  - b. Neural Networks
    - i. Convolutional Neural Networks
  - c. Generative Adversarial Networks

#### 2. ConSinGAN

- a. Image Generation
  - i. Methods
  - ii. Results
- b. Image Harmonization
  - i. Methods
  - ii. Results
- 3. Conclusion

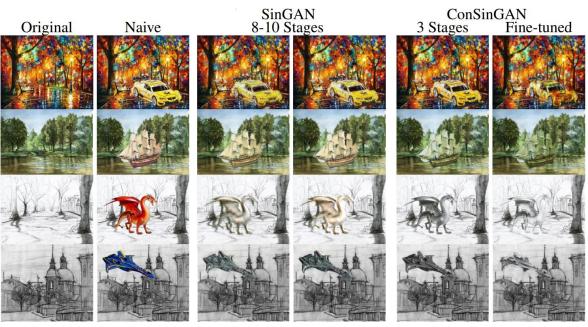
# **Image Harmonization Methods**

- Same architecture as image generation
- Trained for exactly three stages per image
- One thousand iterations per stage
- Random sample chosen every iteration
  - Combinations of additive noise and color transformations added

# **Image Harmonization Results**

#### SinGAN

- Model needs to be fully trained
- Artifacting
- Colors not integrating



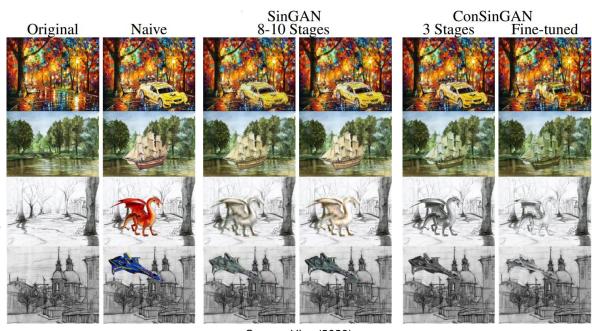
# **Image Harmonization Results**

#### SinGAN

- Model needs to be fully trained
- Artifacting
- Colors not integrating

#### ConSinGAN

- Less than 10 minutes to train
- Colors 'absorbed' into the image



## **Conclusion**

- Improved upon the groundwork laid by SinGAN
- Drastically reduced training time
- Similar or better image generation results in both tested applications
  - Image Generation
  - Image Harmonization
- More testing needed

### References

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM 63, 11 (November 2020), 139–144. <a href="https://doi-org.ezproxy.morris.umn.edu/10.1145/3422622">https://doi-org.ezproxy.morris.umn.edu/10.1145/3422622</a>

T. R. Shaham, T. Dekel and T. Michaeli, "SinGAN: Learning a Generative Model From a Single Natural Image," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4569-4579, doi: 10.1109/ICCV.2019.00467.

Hinz, Tobias, et al. "Improved techniques for training single-image gans." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021.

https://openaccess.thecvf.com/content/WACV2021/html/Hinz Improved Techniques for Training Single-Image GANs WACV 2021 paper.html

# **Questions?**

Input





