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● Create new images
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● Restore lost detail to an image with super resolution 
● Image harmonization

Source: Shaham (2019)



Introduction: The Generative Problem
● Study a collection of training examples 
● Learn the probability distribution that generated 

them
● Generate new examples that are 

indistinguishable from the real ones

Source: Goodfellow (2020) & Shaham (2019)
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Introduction: ConSinGAN
● Single image
● SinGAN (Single Image Generative 

Adversarial Network)
● Concurrent SinGAN (ConSinGAN): 

faster and preferred by users 
over its predecessor SinGAN 

Source: Hinz (2020)
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Machine Learning Models
● A model makes predictions without being explicitly programmed
● Has parameters whose values start randomly
● Values adjusted through the process of training
● Hyperparameters control the rate of adjustment

○ Learning rate is an example of a hyperparameter



Supervised Learning vs Unsupervised Learning
● Supervised Learning

○ Requires a labeled dataset
○ Learns to associate the labels with the inputs
○ Used for problems such as classification
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Supervised Learning vs Unsupervised Learning
● Supervised Learning

○ Requires a labeled dataset
○ Learns to associate the labels with the inputs
○ Used for problems such as classification

● Unsupervised Learning
○ Only requires the input
○ Learns patterns or properties of the data
○ Outputs associations between the dataset, 

such as its probability distribution

https://www.javatpoint.com/unsupervised-machine-learning
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Neural Networks
● An artificial neural network (ANN) is composed of 

layers of nodes:
○ An input layer
○ Any number of hidden layers
○ An output layer

● Edges of nodes defined by weights

https://subscription.packtpub.com/book/machine-learning/9781
838828974/1/ch01lvl1sec05/a-sample-neural-network-model
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Neural Networks
● An artificial neural network (ANN) is composed of 

layers of nodes:
○ An input layer
○ Any number of hidden layers
○ An output layer

● Edges of nodes defined by weights
● Nodes

○ Activation function determines how much the node 
effects the nodes it’s connected to in the next layer

● Weights adjusted after each iteration through a 
loss function

○ Loss is calculated by the difference between the 
expected output and real output

https://machine-learning.paperspace.com/wiki/weights-and-biases

https://machine-learning.paperspace.com/wiki/weights-and-biases


Convolutional Neural Networks (CNNs)
● Type of ANN specialized for image classification and processing
● Three main types of hidden layers:

○ Convolutional layers
○ Pooling layers
○ Fully connected layer



Functions of CNN Layers
● Convolutional layers

○ Performs feature extraction
○ Filter strides across an image
○ Outputs feature maps

https://www.ibm.com/cloud/learn/convolutional-neural-networks
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Functions of CNN Layers
● Convolutional layers

○ Performs feature extraction
○ Filter strides across an image
○ Outputs feature maps

● Pooling layers
○ Combines feature maps
○ Dimensionality reduction using 

pooling
● Fully connected layer

○ Performs classification using the 
connections to previous layers

https://www.mdpi.com/1099-4300/19/6/242

https://www.mdpi.com/1099-4300/19/6/242
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● Applies game theory to the field of deep learning
● Composed of two parts: 

○ Generator starting off with random noise
○ Discriminator trained on the dataset

● One network’s gain is the other’s loss
● Training is indirect, unsupervised
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● Stages of Convolutional GANs that build a pyramid

○ First generator starts with random noise, small resolution
○ Up scaled result plus noise inputted into next stages generator

● Resolution increases with each stage, patch size (filter size) decreases
○ First stages learn the image structure, progressively finer details learned

Source: Shaham (2019)

● Weights of each completed stage 
are frozen
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ConSinGAN Methods
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● Trains multiple stages in parallel
○ More realistic images
○ Less training time

● Scales up feature maps from 
previous stages

● Allows for tradeoffs
○ More stages, less variance

● Scales the learning rate
○ Emphasises lower stages
○ Reduces overfitting
○ Scaled by (δN * learning rate)



ConSinGAN Results: SinGAN’s Test
● ‘Places’ dataset
● Training image is shown next to the generated image

○ Users are asked to choose the real image
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ConSinGAN Results: SinGAN’s Test
● ‘Places’ dataset
● Training image is shown next to the generated image

○ Users are asked to choose the real image
○ Confusion is the % of users that chose the generated image

● Single Image Frechet Inception Distance (SIFID) used for quantitative analysis
○ Compares the distribution of a pre-trained network’s activations between the sets of 

generated and real images
○ Lower scores shown to correlate with higher quality images

Source: Hinz (2020)



ConSinGAN’s Test
● LSUN dataset
● Generated images from both models are shown next to each other

○ Users are asked to choose which image is better
○ First study chooses one image randomly from the set of generated images of SinGAN and 

ConSinGAN, likely from different training images
○ Second study pairs images from the same training image

Source: Hinz (2020)
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Image Harmonization Methods
● Same architecture as image generation
● Trained for exactly three stages per image
● One thousand iterations per stage
● Random sample chosen every iteration

○ Combinations of additive noise and color transformations added



Image Harmonization Results

● SinGAN
○ Model needs to be fully trained
○ Artifacting
○ Colors not integrating
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Image Harmonization Results

● SinGAN
○ Model needs to be fully trained
○ Artifacting
○ Colors not integrating

● ConSinGAN
○ Less than 10 minutes to train
○ Colors ‘absorbed’ into the image 

Source: Hinz (2020)



Conclusion
● Improved upon the groundwork laid by SinGAN
● Drastically reduced training time
● Similar or better image generation results in both tested applications

○ Image Generation
○ Image Harmonization

● More testing needed
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Questions?

Source: Hinz (2020)


