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Abstract
Face swapping involves replacing the face in one image (the
target) with a face in a different image (the source) while
maintaining the pose and expression of the target face. Previ-
ous methods of face swapping required extensive computer
power and man hours. As such, new methods are being de-
veloped that are quicker, less resource intensive, and more
accessible to the non-expert. This paper provides background
information on key methods used for face swapping and out-
lines three recently developed approaches: one based on
generative adversarial networks, one based on linear 3D
morphable models, and one based on encoder-decoders.
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1 Introduction
Face swapping involves replacing the face in one image with
the face contained in another. Typically, there are two images:
the target image and the source image. The goal of face
swapping is to swap the face in the target image with the
face in the source image such that the source face has the
same pose and expression as the original face in the target
image.
Face swapping is highly applicable to and widely used

within the entertainment industry. Face swapping has been
used to "resurrect" deceased actors or "de-age" them. For
example, in Rogue One: A Star Wars Story face swapping
was used to bring back the characters of Leia Organa and
Grand Moff Tarkin (played by the deceased Carrie Fisher and
Peter Cushing respectively). Face swapping was also used in
season 2 of The Mandalorian to bring back a young version
of Luke Skywalker.
Despite the seemingly innocent nature of face swapping,

there exist concerns relating to privacy and misinformation.
For example, a popular account on Tiktok with over 3.5 mil-
lion followers (@deeptomcruise) has a series of videos featur-
ing the famous actor Tom Cruise. However, the Tom Cruise
in the videos is not the real Tom Cruise. Rather, the account
owner(s) hired a Tom Cruise impersonator and swapped his
face with Tom Cruise’s. While some users were fascinated
with how realistic the videos looked, others expressed con-
cern over the potential abuse of the technology. What if this

technology had been used to make a fake video of a politi-
cian or other important figure saying or doing something
dangerous?

Adding to the potential dangers of this technology is how
easy it is becoming to access and use it. Previous face swap-
ping methods, such as those used in Rogue One: A Star Wars
Story, used to require extensive knowledge, computer power,
and man hours in order to produce convincing results. How-
ever, newmethods of face swapping are being developed that
require less computer power, time, and technical knowledge
while still being able to produce quality results.

This paper provides the foundation for understanding the
general face swapping process, methods used within face
swapping, and examines three specific approaches to face
swapping (one based on generative adversarial networks,
one based on linear 3D morphable models, and one based on
encoder-decoders).

Section 2 provides necessary information relating to how
computers represent images. Sections 3, 4, 5, and 6 detail
specific methods and technologies used in the three face
swapping approaches discussed in this paper. Section 7 syn-
thesizes the information of the previous sections to outline
three specific approaches to face swapping. Section 8 com-
pares the quality of the results of each approach, and Section
9 outlines the conclusions of this paper.

2 Computer Images
Images are stored in computers as a matrix of values. For
grayscale images, there is one matrix. Matrix values, called
pixels, are integers typically between 0 and 255, with 0 being
black and 255 being white. A common way to represent
colored images is by using three matrices (referred to as
channels): one for each primary color of light (red, green,
blue). To represent the fully colored image, the color channels
are combined [13].

Computer images can be manipulated and transformed in
several ways. For the purpose of this paper, we will discuss
image operations important to Sections 5.
Two important image operations related to Section 5 are

binary masks and the subtraction of images. A binary mask
simply defines the particular region of interest (ROI) of an
image. The mask contains pixels that have a value of either
0 or 1, with a value of 0 (typically black) meaning that the
pixel is not in the ROI and a value of 1 (typically white)
meaning the pixel is in the ROI. Image subtraction refers to
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the operation of subtracting the values of the pixels in one
image from the values of the pixels in another (pixelwise
operation). For two colored images, the subtraction is done
for each channel [12]. Negative pixel values are handled
differently depending on the image format used and the
operators used within the subtraction. For example, some
implementations may set pixel values to 0 if the subtraction
is negative, or the operator used may wrap the pixel values
so that a pixel value of -30 would be wrapped to 226 [1].

3 Neural Networks
All three of the approaches discussed in Section 7 utilize
neural networks in some capacity. Neural networks are a
subset of machine learning, which involves building algo-
rithms that take in a dataset as input, train themselves to
recognize patterns in said data, and then utilize those discov-
ered patterns to apply their functionality to the input dataset
and other similar datasets. As such, neural networks take in
a dataset as input, perform a mathematical calculation, and
produce an output. Additionally, a subset of the input is used
to train the network. For example, a neural network could
be created to identify cars within an image. The network
would take in several images featuring cars, perform a math-
ematical calculation that determines how it identifies said
cars, and output the images with the cars highlighted. The
specifics of how neural networks perform said calculation is
unnecessary for understanding the rest of this paper. What
is important to understand is that neural networks become
better at performing their specified function by iterating over
the training dataset numerous times (each complete iteration
is called an epoch) and optimizing parameters within said
calculation. For more information regarding the specifics of
neural networks, please read [5].

4 Face Segmentation
A crucial step in some face swapping approaches is face
segmentation, which involves partitioning the pixels of an
image into two regions: a region containing all the pixels
associated with faces and a region containing all non-face
associated pixels. The end result of face segmentation is
a mask that represents all the visible portions of the face
in the image [9]. Looking at Figure 1 as an example, we
have an image of a man wearing glasses in the left panel.
Face segmentation is performed and produces a mask that
represents the pixels associated with the visible portions of
the man’s face (the red pixels in the right panel).
Several methods exist for performing face segmentation,

including those based on neural networks. However, going
into the specifics of these techniques is beyond the scope of
this paper. For more information regarding face segmenta-
tion techniques please read [9].

Figure 1. Face segmentation example [10]. Red pixels in the
right panel represent visible portions of the face in the left
panel.

5 Image Blending
Image blending refers to the image composition method of
seamlessly blending a source image into a target image. Usu-
ally, an object from the source image is cropped and then
pasted into the desired region in the target image. The chal-
lenge is to then adjust the appearance of the cropped object
such that it matches the rest of the environment in the target
image and to make the cropping boundary appear seamless
[17]. This problem is highly relevant to face swapping, as one
must ensure that the swapped face is appropriately blended
into the target image for convincing results. In the remainder
of this section, we present two methods of image blending
used by the face swapping approaches discussed in Section
7: multi-band blending and Poisson blending.

5.1 Multi-band Blending
Multi-band blending utilizes Gaussian and Laplacian pyra-
mids. AGaussian pyramid is essentially a hierarchy of images
that have been blurred and reduced in size. The left-most
hierarchy of images in Figure 2 is an example of a Gaussian
pyramid. To construct a Gaussian pyramid, let F be a Gauss-
ian filter (used to blur images) and 𝐺0 be the original image.
If 𝑖 represents the current level of the pyramid, then let 𝐺𝑖

be the blurred and downsampled by a factor of 2 (halved in
size in both the x and y dimensions) version of the image in
the level below 𝑖 .𝐺𝑖 can be represented mathematically by
the following equation (where ∗ represents a mathematical
operation known as convolution and ↓ represents downsam-
pling):

𝐺𝑖 = (𝐹 ∗𝐺𝑖−1)↓2

The Laplacian pyramid of an image is constructed using
its Gaussian pyramid. Let 𝐿𝑖 be the Laplacian of the image at
level 𝑖 . 𝐿𝑖 is constructed by upsampling the Gaussian pyramid
image at level 𝑖 + 1 by 2 (increase size by 2 in both the
x and y dimensions) and subtracting it from the Gaussian
pyramid image at level 𝑖 . This process is represented visually
by the middle column of Figure 2 and mathematically by the
following equation (where ↑ represents upsampling):

𝐿𝑖 = 𝐺𝑖 − (𝐺𝑖+1)↑2

This equation is essentially subtracting each Gaussian
image 𝐺𝑖 by a blurred version of 𝐺𝑖 . Subtracting an image
by a blurred version of itself results in a new image that
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captures the edges of the image, i.e. the Laplacian. The right-
most hierarchy of images in Figure 2 shows an example of a
Laplacian pyramid. The original image can be reconstructed
from the Laplacian pyramid by summing each image of the
pyramid upsampled to its original size.

To composite a source image into a target image, Laplacian
pyramids are constructed for both the source image 𝐿𝑆 and
the target image 𝐿𝑇 . A Gaussian pyramid 𝐺 is constructed
for the mask of the region in the source image that is to
be copied into the target image. A Laplacian pyramid of
the composited image 𝐿𝐼 is constructed using the following
equation (where 𝑖 is the current level of the pyramid):

𝐿𝐼𝑖 = 𝐺𝑖𝐿
𝑆
𝑖 + (1 −𝐺𝑖 )𝐿𝑇𝑖

The final composited image is then constructed from 𝐿𝐼 .
At higher levels of𝐺 , mask pixels are blurred so they may be
shades of gray (between 0 and 1) rather than black or white.
As such, at higher levels of 𝐺 , when you are constructing 𝐿𝐼
you are taking a weighted average of 𝐿𝑆 and 𝐿𝑇 , producing
a blend of the two. This smooths the boundary between the
source object and the target image. The method described
in this section assumes that both images are grayscale. For
colored images, this process must be done for each color
channel [12].

Figure 2. Example of Gaussian and Laplacian pyramids [4].

5.2 Poisson Blending
To begin explaining how Poisson blending works, we can
examine Figure 4. Figure 4a is the target image (beach scene)
and 4b is the source image (plane scene). 4c shows the object
from the source image (the planes) that we want to paste
into the target image. 4d highlights the region in the target
image that we want to paste the planes into. 4e shows the
composited image using multi-band blending. Although the
cropping boundary between the planes and the target image
has been smoothed, there is a color mismatch between the
sky surrounding the planes and the sky of the rest of the

target image. This type of coloring/lighting issue is a limi-
tation of multi-band blending and is what Poisson blending
attempts to fix. 4f demonstrates the final composited image
using Poisson blending.
To resolve the color mismatch between the source and

target images, Poisson blending operates in the gradient
domain [12]. Image gradient refers to the directional change
in the lighting or color of an image. Image gradients can be
used for the detection of edges in images. Pixels with the
largest gradient values in the direction of the gradient are
identified as possible edge pixels [15]. Figure 3 provides an
example of image gradients and how they can be used for
edge detection.
To composite a source image into a target image using

Poisson blending, let Ω be the region of the source that
we want to paste into the target. In Figure 4, Ω would be
the region encompassed by the circle in 4c. Let 𝜕Ω be the
boundary of Ω. The goal of Poisson blending is to get the
gradient of the composited image inside Ω to be as close
as possible to the source image’s gradient while having the
composited image match the target image on the boundary
𝜕Ω. If𝐶 (𝑥,𝑦), 𝑆 (𝑥,𝑦), and𝑇 (𝑥,𝑦) represent the pixels of the
composited image, source image, and target image respec-
tively, this problem can be represented mathematically by
the following equation (where ▽ is the gradient operator):

min
C(x,y) ∈Ω

∬
Ω
∥▽𝐶 (𝑥,𝑦) − ▽𝑆 (𝑥,𝑦)∥2 𝑑𝑥 𝑑𝑦

s.t. 𝐶 (𝑥,𝑦) = 𝑇 (𝑥,𝑦) on 𝜕Ω

Figure 3. Example of image gradients. The middle and right
images are the horizontal and vertical measures of the gradi-
ent respectively. White or black colored pixels represent a
large gradient value, indicating a possible edge [15].

6 Generative Models
Generative models are a class of statistical models that are
capable of creating new instances of data that resemble an
already existing dataset [2]. The remainder of this section
discusses three types of generative models that are utilized
in the face swapping approaches discussed in Section 7.

6.1 Generative Adversarial Networks
Generative adversarial networks (GANs) are a type of gener-
ative model that utilize an adversarial process to train the
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Figure 4. Example of Poisson blending [11].

model to create new instances of data that could have plausi-
bly come from the input dataset [3]. By "adversarial process"
we mean that a neural network 𝐺 attempts to generate new
data instances and another neural network 𝐷 functions as a
discriminator and estimates the probability that the example
generated by 𝐺 came from 𝐺 or originated from the origi-
nal dataset. 𝐺 uses the feedback from 𝐷 to generate better
examples and 𝐷 is presented with examples from 𝐺 until 𝐷
is no longer able to determine whether the example came
from 𝐺 or came from the input dataset [7].

6.2 Linear 3D Morphable Models
Linear 3D morphable models (3DMMs) are another type of
generative model that aim to generate a 3D representation of
any given face. Specifically, linear 3DMMs are a vector space
of 3D shapes and textures of a class of objects. Each linear
3DMM contains a collection of 3D face shapes represented
by a shape vector 𝑆 and a corresponding texture vector 𝑇 .
New faces are generated by forming linear combinations of
𝑆 and 𝑇 [6]. Figure 5 shows of the shape and texture vectors
of a face generated by a linear 3DMM.

Figure 5. Shape vector S and texture vector T of a face
generated by a linear 3DMM [6].

6.3 Encoder-Decoders
Encoder-decoders are another type of generative model that
aim to reconstruct the data given to it as input. To recon-
struct the dataset, the model starts with the encoder. Given
input data, the encoder attempts to compress the data into
the lowest dimensional representation it can. This forces
the model to discover important patterns in the data and
learn how to represent it using only the most essential por-
tions. The decoder then attempts to reconstruct the data
from the lower-dimensional representation. The model is
trained through what is known as the reconstruction error,
which is the difference between the reconstructed data and
the original data. The goal of the model is to minimize the
reconstruction error so that the reconstructed data is as close
as possible to the original dataset [14].

7 Face Swapping Approaches
In this section, we cover three recently developed approaches
to face swapping. The approaches covered in this section
include one based on GANs, one based on linear 3DMMs,
and one based on an encoder-decoder model architecture.

7.1 GAN Based Approach
Nirkin et al. [16] propose a face swapping approach utiliz-
ing GANs, which they named FSGAN. The face swapping
pipeline for FSGAN can be found in Figure 6. To begin the
process of transferring the source face 𝐹𝑠 in the source image
𝐼𝑠 onto the target face 𝐹𝑡 in the target image 𝐼𝑡 , FSGAN starts
with generator 𝐺𝑟 . Given the facial landmarks of 𝐹𝑡 , 𝐺𝑟 gen-
erates a new version of the source image such that it depicts
𝐹𝑠 in the same pose and expression as 𝐹𝑡 . 𝐺𝑟 then produces
the segmentation mask of this reconstructed source face 𝐹𝑟 .
Generator 𝐺𝑠 then produces the segmentation mask 𝑆𝑡 of 𝐹𝑡 .

Due to occlusions that may block the view of 𝐹𝑠 (e.g., hand
in front face, glasses, hair, etc.), 𝐹𝑟 may contain missing parts
relative to 𝐹𝑡 . To remedy this problem, FSGAN utilizes a
facial inpainting generator 𝐺𝑐 to fill in the missing facial
parts of 𝐹𝑟 such that it matches 𝐹𝑡 . 𝐺𝑐 rerenders 𝐹𝑟 based on
the segmentation mask 𝑆𝑡 to estimate these missing facial
parts. Since 𝑆𝑡 is a representation of the visible facial parts
of 𝐹𝑡 , rendering 𝐹𝑟 based on 𝑆𝑡 ensures that 𝐹𝑟 and 𝐹𝑡 match
in terms of visible facial parts. After 𝐺𝑐 fills in the missing
parts of 𝐹𝑟 , FSGAN now has a rendered face 𝐹𝑟 that has the
same pose, expression, and visible face portions of 𝐹𝑡 . The
final step is to then blend the reconstructed source face into
the target image with a blending generator 𝐺𝑏 that utilizes
Poisson blending [16].

7.2 Linear 3DMM Based Approach
On Face Segmentation, Face Swapping, and Face Perception
[10] proposes a face swapping approach based on a linear
3DMM. Given a source image 𝐼𝑆 and a target image 𝐼𝑇 , the
model first generates 3D shape representations of the source
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Figure 6. Face swapping pipeline of FSGAN [16].

and target faces. The 3DMM used in this paper is only capa-
ble of generating 3D face shapes with neutral expressions
and pose, so each 3D shape is then modified using facial
landmarks to match the corresponding face’s pose and ex-
pression. This is represented in step b of Figure 7. A neural
network is then used to produce the segmentation masks of
the faces in the source and target images. Once the segmen-
tation masks have been produced, the face swap is ready to
be performed.

To swap the target face with the source face, the 3D shape
of the source face 𝑉𝑆 is projected onto 𝐼𝑆 . Bilinear interpola-
tion is then used to assign 3D vertices to the segmentation
mask of the source face and sample the intensities of the
source image based on those vertices. Bilinear interpolation
is also used to assign 3D vertices to the segmentation mask
of the target face (step c of Figure 7). Since all 3D faces gen-
erated by 3DMMs correspond in the indices of their vertices,
the sampled intensities from the vertices of𝑉𝑆 can be directly
transferred to the vertices of 𝑉𝑇 . Transferring the sampled
intensities to 𝑉𝑇 provides texture to the vertices correspond-
ing to the segmentation mask of the source face, which is
represented visually by step d of Figure 7.𝑉𝑇 is then rendered
onto 𝐼𝑇 using the segmentation mask of the target face to
mask the rendered intensities. Finally, the rendered source
face is blended into the target image using Poisson blending
(step c of Figure 7) [10].

Figure 7. Face swapping pipeline of the linear 3DMM based
approach [10].

7.3 Encoder-Decoder Based Approach
Researchers at Disney Research Studios recently published
a paper describing their method of performing face swaps
based on an encoder-decoder network architecture [8]. The

researchers refer to their model structure as a comb network
due to their model having a single encoder and 𝑝 amount
of decoders (one for every source face that the model has
been trained for). Having multiple decoders enables the re-
searchers to perform face swaps between any pair of faces
that the model has been trained on and produces higher qual-
ity face swaps. To begin the face swapping process, the model
starts by localizing the facial landmarks of the face in the tar-
get image 𝑥𝑡 (step 1 in Figure 8). The model then normalizes
the face to a 1024x1024 resolution and saves the normaliza-
tion parameters (step 2 in Figure 8). The normalized face is
then fed into the comb model and the 𝑝-th decoder is used
to reconstruct the desired source face 𝑥𝑠 such that it has the
same pose and expression as the target face (step 3 of Figure
8). Reverse image normalization is then performed on 𝑥𝑠 and
𝑥𝑠 is then blended into the target image, completing the face
swap [8].

While Poisson blending may be able to produce passable
results when the lighting of the target and source images
are similar, artifacts may begin to appear in the composited
image if the lighting between the source and target images
is drastically different. As such, the researchers instead use
a modified version of multi-band blending that is contrast-
preserving to blend the source face into the target image.
Multi-band blending on its own does not guarantee that

the source object that is being pasted into the target image
will match the target image’s lighting. To guarantee that
the source face matches the lighting of the rest of the target
image, the researchers copy the two highest levels of the
Laplacian pyramid of the composited image and only the
remaining levels are smoothed and blended. However, if the
lighting between the source and target images varies greatly,
then copying the two highest levels of the Laplacian pyra-
mid is not enough to overcome the difference in contrast.
To accommodate instances where the difference in lighting
between the source and target images is significant, the re-
searchers utilize what is called the Global Contrast Factor
(GCF), which is essentially a measure of the overall contrast
of an image. To get the reconstructed source face’s contrast
to match the contrast of the target image, the researchers
calculate the ratio of the GCF of the target image and the
GCF of the composited image and multiply each pixel of the
composited image by this ratio [8].

8 Comparing Approaches
In this section, we examine the results of each face swapping
approach and highlight some differences and similarities
between the approaches. Before diving into specific compar-
isons, it is worth noting that both FSGAN and the encoder-
decoder based approach can be used for video face swapping
and image-to-image face swapping while the 3DMM based
approach can only be used for image-to-image face swapping
[16][8].
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Figure 8. Disney Research Studios’ pipeline for performing
face swaps [8].

8.1 Encoder-Decoder Approach vs Linear 3DMM
Approach

Figure 9 demonstrates face swaps for two pairs of people per-
formed using the encoder-decoder and linear 3DMM based
approaches. From Figure 9, we can see that the encoder-
decoder based approach appears to produce higher qual-
ity face swaps than the 3DMM based approach. While the
3DMM based approach is capable of producing face swaps at
a relatively high resolution, it struggles to accurately match
the pose and expression of the target face. This is especially
noticeable when looking at the eyes and mouth of the com-
posited image. The quality of the blending is also not as good
in the 3DMM face swaps, with this being especially notice-
able in the first face swap pair where the lighting between
the source and target image differs significantly. This high-
lights the superiority of the modified multi-band blending
method used by Disney Research Studios over the Poisson
blending method used by the 3DMM based approach.

Figure 9. Face swap pairs using the encoder-decoder based
approach (ED) and the 3DMM based approach [8].

8.2 Generative Adversarial Network Approach vs
Linear 3D Morphable Model Approach

Figure 10 demonstrates two face swaps performed using
FSGAN and the 3DMM based approach. From Figure 10,

we can see that since both FSGAN and the 3DMM based
approach used Poisson blending, they are very similar in
terms of blending quality. However, once again the 3DMM
based approach struggles to accurately match the pose and
expression of the target face. When examining the 3DMM
face swaps closely, one can see artifacts around the eyes and
mouth of the composited image.

Figure 10. Face swap pairs done using FSGAN and the
3DMM based implementation [16].

8.3 Encoder-Decoder Approach vs Generative
Adversarial Network Approach

We were unable to find a direct comparison between the
encoder-decoder approach and FSGAN. However, we can
gain some insight into how the two approaches compare by
examining the encoder-decoder face swaps in Figure 9 and
the FSGAN face swaps in Figure 10. From the two figures,
we can see that both FSGAN and the encoder-decoder based
approach are capable of producing high-fidelity face swaps.
However, it does appear that the modified multi-band blend-
ing method results in higher-quality blending compared to
the Poisson blending method used by FSGAN.

9 Conclusion
As face swapping techniques become more powerful and
accessible, the potential for misuse becomes more likely and
dangerous. In this paper, we provide the reader with infor-
mation regarding methods used within face swapping and
three specific face swapping approaches with the goal of
raising awareness of the topic and preventing readers from
being fooled by potential misuse of the technology.

From the examination of the three approaches discussed in
this paper, we conclude that the encoder-decoder approach
to face swapping proposed by the researchers at Disney
Research Studios produces the highest quality face swaps
compared to the GAN and 3DMM based approaches. The
encoder-decoder approach’s superiority over the other two
approaches can largely be attributed to its use of a modified
multi-band blending method rather than Poisson blending.
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