

Exploring Methods Used in Face Swapping

Joshua Eklund <u>eklun124@umn.edu</u> Division of Science and Mathematics, University of Minnesota, Morris Morris, Minnesota, USA

Introduction: What is Face Swapping?

Source

Target

Face Swapped Image

Introduction: Why Do We Care?

- Entertainment Industry
 - "Revive" actors
 - Rogue One: A Star Wars Story
 - Leia Organa (Carrie Fisher)
 - Grand Moff Tarkin (Peter Cushing)
 - Snapchat
- Concerns
 - Privacy
 - Misinformation

Outline

Background

- Facial Landmark Identification and Face Segmentation
- Image Blending
 - Multi-band blending
 - Poisson blending
- Face Swapping Approaches
 - Encoder-Decoders
 - Linear 3D Morphable Models
- Comparisons/Conclusions

Background: Identifying Facial Landmarks and Face Segmentation

- Detect faces in images
 - Facial landmark detection
 - Facial Landmarks
 - Eyes, nose, lips, etc.
 - Set of points representing landmarks
- Separate face from background or occlusions
 - Face segmentation
 - Determines visible portions of a face

Background: Image Blending

Source

Target

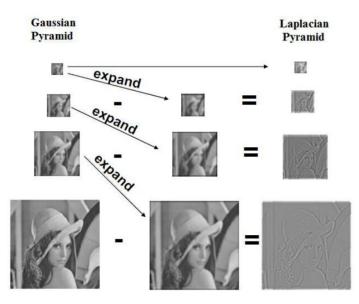
Background: Image Blending

Source

Target

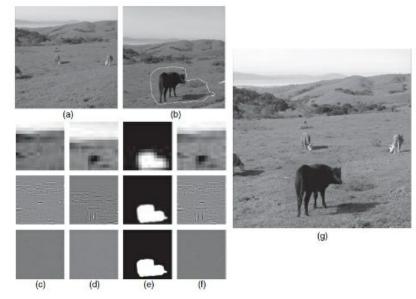
Background: Image Blending

Non-blended


Background: Multi-band Blending

- Utilizes Gaussian and Laplacian pyramids
 - Gaussian pyramid
 - Hierarchy of images
 - Blurred and reduced in size
 - Laplacian pyramid
 - Laplacian
 - Captures edges
 - Constructed using Gaussian pyramid

•
$$L_i = G_i - (G_{i+1})_{\uparrow 2}$$


- Original image
 - Reconstructed from Laplacian

$$\circ \qquad I = \sum L_{i\uparrow}$$

Background: Multi-band Blending

- Compositie source into target
 - Gaussian pyramid G
 - Mask of source object
 - Laplacian pyramids
 - Target image L^T and Source image L^S
 - Composite image L^I
 - $L_{i}^{\prime} = G_{i}L_{i}^{S} + (1 G_{i})L_{i}^{T}$
 - Composited image
 - Constructed from L^l

Background: Multi-band Blending

Multi-band blending

Non-blended

Background: Poisson Blending

- Resolves the color/lighting mismatch
 - Gradient domain
 - Image Gradient
 - Directional change in lighting or color
- Composite source into target
 - Ω : Region of source image *S* to copy
 - $\partial \Omega$: Boundary of Ω
 - C: Composited image

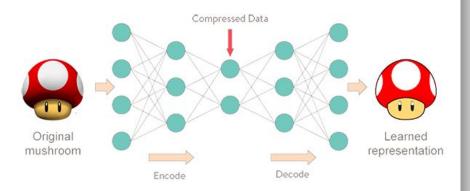
$$\min_{C(x,y)\in\Omega}\iint_{\Omega} \|\nabla C(x,y) - \nabla S(x,y)\|^2 \, dx \, dy$$

s.t. $C(x,y) = T(x,y)$ on $\partial\Omega$

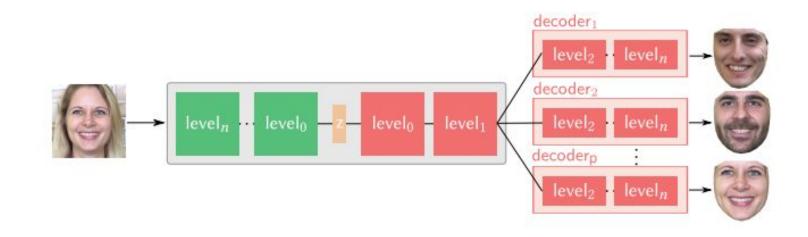
Background: Poisson Blending

Multi-band blending

Poisson blending

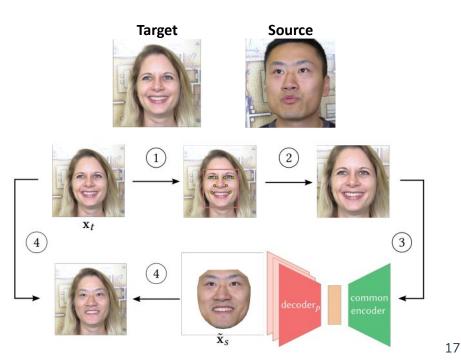

Outline

Background


- Facial Landmark Identification and Face Segmentation
- Image Blending
 - Multi-band blending
 - Poisson blending
- Face Swapping Approaches
 - Encoder-Decoders
 - Linear 3D Morphable Models
- Comparisons/Conclusions

Face Swapping Approaches: Encoder-Decoders

- Generative model
 - "Learn" to reconstruct input data
- Consist of two parts
 - Encoder
 - Compresses data
 - Decoder
 - Reconstructs data
- Reconstruction error
 - Difference between original data and reconstruction



Face Swapping Approaches: Encoder-Decoders

Face Swapping Approaches: Encoder-Decoders

- Start with target
- Detect facial landmarks and normalize face (1024x1024 resolution)
- Feed face into model
- Decode face using *pth* decoder
- Blend source face into target
 - Modified multi-band blending
 - Global Contrast Factor (GCF)

Face Swapping Approaches: Linear 3D Morphable Models

- Generative Model
 - Generate 3D representation of any given face
- Vector space of shapes and textures
 - Shape vector *S*
 - Texture vector T
- Generation of new faces
 - Linear combinations of *S* and *T*

$$\mathbf{S} = \sum_{i} \alpha_{i} \mathbf{S}_{i} = \alpha_{I} \cdot \mathbf{O} + \alpha_{2} \cdot \mathbf{O} + \alpha_{3} \cdot \mathbf{O} + \alpha_{4} \cdot \mathbf{O} + \dots$$
$$\mathbf{T} = \sum_{i} \beta_{i} \mathbf{T}_{i} = \beta_{I} \cdot \mathbf{O} + \beta_{2} \cdot \mathbf{O} + \beta_{3} \cdot \mathbf{O} + \beta_{4} \cdot \mathbf{O} + \dots$$

Face Swapping Approaches: Linear 3D Morphable Models

- Generate 3D shape representations
 - Modify 3D shapes to match pose and expression
- Perform face segmentation
- Project 3D shape of source onto source image
 - Assign 3D vertices to 2D segmentation mask
 - Sample source image
- Transfer sampled intensities to 3D shape of target
 - Use segmentation mask of target to mask rendered intensities
- Blend rendered source face into target image
 - Poisson blending

(a) Input (b) Fit 3D Shape, pose and expr. (c) Segment

(d) Transfer

(e) Output

Outline

Background

- Facial Landmark Identification and Face Segmentation
- Image Blending
 - Multi-band blending
 - Poisson blending
- Face Swapping Approaches
 - Encoder-Decoders
 - Linear 3D Morphable Models
- Comparisons/Conclusions

Comparisons/Conclusions

- Four pairs of face swaps
 - Encoder-decoder approach
 - Linear 3D morphable model approach
- Observations
 - Linear 3D morphable approach
 - Struggles to match pose and expression of target face
 - Noticeable around eyes and mouth
 - Blending
 - Encoder-decoder is superior
 - Significant difference in lighting

Comparisons/Conclusions

	Encoder-Decoder	Linear 3D Morphable Model
Image-to-Image	\checkmark	\checkmark
Video-to-Video	\checkmark	×
Arbitrarily Face Swap	×	\checkmark
Can Handle Occlusions	×	\checkmark
Blending Approach	Modified Multi-band blending (Superior)	Poisson blending (Inferior)

Questions?

Sources

- Papers With Code. [n. d.]. Laplacian Pyramids. https:// paperswithcode.com/method/laplacian-pyramid [Online; accessed 18-October-2022].
- Bernhard Egger. 2021. SIGGRAPH2021 3D Morphable Face Models Past, Present and Future Presentation. https://www.youtube.com/ watch?v=UGtIwWv1dds [Online; accessed 1-October-2022].
- C. Schroers J. Narunic, L. Helminger and R.M. Weber. 2020. High-Resolution Neural Face Swapping for Visual effects. *Computer Graphics Forum* 39, 4 (2020), 173–1
- Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard Medioni. 2018. On Face Segmentation, Face Swapping, and Face Perception. *In 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018)*. 98–105. https://doi.org/10.1109/ FG.2018.00024
- Richard J. Radke. 2012. Computer Vision for Visual Effects. Cambridge University Press. <u>https://doi.org/10.1017/CB09781139019682</u>
- Wikipedia. 2022. Image Gradient. https://en.wikipedia.org/wiki/ Image_gradient [Online; accessed 2-October-2022].

Figure Sources

- Slides 2, 16, 17, 21 images: C. Schroers J. Narunic, L. Helminger and R.M. Weber. 2020. High-Resolution Neural Face Swapping for Visual effects. *Computer Graphics Forum* 39, 4 (2020), 173–184
- Slide 3 image: <u>Creator of Tom Cruise deepfakes shares how he made those viral TikTok videos CNET</u>
- Slide 5 image (Facial Landmarks): Facial Landmark Detection | Papers With Code
- Slides 5, 19 images (Face Segmentation): Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard Medioni.
 2018. On Face Segmentation, Face Swapping, and Face Perception. *In 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018)*. 98–105. https://doi.org/10.1109/ FG.2018.00024
- Slides 6, 7, 8, 10, 11, 12, 13 images : Richard J. Radke. 2012. Computer Vision for Visual Effects. Cambridge University Press. <u>https://doi.org/10.1017/CBO9781139019682</u>
- Slide 9 image: Laplacian Pyramid Explained | Papers With Code
- Slide 15 image: <u>Autoencoders with Keras. TensorFlow. and Deep Learning PylmageSearch</u>
- Slide 18 image: (21) SIGGRAPH2021 3D Morphable Face Models Past. Present and Future Presentation YouTube