
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Nicholas D. Gilbertson

Making Secure Multi-Party Computation Scalable
Nicholas D. Gilbertson
gilb0578@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Secure multi-party computation, or SMPC for short, is a
topic that has been around for decades, but has become
more relevant with each passing year. Secure multi-party
computation is the simple concept of computation involving
multiple individuals without compromising the privacy of
any individual’s data. Due to this general definition, there
are many real life uses for SMPC, as well as many different
implementations of it. In this paper we’ll take a look at many
of the real world applications of SMPC, as well as take a deep
dive into multiple of the modern implementations of SMPC
and the current problems that they face. Finally, we’ll look
into possible solutions for the scalability issues that SMPC
protocols suffer from. We’ll look into a new protocol called
nanoPI which aims to improve upon these scaling issues by
using entirely different mechanics in multiple parts of the
computation. The final solution to scaling issues that we’ll
cover is a query compiler called Conclave which achieves
large improvements in efficiency for certain uses of SMPC.

Keywords: Secure multi-party computation, nanoPI, scaling,
garbled circuit evaluation, secret sharing, Conclave, Query
Compiler

1 Introduction
Secure multi-party computation (SMPC), also known as pri-
vacy preserving computation, and secure function evalua-
tion, is a way for multiple participants to compute a shared
result while keeping each individual participant’s data com-
pletely private. SMPCs are decentralized net-based protocols
where each participant in the SMPC completes a part of
the computation. SMPC can receive input from any num-
ber of participants, and can be configured so that all or a
subset of these participants receive the output. The privacy
of the computation is preserved given that the number of
corrupt parties involved in this computation doesn’t exceed
the SMPC protocol’s given security threshold. [1]
Some examples of real world uses for secure multi-party

computation include: privacy in processes such as auctions,
secretive decision making in machine learning, use of third-
party programs to compute something without the third-
party having access to a participant’s data, as well as the
ability for data scientists to analyze a full set of data without
compromising any individual’s personal information. An
auction is a good example of where every participant gives

an input and every participant gets to see the output at each
stage: the highest current bid. SMPC when used by data sci-
entists or researchers for things such as financial or medical
research is a great example of SMPC where only some of
the participants get to see the output of the computation. In
the case of medical research, the participants supplying the
medical data don’t need the outcome, so the only person who
gets to see the result of the computation is the researcher.

We’ll be looking at one popular implementation of SMPC
to first understand the concept, and then will present the
developing solutions to the scaling problems within SMPC.

The popular implementation of SMPC that we’ll look into
is Garbled Circuit Evaluation (GCE). GCE is a popular and
relatively simple implementation of SMPC with a few dif-
ferent variations based on the needs of SMPC in different
contexts. These differences stem from the needs of more or
less security in different contexts.
The prototype scalable SMPC model we’ll be looking in

section 4.2 is called nanoPI. The currently popular implemen-
tations of SMPC scale very poorly. Because of this, they’re
unable to run computations on large scale data sets without
losing significant levels of performance. NanoPI was devel-
oped to be efficient in time as well as space used, attempting
to avoid both of the reasons that SMPC is inefficient with
regards to large data sets.[7]
The alternate solution to SMPC scaling issues we’ll be

looking at in section 4.3 is a query compiler named Conclave
which can be used to speed up pre-existing SMPC imple-
mentations. Conclave takes certain SMPC steps and runs
them in the clear. This solution allows for parallel process-
ing for parts of the SMPC computation, thus improving the
scalability greatly.[3, 5]
Finally, we’ll go over the results of the testing done with

nanoPI as well as Conclave, and compare them with cur-
rent SMPC statistics in order to come to a conclusion about
whether or not there is a solution to the scaling issues within
SMPC.

2 Background
2.1 Security classifications within SMPC
There are two main types of security that an SMPC protocol
can achieve: Passive Security and Active Security. However
before diving into a description of either, it’s important to
note that in some implementations of SMPC, the participants
of the computation may be unknown. That means that it’s

Making Secure Multi-Party Computation Scalable

entirely possible to run into situations where multiple of the
participants are both malicious, and communicating with
one another. Because of this, when evaluating the security
of an SMPC protocol, if there are multiple malicious parties
involved in the computation, then we assume that they are
cooperating and are able to share data. This is because multi-
ple, cooperating malicious parties represents the worst case
scenario, and a truly secure SMPC protocol will be secure
even when faced with multiple malicious participants.

Passively secure multi-party computation defends against
semi-honest adversaries, also known as honest-but-curious
adversaries. A semi-honest adversary may be able to look at
the internal states and other information about the SMPC
process running on another participant’s machine, however
they do nothing to modify or affect the code running the
protocol. Passive security means that even if a semi-honest
adversary got a view into a part of the SMPC protocol that
they aren’t supposed to be able to see, they wouldn’t be
able to get any information about any of the private inputs
involved in the computation.

While passive security offers an important layer of protec-
tion, it is by no means a fully secure protocol. Active security
is the next step up, and protects against active adversaries,
also known as Malicious Adversaries. An active adversary is
someone who changes the protocol in some way to exploit
a vulnerability, one which gets them information about the
private inputs of the computation, or modifies the output so
that it no longer reflects the actual result of the computation.
Active security is the highest level of security for an SMPC
protocol, and should in theory be completely secure.
Another type of security for SMPC worth mentioning is

a concept called Covert Security. In some cases, especially
when an active adversary is attempting to deviate from an
SMPC protocol in order to change the output of the compu-
tation, knowing whether or not a protocol has been cheated
is just as effective as being actively secure in the first place.
In essence, if the participants of an SMPC know that the
output has been tampered with, they clearly won’t trust it. A
protocol which doesn’t necessarily offer full active security,
but can detect with 99 percent plus probability when the
protocol has deviated from, is covertly secure. In some cases,
covertly secure SMPC protocols are more efficient than their
actively secure counterparts, and can sometimes be a bet-
ter fit for use cases while still offering the security that the
output of the computation will be real. It’s also important to
note that both actively secure protocols and covertly secure
protocols are also passively secure. [4]

3 Modern SMPC
3.1 Garbled Circuit Evaluation
Garbled circuit evaluation (GCE) is a two-party SMPC pro-
tocol used to privately evaluate a Boolean circuit. Given

participants 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡1 and 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡2, they can eval-
uate a function 𝑓 (𝑖𝑛𝑝𝑢𝑡1, 𝑖𝑛𝑝𝑢𝑡2) where 𝑖𝑛𝑝𝑢𝑡1 and 𝑖𝑛𝑝𝑢𝑡2
are the inputs of 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡1 and 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡2 respectively.
In GCE one participant acts as the circuit generator and
the other participant acts as the circuit evaluator. Assuming
that 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡1 is the circuit generator, they will create
a garbled representation of the circuit, which is achieved
by associating each of the two possible values of the binary
wires with randomized labels. The other participant is tasked
with evaluating the GCE without having any understanding
of the labels it uses to complete the evaluation. Once the
evaluation is completed, the outputs can be decoded to show
their results and can be given to one or both of the involved
participants.[1]
Garbled circuit evaluation uses a form of the technique

Oblivious Transfer called "1-out-of-2 Oblivious Transfer".
This technique allows for the circuit evaluator to obtain the
wire labels for their private inputs, and only for their private
inputs. In the case of GCE, the sender in Oblivious Transfer is
the circuit generator. The generator has two strings, 𝑠𝑡𝑟𝑖𝑛𝑔0
and 𝑠𝑡𝑟𝑖𝑛𝑔1, whereas the receiver (the circuit evaluator in
this case) only has one bit 𝑏, which correlates with 𝑠𝑡𝑟𝑖𝑛𝑔0 or
𝑠𝑡𝑟𝑖𝑛𝑔1. By using Oblivious Transfer, the circuit evaluator is
able to obtain string 𝑠𝑡𝑟𝑖𝑛𝑔𝑏 (either 𝑠𝑡𝑟𝑖𝑛𝑔0 or 𝑠𝑡𝑟𝑖𝑛𝑔1), while
the circuit generator has no idea about which string was
actually received. Now that the circuit evaluator has the
string which correlates with the wire label for their inputs,
they can evaluate their inputs over the circuit. [1]
In GCE a garbling algorithm 𝐺() is a randomized algo-

rithm which turns a function 𝑓 into three separate functions;
𝐺(𝑓)→ (𝑓𝑒 , 𝑓𝑔, 𝑓𝑑). To be able to get the expected value, it’s
necessary that 𝑓 = (𝑓𝑒◦𝑓𝑔◦𝑓𝑑) on any input. There is an en-
coding function 𝑓𝑒 which allows us to evaluate a garbled
input 𝑓𝑒 (𝑖𝑛𝑝𝑢𝑡)=𝑖𝑛𝑝𝑢𝑡𝑒 , where 𝑖𝑛𝑝𝑢𝑡 is the set of both partic-
ipant’s inputs. At this point using the garbled input 𝑖𝑛𝑝𝑢𝑡𝑒
and garbled function 𝑓𝑔, we are able to get a garbled output
𝑜𝑢𝑡𝑝𝑢𝑡𝑔. This results in the completion of the computation
and Boolean circuit Using the decoding function 𝑓𝑑 on the
garbled output returns the final output 𝑜𝑢𝑡𝑝𝑢𝑡𝑑 , which is
equivalent to the result of 𝑓 (𝑖𝑛𝑝𝑢𝑡) thus completing the GCE
(see figure 1). [2]

It is required that 𝐺() be randomized, so that there is no
realistic deterministic way to predict the outputs (𝑓𝑒 , 𝑓𝑔, 𝑓𝑑)
of 𝐺(𝑓). The garbled input 𝑖𝑛𝑝𝑢𝑡𝑒 is generated first so that
neither participant is able to decipher the private data being
used in the computation. This garbled input is also generated
in such a way that when 𝑓𝑔 is applied to 𝑖𝑛𝑝𝑢𝑡𝑒 , it completes
the intended Boolean circuit, but still returns an encoded
result 𝑜𝑢𝑡𝑝𝑢𝑡𝑔 so that there is control over who is and who
isn’t able to receive the result. The decoding function 𝑓𝑑 is
only given to those who are the intended recipients for the
result of the GCE. The oblivious transfer mentioned earlier is
used when transferring data to the circuit evaluator in GCE,

Nicholas D. Gilbertson

Figure 1. Garbling function G turns 𝑓 () into three components 𝑓𝑒 for encoding the initial input to the garbled input, 𝑓𝑔 for
evaluating the garbled inputs over the garbled function, and 𝑓𝑑 for decoding the garbled outputs to their final value, which is
equivalent to running the original inputs over the original function.

so that the circuit generator isn’t aware of which part of their
data is being used in which part of the circuit evaluation.

Modern GCE is a powerful and flexible SMPC protocol, as
newer implementations have been shown to work well with
very detailed and complex functions, and also compute effi-
ciently and effectively even for circuits including hundreds
of millions of gates. [2]

4 Scaling Issues and Attempted Solutions
4.1 Scaling Issues
The main current issue with SMPC protocols is that they
don’t scale effectively. Current Active SMPC protocols need
either linear space, linear rounds of computations, or both
[7]. Linear in this case, meaning the size of the circuit rep-
resentation. After much research and discussion, the best
modern two-party SMPC protocols are able to evaluate over
one hundred thousand AND gates per second, even in ac-
tively secure SMPC implementations that protect against
active adversaries. A new garbling technique used in GCE
developed by Wang et al. has made constant-round com-
putations with n parties safe even when n-1 of the parties
involved in the computation are malicious.[6] This is a pow-
erful protocol, and can sufficiently meet the needs of many
modern SMPC applications. However, while SMPC protocols
have improved drastically in time efficiency, the statement
that current active SMPC needs linear space or linear rounds
is still true, meaning that current active SMPC protocols fail
to scale on space efficiency.

This is troublesome for multiple reasons, the first being
that computations done by SMPC are generally Boolean cir-
cuits, whose representations are fairly large. SMPC is also
often used on incredibly large data sets, such as when com-
pleting computations over medical or financial data. The
size of the data sets and the poor scaling of Boolean circuit
representations will sometimes lead to SMPCs trying to run
circuits with billions of gates. However, using SMPC over
large scale data sets isn’t the only case where its poor space
scaling becomes an issue. There are many uses for SMPC on
devices such as smart watches, Internet of Things devices,
etc. however they would struggle with the space inefficiency
seen in current SMPC.

The biggest reason behind the scaling issues within active
SMPC comes from a trade that modern active SMPC proto-
cols make for performance benefits. In order to be constant-
round, these protocols trade the size of the circuit repre-
sentation |𝐶𝑖𝑟𝑐𝑢𝑖𝑡 | space used at all times. Because of this,
any actively secure SMPC protocols that have high time effi-
ciency have a massive and poorly scaling space requirement.
[7]

4.2 NanoPI
In order to attempt to tackle the issue of creating an actively
secure SMPC protocol that scales well in both time efficiency
and space efficiency, Ruiyu Zhu, Darion Cassel, Amyu Sabyr,
and Yan Huang developed nanoPI [7]. NanoPI is based on
WRK, which is one of the most efficient active SMPC pro-
tocols that remains secure against an arbitrary number of
active adversaries. NanoPI was developed by looking for the

Making Secure Multi-Party Computation Scalable

Memory Budget 20 MB 200 MB 2 GB
Protocol nanoPI WRK nanoPI WRK nanoPI WRK

Speed (AND/s)

20 Mbps
40 ms 795.03 1.73K 2.73K 2.75K 3.12K 3.23K

200 Mbps
40ms 825.18 2.76K 6.94K 12.94K 20.94K 22.38K

2 Gbps
<1 ms 20.27K 20.53K 46.66K 46.84K 49.34K 50.64K

Table 1. The tests were completed with 3 different memory budgets: 20MB, 200MB, and 2 GB. They were also tested in 3
different network environments: 20 Mbps 40 ms, 200 Mbps 40 ms, and 2 Gbps <1 ms. Square pretains to one of these memory
budgets and one of these network environments, and the data being measured is the speed of the protocol in AND gates per
second.

most space heavy steps in WRK, and attempting to lower
their space requirements drastically. NanoPI has a modi-
fied version of WRK’s protocol used for processing circuits,
which executes binary gates in the protocol in batches, and
deallocates binary wires which aren’t currently in use. This
saves vast amounts of space while still keeping a high level
of efficiency.
NanoPI introduces a change to a sub-protocol of WRK

calledAuthenticated Bit.When values are the same across dif-
ferent instances of the authenticated bit protocol, it batches
these computations, in turn reducing the space requirement
of this sub-protocol.

NanoPI also introduces a change to a sub-protocol of WRK
called Authenticated AND. These changes stem from the
use of a pool-based cut-and-choose system, which in some
situations would always choose certain types of results from
the pool. Therefore, in cases where these choices are present
nanoPI is able to create as many Authenticated ANDs as
needed while maintaining both time efficiency and constant
space. [7]

The results of all these changes makes the space efficiency
of nanoPI 𝑂(𝑢𝑛), which is much better than the previous
𝑂(|𝐶𝑖𝑟𝑐𝑢𝑖𝑡 |) space efficiency, where |𝐶𝑖𝑟𝑐𝑢𝑖𝑡 | is the size of
the circuit representation and 𝑢𝑛 is a user-set constant. The
amount of rounds required became𝑂(𝑛|𝐶𝑖𝑟𝑐𝑢𝑖𝑡 |/𝑢𝑛) where n
is the number of participants. NanoPI has also been formally
proven to be an actively secure implementation of SMPC.
[7]
NanoPI’s efficiency has been tested in practice, running

a 4 party actively secure logistic regression with 4.7 billion
AND gates in less than 28 hours on "mediocre machines"
(4GB memory). NanoPI was also run on 40.8 billion ANDs
and 122 billion XORs which took 16 days, but incredibly the
peak memory usage for the entire computation was 398MB.
This shows that nanoPI is able to keep up with the efficiency
of modern SMPC protocols, while keeping strict memory
usage.

When comparing nanoPI to its mother protocol, WRK, it
is clear that WRK is still the fastest active SMPC protocol.

The tests in table 1 were done with three different memory
budgets: 20 MB, 200 MB, and 2 GB, as well as 3 different
sets of network conditions: 20 Mbps/40 ms, 200 Mbps/40 ms,
and 2 Gbps/<1 ms. NanoPI is still able to almost match the
speed of WRK, especially when the network bandwidth is
no longer a bottleneck, as seen in the 2Gbps row. While the
changes made to the sub-protocols of WRK allowed nanoPI
to scale better with space, they do require more computing
power. Because SMPC is inherently a distributed net-based
system, this increase in computing requirements lead to a
bigger bottleneck when faced with poor network conditions
than WRK had to face. NanoPI is still an advancement in
SMPC technology, because it’s the first active SMPC protocol
which can run arbitrarily large circuits, whereas WRK can
only run smaller circuits due to the requirement of holding
the entire size of the circuit representation in memory at all
times. [6]

4.3 Conclave
This entire section is derived from "Conclave: Secure Multi-
Party Computation on Big Data" [5]. Another proposed so-
lution to the SMPC scaling problems comes in the form
of a query compiler prototype named Conclave, developed
by Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros. Whereas
nanoPI took a pre-existing SMPC protocol (WRK) and made
changes to the sub-processes within the protocol in order to
improve the space efficiency, the biggest changes Conclave
makes to SMPC protocols is done outside of the SMPC itself.
Conclave takes advantage of the fact that often, many

of the relational analytics queries performed within SMPC
don’t necessarily need cryptographic techniques in order to
ensure total security. Conclave processes these queries in
cleartext which greatly increases efficiency by allowing for
parallel processing and smaller SMPC steps. There are also
times when parties trust each other with subsets of the data
being used in a computation. For example, when computing
queries for medical research the only data that needs to
be private during the computation is a patient’s personal

Nicholas D. Gilbertson

information. Any other data doesn’t need to be computed
privately. When parties trust each other with a subset of
data, Conclave also takes advantage of this by running steps
on this data in the clear outside of the SMPC protocol. This
hybrid SMPC setup caused by Conclave greatly improves
scalability for cases where it’s applicable.

In order to take advantage of Conclave, data analysts write
relational queries for the data as if they had access to all of the
inputs. Conclave takes these queries, and transforms them
into a set of local processing steps and modified SMPC steps.
The local processing steps are any data that can be computed
in the clear, such as marked data in hybrid data sets, or parts
of queries which don’t reveal sensitive information. The
modified SMPC steps are what compute all sensitive data
privately. Through this method, Conclave is often able to
return the results of an SMPC protocol within just minutes,
even when the size of the input is magnitudes larger than
some SMPC protocols can support due to space restrictions.
There are a couple of factors which help Conclave scale

as successfully as it does. Conclave reviews the queries
and modifies them in ways which improve efficiency with-
out compromising security. However, this process burdens
individual parties with more computational work in the
short term than classic SMPC would. Conclave uses the op-
tional hybrid process mentioned earlier, computing safe data
many times more efficiently. The final factor that Conclave
leverages is its combination of using fast but insecure data-
processing systems for SMPC steps that need not be obscured
and fully secure systems for SMPC steps that are required to
be private.
Conclave only supports two SMPC frameworks, Obliv-C

and Sharemind, meaning that Conclave only supports two-
party and three-party SMPC. Using Obliv-C and Sharemind,
Conclave is able to generate code for Garbled Circuit Evalu-
ation, Secret Sharing SMPC frameworks, and data-parallel
local processing systems. One important point to make about
Conclave is that it is a passively secure protocol, only safe
when in the presence of honest and semi-honest participants.
Much like how nanoPI used WRK as a starting point for de-
velopment, Conclave was developed with an SMPC protocol
named SMCQL in mind. Conclave’s Secret Sharing based
back-end is more efficient when computing the arithmetic
operations involved in the relational queries that it needs
than SMCQL’s Garbled Circuit back-end, helping Conclave
outperform its closest competitor.

The performance of Conclave was measured using end-to-
end analytics queries, as well as micro-benchmarks. Using
minimal amounts of market insecure inputs, and data-sets
which only take advantage of the basic optimizations Con-
clave introduces, Conclave was able to scale queries to in-
puts orders of magnitudes larger in size than current SMPC
frameworks support. Taking advantage of Conclave’s hybrid
operations on non-private inputs, it was able to speed up
important operators such as join and aggregate operators

to 7 times faster (or more) even when compared to Share-
mind, which is a fast and commercial framework used in
real life applications of SMPC. When compared to SMCQL,
Conclave’s optimizations were able to help it scale medical
research queries for inputs orders of magnitudes larger while
still maintaining passive security.

5 Conclusion
NanoPI attempts to create a scaleable actively secure SMPC
protocol, and while it is able to match the speed of its com-
petitors in many situations, it wasn’t able to achieve the large
improvements in performance. The main advancement that
nanoPI was able to achieve was the ability to run arbitrarily
large circuits. Even if this advancement didn’t translate into
faster SMPC protocols in practice, it’s a powerful advance-
ment and may help achieve greater space/time efficiency for
future SMPC solutions.
Conclave shows a far larger improvement in efficiency,

with the achievement of speeding up the use of operators to
at least 7 times faster than commercial SMPC frameworks,
as well as being able to compute medical research queries
with inputs magnitudes larger than competitors are able to
compute. However, while Conclave has a high level level
of efficiency, it has many limitations. The majority of the
improvements in speed that Conclave is able to achieve are
only achievable when a subset of the inputs can be marked
as non-private and therefore can be computed in the clear.
Conclave only supports two-party and three-party SMPC.
Finally, Conclave only achieves passive security, meaning
that it isn’t suitable for any real life applications where par-
ticipants of the SMPC may be untrustworthy. Conclave is
a real advancement in SMPC, but only for situations such
as medical research where there are both subsets of inputs
which aren’t required to be computed privately, as well as
when malicious adversaries aren’t likely to exist.

The solutions discussed in this paper both had large im-
pacts on understanding the scalability issues within SMPC,
as well as attempting to solve them. However, both nanoPI
and Conclave are still only partial solutions. SMPC research
has a long way to go for there to exist an actively secure
framework which scales with both space and time efficiently.

Acknowledgments
I would like to thank my advisor Elena Machkasova for her
continued support, advice, and revisions. I would like to
thank Melissa Helgeson for her feedback and advice. Finally,
I would like to thank the course instructor, K.K. Lamberty,
for her guidance and feedback throughout the course.

References
[1] Fattaneh Bayatbabolghani and Marina Blanton. 2018. Secure Multi-

Party Computation. In Proceedings of the 2018 ACM SIGSAC Conference

Making Secure Multi-Party Computation Scalable

on Computer and Communications Security (Toronto, Canada) (CCS ’18).
Association for Computing Machinery, New York, NY, USA, 2157–2159.
https://doi.org/10.1145/3243734.3264419

[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Founda-
tions of Garbled Circuits. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (Raleigh, North Carolina, USA)
(CCS ’12). Association for Computing Machinery, New York, NY, USA,
784–796. https://doi.org/10.1145/2382196.2382279

[3] David Byrd and Antigoni Polychroniadou. 2020. Differentially Private
Secure Multi-Party Computation for Federated Learning in Financial
Applications. In Proceedings of the First ACM International Conference
on AI in Finance (New York, New York) (ICAIF ’20). Association for
Computing Machinery, New York, NY, USA, Article 16, 9 pages. https:
//doi.org/10.1145/3383455.3422562

[4] Claudio Orlandi. 2021. MPC techniques series, part 2: Security
taxonomy and active security. https://medium.com/partisia-
blockchain/mpc-techniques-series-part-2-security-taxonomy-and-
active-security-6b5f14a15217

[5] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia,
Andrei Lapets, and Azer Bestavros. 2019. Conclave: Secure Multi-Party
Computation on Big Data. In Proceedings of the Fourteenth EuroSys
Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for
Computing Machinery, New York, NY, USA, Article 3, 18 pages. https:
//doi.org/10.1145/3302424.3303982

[6] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale
Secure Multiparty Computation. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS ’17). Association for Computing Machinery, New York, NY,
USA, 39–56. https://doi.org/10.1145/3133956.3133979

[7] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. 2018. NANOPI:
Extreme-Scale Actively-Secure Multi-Party Computation. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 862–879. https://doi.org/10.1145/
3243734.3243850

https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/3383455.3422562
https://doi.org/10.1145/3383455.3422562
https://medium.com/partisia-blockchain/mpc-techniques-series-part-2-security-taxonomy-and-active-security-6b5f14a15217
https://medium.com/partisia-blockchain/mpc-techniques-series-part-2-security-taxonomy-and-active-security-6b5f14a15217
https://medium.com/partisia-blockchain/mpc-techniques-series-part-2-security-taxonomy-and-active-security-6b5f14a15217
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3243734.3243850
https://doi.org/10.1145/3243734.3243850

	Abstract
	1 Introduction
	2 Background
	2.1 Security classifications within SMPC

	3 Modern SMPC
	3.1 Garbled Circuit Evaluation

	4 Scaling Issues and Attempted Solutions
	4.1 Scaling Issues
	4.2 NanoPI
	4.3 Conclave

	5 Conclusion
	Acknowledgments
	References

