
Making Secure Multi-Party 
Computation Scaleable
Nicholas Gilbertson
gilb057@morris.umn.edu
University of Minnesota Morris
October 27th

mailto:gilb057@morris.umn.edu


Introduction: The Salary Problem

The Salary Problem:

● We need to compute the average salary of people in a room

● We need each participant’s salary to be private

● We can’t use any shared trusted entity

● The solution: Secure Multi-Party Computation (SMPC)
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Introduction: What is SMPC?

Secure Multi-Party Computation (SMPC):

● Computation performed by multiple parties while keeping inputs private

● Arbitrary number of participants

● Arbitrary type of computation

● Privacy preservation dependent on threshold for given SMPC protocol

● Net based local decentralized process



Introduction: Implementations of SMPC

All participants see result:

● Auctions

● Privacy-preserving Machine Learning

● Poker without a trusted third party

Some participants see result:

● Financial data analysis

● Privacy-preservation in medical research

https://stock.adobe.com/search?k=pl
aying%20card%20symbols%20vector

https://uxwing.c
om/auction-icon/

https://www.dreamstime.c
om/machine-learning-icon

https://stock.adobe.com/search?k=playing%20card%20symbols%20vector
https://uxwing.com/auction-icon/
https://www.dreamstime.com/machine-learning-icon


Introduction: GCE, nanoPI, and Conclave

Garbled Circuit Evaluation (GCE):

● Popular implementation of SMPC

● Secure two-party computation

● Computes boolean circuits

● Configurable reception of results

● Different security level configurations

Figure: Example of a boolean circuit



Introduction: GCE, nanoPI, and Conclave

nanoPI:

● Based off state of the art SMPC protocols

● Attempts to fix scaling issues within SMPC

● Is a highly secure SMPC protocol



Introduction: GCE, nanoPI, and Conclave

Conclave:

● Query Compiler used to speed up existing SMPC implementations

● Allows for parallel processing of steps to improve efficiency

● Mid-level security
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Background: Security Classifications within SMPC

● Defends against “Semi-Honest Adversaries”

○ Passive Security

● Defends against “Malicious Adversaries”

○ Covert Security

○ Active Security
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SMPC Protocols: Garbled Circuit Evaluation

● Secure two-party computation used to construct Boolean Circuits

Figure: Example of a boolean circuit



SMPC Protocols: Garbled Circuit Evaluation

Garbled Circuit Evaluation Mechanics:

● Given participants Alice and Bob, their inputs {iA, iB}, and a function f( )

● GCE offers a way to compute f(iA, iB) privately

● Given that Alice is the “Circuit Generator”, Bob will be the “Circuit Evaluator”

● Alice creates a “Garbled Representation” of the circuit

● Bob is tasked with evaluating the inputs over this unreadable Garbled Circuit
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SMPC Protocols: Garbled Circuit Evaluation

"1-out-of-2 Oblivious Transfer"

● The Circuit Generator, Alice, has two strings, {s0, s1}

● The Circuit Evaluator, Bob, has a bit b

● Alice {s0, s1} -> Oblivious Transfer -> Bob {sb}

● Alice doesn’t know which string Bob received

● Bob has the needed string to evaluate his inputs
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SMPC Protocols: Garbled Circuit Evaluation

GCE uses a randomized “Garbling Algorithm” G( ) on a function f( ) to turn it into three separate functions: 

G(f( )) -> {fe( ), fg( ), fd( )}

● fe( ) is an encoding function which allows us to evaluate the “Garbled Inputs”: fe(iA) = iAe and fe(iB) = iBe

● fg( ) is the garbled representation of the original circuit, computes the garbled output: fg(iAe, iBe) = og

● fd( ) is a decoding function which allows us to receive the final output of the computation: fd(og) = ofinal

● In order to receive the correct result, it’s required that f( ) = (fe( )∘fg( )∘fd( )) 



SMPC Protocols: Garbled Circuit Evaluation



SMPC Protocols: Garbled Circuit Evaluation

● G( ) must be randomized 

● Both participants Alice and Bob receive fe( ) right away

● fg( ) returns the encoded result of the boolean circuit

● This allows for control over who receives the result of the computation
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SMPC Scaling: Scaling Issues

● SMPC is used on massive amounts of data

○ Medical Data, Financial Data

● Boolean circuits are large scale representations of functions

● SMPC protocols will often generate circuits with billions of gates

● Actively secure SMPC protocols require either linear space or linear rounds of computations

● Modern Actively Secure GCE protocols compute hundreds of thousands of gates per second

● Even powerful GCE protocols requires linear space, scaling poorly with size



SMPC Scaling: Scaling Issues

● Many possible applications of SMPC on resource constrained devices

○ Smart Watches

○ IoT Devices

● Majority of SMPC scaling advancements only made on passively secure protocols

● Actively secure SMPC protocols achieve constant-round time efficiency by trading: 

○ |Circuit| space



SMPC Scaling: nanoPI

nanoPI

● Based on SMPC protocol WRK

○ Incredibly Efficient

○ Actively secure against n-1 active adversaries

● Developed by fixing space inefficiencies within WRK

● Modifies sub-protocols of WRK to batch operations



SMPC Scaling: nanoPI

● Authenticated Bit Changes:

○ Changes made to batch repeated computations of the Authenticated bit protocol in 

order to save space

● Authenticated AND Changes:

○ Takes advantage of a predictable pool based cut-and-choose system, freeing up 

space that would otherwise be needed for some Authenticated AND computations



SMPC Scaling: nanoPI



SMPC Scaling: Conclave

Conclave

● Query compiler built to efficiently perform SMPC

● Parts of relational analytics queries can be performed insecurely

● Hybrid Datasets

● Conclave computes SMPC steps & unprotected data in parallel with SMPC processes

● Can be done locally in cleartext due to the nature of these operations



SMPC Scaling: Conclave

Mechanics:

● A data analyst writes relational queries for the data as if they had access to all inputs

● Conclave transforms them into a set of local processing steps and modified SMPC steps

● Conclave runs private SMPC steps and local processing steps in parallel

● Conclave is often able to return the results of an SMPC protocol within minutes, even on 

large scale inputs



SMPC Scaling: Conclave

● Conclave can generate code for GCE and Secret Sharing SMPC protocols

● Conclave is only passively secure

● In testing: Conclave sped up operators such as "join" and "aggregate" to 7 plus times faster 

when compared to Sharemind, a commercial framework used in applications of SMPC

● These tests were done on hybrid data sets

● Conclave is best suited for SMPC applications relating to research
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Conclusion: Partial Solutions

● nanoPI and Conclave are partial solutions

● nanoPI:

○ Kept up with WRK, however still slower in all tests

○ Has the unique ability to run arbitrarily large circuits

● Conclave:

○ 7+ times faster use of important operators in testing

○ Only passively secure, and requires a hybrid data-set to tap into most of its efficiency

○ Perfect for data analytics such as Medical Research
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