
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Conner Hettinger

Exploring Chess Variants with AlphaZero
Conner Hettinger

hetti031@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
AlphaZero is a reinforcement learning algorithm that is ca-
pable of learning chess, shogi, and go beyond human levels
of play without any game data. In “Assessing game balance
with alphazero: Exploring alternative rule sets in chess,” Ne-
nad Tomasev et al. has AlphaZero learn different versions of
chess and develop its own high level strategies. They use this
method to analyze 9 different variations of chess where they
look to find how small changes in the original rule set can
change the flow of the game. This paper aims to showcase a
few of the 9 variants covered, how AlphaZero is capable of
learning them, and how those variants influenced the flow
of the game.

1 Introduction
In the realm of video games and board games there is a
constant battle for developers between balancing a game to
make it fun, fair, and competitive. One board game has been
around for centuries and has been under the critical eyes of
millions of players. That game is chess. Chess also happens to
be the target of many engines that can play chess far beyond
any human ability. With these resources, the dynamics of
chess can be researched far beyondwhat is possible for newer
board games, since most board games have not been around
for that long and do not have computers designed to play it.
AlphaZero is a chess AI that can learn the rules of chess

and surpass any human player by training on self-play games.
This means we can see how an artificial intelligence develops
its strategy to become the best player in the world at any
version of chess, without help of humans. With this informa-
tion, we can find how different rules can influence different
types of play.

In this paper, section 2 provides background information
that is useful to understand ideas about chess, what a chess
variant is, and relevant machine learning algorithms. Section
3 discusses the methods used in the study. Finally, section 4
is the results and section 5 is the conclusion.

2 Background
This section provides the background on the topics that are
required to understand what is happening in this research
paper. First, section 2.1 gives some intermediate chess con-
cepts that are expanded on later in the paper. Then, section
2.2 talks about the details of artificial intelligence approaches

Figure 1. In this image, the orange arrow shows black mak-
ing their pawn jump two squares and the red square shows
where the white pawn can move to take the black pawn.

that are relevant to the research described in the rest of the
paper.

2.1 General chess concepts
2.1.1 Special moves. Most people know all of the basic
moves that each piece can make in chess. However, for this
study, it is helpful to know some of the special moves that
can be made. In chess, there are a few moves that can only
happen once in specific scenarios. One of those special moves
has to do with how pawns can take other pawns. Typically,
when a pawn takes a piece, the opposing piece has to be in a
square diagonally one space in front of the pawn. However,
if an opposing pawn passes a pawn in a single move, then
the pawn can capture the opposing pawn as if it were in a
square diagonally in front it. This is called En Passant and is
the only move in the game where a piece captures another
piece by moving to an empty square in a position relative to
the opposing piece [4].

2.1.2 Pawn Structure. Pawns are not typically regarded
as the most powerful piece in chess. It is true, however, that
pawns are essential to the flow of the game and the eval-
uation of any given position. Pawn structure refers to the
position of a player’s pawns, not taking into account any
other piece. Due to the lack of mobility of pawns, there are



Exploring Chess Variants with AlphaZero

not a lot of variations of how pawn structures look in the
beginning of the game. Regardless of variability, the pawn
structure provides a lot of information about the state of
the game. For example, if there are a lot of pawns stuck in
the middle of the board, the game is considered to be closed,
which means there isn’t a lot of room for pieces to jump
across the board. In a closed state, we might determine that
the knight is a more valuable piece than the bishop since
knights are capable of hopping over other pieces and vice
versa if the position is open. Pawn structure also heavily
influences what kind of strategies are available to either
player. For example, if the pawn structure is weak around an
opponent’s king, it might be easier to initiate an attack. [3]

2.1.3 Wins, losses, and draws. Chess is a game where
draws can be more common than victories depending on the
level of play. Qiyu Zhou in [11], has found that high level
games typically end in a draw. The database used in this
article has only high quality games, due to most recorded
games being part of major tournaments like national cham-
pionships, world championships and qualifiers. From this
database, out of 78,468 games played in the past 47 years,
53% of games have ended in a draw. 28.9% of games are won
by white and 18.0% of games are won by black. [11] From
this information it is easy to see that at high levels of play
draws are common. As it turns out, the higher the ranking
the higher the amount of draws. This can be seen at the
level of artificial intelligence. For example, when AlphaZero
was pitted against another chess engine, Stockfish in [9], 639
games out of a 1000 that ended in a draw.

2.2 Chess artificial intelligence
2.2.1 Monte Carlo Tree Search. One of the main parts of
AlphaZero is an algorithm called Monte Carlo Tree Search.
The Monte Carlo Tree Search is a family of algorithms that
relies on two concepts. First it needs to be able to guess the
value of any given action from the current state of the game
that it is looking at. Second it needs to be able to use the
estimated values to choose actions based on some policy, or
strategy. The tree looks like a normal tree structure where
it starts at a root node that has edges that point downward
to child nodes and those child nodes have child nodes. Each
node represents a specific position in chess and each edge
represents an action that can be taken from that position.
For example, the root node could be the standard starting po-
sition in chess and an edge could be moving a pawn forward.
Each layer in the tree also represents a players turn. So after
an action happens the next position has a list of edges that
corresponds to the other player’s possible moves. [1]

There are four main steps to generate the tree in theMCTS:
selection, expansion, simulation, and back propagation. Se-
lection is a recursively applied function that uses some policy
to select child nodes until it reaches a node that is expandable.
The node is considered expandable if it doesn’t represent

Figure 2. The image depicts one iteration of MTCS. Taken
from [1].

a state of the game that is the end of the game and it has
unvisited children. Then expansion happens when selection
finds an appropriate node. Expansion adds one or more child
nodes to the tree, which comes from the current available
actions. Then simulation is ran on the newly expanded node.
Simulation uses a default policy to continually select nodes
until it reaches an end-of-the-game position. The simplest
form of default policy is to select completely random ac-
tions until it reaches the end of the game. Then it takes
the end game value it gives it to back propagation. Finally,
back propagation takes the value of the simulated node and
takes it all the way back up the tree, readjusting each node
value according to the new result. For example, if the end
result found was a win, each node traveled to get to that win
would increase in value for the nodes of the corresponding
winner. [1]

These four steps repeat over and over again until a termi-
nal node is reached or the total budget for computation is
reached. Once this is completed, there is another mechanism
that helps choose what node the MCTS actually chooses. The
two typical cases is that the mechanism chooses the node
with the highest value or it chooses the node that got selected
the most. The highest value typically dictates a method of
exploitation, which is looking for the fastest way to win. For
a two player game, every time the current player’s turn is
swapped the strategy for choosing an action is reversed. So
if it’s deciding the opponents move, the opponent would
try to choose the move that has the lowest possible value.
The highest selection rate typically dictates a method of ex-
ploration, which is looking for routes with more game play.
The strategy for the opponent is chosen in this case and for
now can still be thought of as choosing the lowest valued
action. [1]

2.2.2 Deep Neural Networks. A neural network is a web
of nodes that feed input into one another. In the web, nodes
are organized into layers where every node in one layer
feeds into every other node in the next layer. The connec-
tion between nodes is called an edge. The network starts
with an input layer, then goes into a hidden layer with one
or more layers of nodes, then finally ends with an output



Conner Hettinger

Figure 3. This is an example setup of a feed-forward neural
network. The arrows between nodes are the edges and in
this example all the information is flowing to the right. [6]

layer. The output layer is usually pretty small, containing
very few nodes figure 3. The input layer takes some series of
numbers as the input where the numbers represent features
of the data being analyzed. For example, if one were to input
the features of a fish, they could input 47 for weight, 1 for
breathing underwater, etc. Any feature that is represented
as a yes or no question is represented with a 1 or a 0. The
information in each input node is then sent to the first layer
in the in hidden layer. Every edge contains some weight that
gets multiplied to the number coming from the input node
and the receiving node also contains some number called
a bias that gets added to the total of the multiplication. So
each node in the first layer of the hidden layer would be
equal to the summation of all input nodes multiplied by their
respective weight plus the node bias. In the hidden layer the
sending of information happens a similar way. To start, the
information in each node gets sent into a chosen activation
function. For example, a very common activation function is
a function called Rectified Linear Unit (ReLU). ReLU maps
the value to itself if it is positive and 0 if it is negative. For ex-
ample, 47 would become 47 and -47 would become 0. This is
a common example of an activation function, however there
are different types. This sending of information continues
to move forward down the hidden layers until it reaches the
output layer. The output layer can then be used to determine
the result. [6]

For example, lets look at figure 3. There are five nodes in
each layer except for the output layer where there are three.
The top node of the input layer will have some numeric value
that represents some feature in the data to be processed. That
value then gets sent to all five nodes of the layer next to it.
Each node receives a different value from the first input node
because each edge has a different weight being multiplied to
the value. Then each input node repeats this step. Once the
first layer of the hidden layer receives and sums all the values
from the input layer, it will add a bias. Then each node of the
hidden layer will send its value to the activation function.

Figure 4. This is an image of the convolutional layer in a
convolutional network (in the second step of calculating the
first position of the output array, there is a missing (1*1).) [5].

Assuming we’re using ReLU, all values will stay the same or
turn into 0 depending on if it’s original value was positive or
negative. This process repeats until information gets sent to
the output layer. The output layer will have three values that
correspond to three categories. In this example, we could
think of the first node representing a cat, second a dog, and
third a fish. Whichever node has the highest value, called
the confidence level, is the resulting category. [6]
Typically a neural network starts with random weights

and biases. So it can be assumed at the start the neural net-
work isn’t capable of categorizing or processing any infor-
mation accurately. In order to increase accuracy it uses some-
thing called a cost function. The cost function gives a value
that represents the inaccuracy as a number, which is typ-
ically the difference. The neural network then adjusts the
weights according to the cost value, the goal being to reduce
the cost. So in order to have an accurate neural network,
there needs to be some pre-processing to give it a chance to
decrease the cost. This is usually done in training. Training
can usually only happen when the network already knows
the answer to the data it is trying to guess, since the only
way for the weights to get adjusted based on the correct
answer is to have an undeniable correct answer. [6]
This type of neural network is called a feed-forward net-

work. It is one of the simplest networks and is typically used
for categorization. If a feed-forward network has more than
three layers then it is called a deep neural network. There
are also other types of neural networks that are better for
different types of inputs. For example, recurrent networks
are used for natural language processing and convolutional
neural networks are used for processing images or computer
vision. Convolutional networks is what AlphaZero uses to
process the chess board [10]. [5]
Convolutional networks keep the same idea where fea-

ture data is being sent through layers and manipulated by
multiplying them by weights and adding biases. However,
convolutional networks are specifically designed to take in



Exploring Chess Variants with AlphaZero

multidimensional data, such as an image or a chessboard.
The image may be viewed as width*height*3, where 3 refers
to the values of the three RGB channels, and a chessboard is
8*8*n, where n is the amount of information for each of the
squares. The n in the chess example is auxiliary information
like castling rights, where the pieces are, etc. A convolutional
network has three types of layers: the convolutional, pooling,
and fully connected layers.

The convolutional layer is where most of the computation
occurs and can be broken into three distinct parts, as shown
in figure 4. There is the input image, filter, and output ar-
ray. As I mentioned before, the input image would be the
individual pixels and the corresponding RGB values. Then
there is a filter which is usually a 3 by 3 matrix of weights.
The filter is typically smaller than the image, and looks at 3
by 3 sections of the image. The filter gets multiplied to the
corresponding sections and each result is summed and put
into a corresponding position in the output matrix. Then the
filter sweeps across the entire input image until it has visited
each section. Since the output isn’t connected to every spot
in the input image, convolutional layers are considered to
be "partially connected". After each convolution operation,
ReLU gets applied to the output matrix. Each convolution
operation can be followed by more convolution operations.
This helps to break down the input into separate parts. For
example, if we were to attempt to determine if an image
is a bicycle, then we could think of every individual piece
of the bicycle as a lower-level pattern in the network. We
would break it into the wheel, seat, gears, handlebars, etc..
Inevitably the image gets broken down into numerical val-
ues, making it possible for the network to process relevant
patterns.
After the convolutional layer is the pooling layer. The

pooling layer is responsible for decreasing the complexity
of the data that comes out of the convolutional layer. The
pooling layer uses a filter similar to that of the convolutional
layer, however instead of a matrix of weights it uses some
aggregation function. The more common function is called
max pooling. Max pooling moves across the input and selects
each position with the maximum value to send to the output
array. This ensures that the neural network is taking into
account the most important features of the data that it is
trying to process.
The last layer is the fully connected layer. The fully con-

nected layer is very similar to the feed-forward network
where all the nodes from the pooling layer are connected to
each node in the fully connected layer, making it the only
layer that is not partially connected to the output layer. This
last layer then uses another activation function called soft-
max to map the values between 0 and 1 onto multiple nodes.
Finally the convolutional network can use this information
to make a decision. This decision can also be thought of like
the previous network, where each node in the output layer
has some corresponding category or guess. [5]

Figure 5. This is an example of a Residual Network block [5].

Themain issuewith convolutional networks is that it takes
a lot of computational power to perform. It has been shown
that there is a dropoff where increasing the complexity no
longer is worth the amount of computation it takes. However,
there is a different way to add complexity without adding a
lot of computation. A Residual Neural network (ResNet) is
basically a convolutional networkwith an extra feed-forward
step as shown in 4. This shows a single layer of convolution,
where x is the output of the previous convolutional layer
and the function F is ReLU. F(x) + x gets sent to the next
layer. [8]

2.2.3 AlphaZero. AlphaZero is the chess engine chosen
by the researchers for this study because it can learn a new
rule-set on its ownwithout any human gameplay. AlphaZero
uses both a deep neural network (DNN) and Monte Carlo
Tree Search (MCTS). The neural network is used to evaluate
each state of the board and the MCTS is used to navigate
states [7]. AlphaZero learns move probabilities and value
estimates from self-play games, which each self-play game
is used to guide further evaluations of moves [9].
AlphaZero’s neural network is a residual convolutional

network with 19 residual blocks and 1 convolutional block,
where a residual block consists of two 3x3 convolutions
both followed by ReLu and a convolutional block has one
convolutional layer followed by a ReLU. The input is an
8x8x(14h+7) multidimensional vector, where h is the number
of turns. For example if we were to consider one turn, then
h=1 and we would only consider the current position of
the board and the vector would be 8x8x21. The first 12 8x8
channels are meant for keeping track of the board positions.
It is the followed by channels representing the number of
repetitions, the side to play, castling rights, irreversible move
counter and total move counter. For every h there is another
position of the board that gets inputted.
AlphaZero’s nerual network starts with a random set of

parameters that get trained by reinforcement learning from
self-play games. Each game in training is played by running
the MCTS from the current position. The move selection to
the next position can either be chosen greedily or propor-
tionally. Proportionally means prioritizing moves that were



Conner Hettinger

evaluated highly by the neural network and greedily means
to choose a move that has been visited a lot by the MCTS.
The network outputs a vector of move probabilities along
with the expected outcome of the game in the given posi-
tion. Then once the end of the game is reached the network
parameters are adjusted according to the terminal value of
the last position using some cost function. So the weights
in each position will get adjusted towards what the actual
outcome was at the end of the game. For example, if the
game ends in a loss then AlphaZero will use the -1 value to
check against the expected outcome in each position. So if
the position right before the lost was closer to 1, then the
networks weights will get adjusted to give an output close to
-1 in that position. This process happens hundreds of thou-
sands of times before AlphaZero starts to become an optimal
player. [9]

3 Methods
In the paper [10], Nenad Tomasev et al. explore ten chess
variants and write about their results. In this section, I de-
scribe how the authors conducted their study, including what
variants they used, how they set up AlphaZero for training,
and what data they collected.

3.1 Chess Variants
The goal of choosing chess variants is to keep the game
as close to classical chess as possible, while trying to cre-
ate a new space for AlphaZero to learn. In the process, the
researchers are watching for AlphaZero to uncover new
openings, middle game strategies, and end game strategies.

In some cases, there needs to be a couple of alterations to
the rules rather than just one big change. This is due to new
rules conflicting with old rules. For their study, Tomasev et
al. only consider changes to 2 rules when the main change
also requires a change to the 50 move rule (if there are 50
unique moves without a pawn move or capture, the game
results in a draw). There are no rule changes that involve
changing the board, the pieces used, or the arrangement of
the pieces. A list of chess variations is shown in Table 1. [10]

3.2 Training
For each rule alteration listed in Table1, AlphaZero starts
from scratch with the same set of weights each time. “The
models were trained for 1 million training steps, with a batch
size of 4096 and allowing for an average 0.12 samples per
position from self-play games. In order to encourage explo-
ration during training, a small amount of noise was injected
in the prior move probabilities before search.” The batch size
is the number of samples processed before the network’s
parameters gets updated [2]. Noise is something added to
the dataset being trained on to prevent the neural network
from completely memorizing it. Here it is added to prevent
AlphaZero from always attempting to pick the same moves,

Variant Rule Change

Pawn one square Pawns can only move by one square
Stalemate=win Forcing stalemate is a win rather than a

draw
Torpedo Pawns can move by 1 or 2 squares

anywhere on the board. En passant
can consequently happen
anywhere on the board.

Pawn-sideways Pawns can also move laterally
by one square. Captures are
unchanged, diagonally upwards
Additionally, pawn moves do not count
toward 50 move rule

Self-capture It is possible to capture
one’s own pieces

Table 1. List of Chess Variants adapted from [7]. More vari-
ants can also be found there.

hence preventing memorization. In the first turns of each
self-play match, diversity is promoted by stochastic move
selection by picking final moves proportional to the MCTS
visit counts. [7]

For each chess variant, the researchers trained AlphaZero
on 10,000 self-play games played at 1 second per move and
1,000 self-play games played at 1 minute per move as shown
in figure 6(a) and figure 6(b). [7]

4 Results
4.1 Utilization of special moves
Some of the chess variants allow for AlphaZero to choose
between some new moves. It isn’t clear just by the win rates
how often AlphaZero chooses to utilize these special moves.
Table 2 shows how often the special moves were used in the
test data. More information on this can be found in [9].
As can be seen in Table 2, self-capture chess had really

low usage compared to the other variants. 86.9% of those self-
captures are pawns with descending percentages depending
on how valuable the piece is. It was also found that in some
cases AlphaZero would capture its own piece because it was
incentivised to explore rather than exploit. So sometimes

Variant % of games % of moves
Torpedo 94% 2.4%
Pawn-sideways 99.6% 11.4%
Self-capture 52.5% 0.7%

Table 2. A list of how often AlphaZero used the special rule-
set moves given to it in the variations with special moves.



Exploring Chess Variants with AlphaZero

(a) 1 second per move

(b) 1 minute per move

Figure 6. The game outcomes of 10,000 AlphaZero games
played at 1 second per move (a) and 1,000 AlphaZero games
played at 1 minute per move (b) for each different chess
variant [7].

instead of getting a checkmate in a single move, it would
choose to take the longer route to a checkmate.

4.2 Analysis
The researchers’ assessment heavily relied on the expertise
of the chess grandmaster (GM) Vladimir Kramnik, a previous
chess champion. The patterns for each variant is character-
ized to help give insights into each variant on what type of
players might enjoy which variant. The following is a short
summary of the key takeaways that Kramnik saw in each
variant. [10]

Pawn one square chess is a slow variation. Kramnik men-
tions in could be a good training tool, since the slower build
of structure gives better insight on how pawn structure is
helpful overall. It also becomes hard to initiate quick attacks
since the pawns can no longer "jump" from their original

position. Overall this reduces the decisiveness of the game,
therefore creating more draws. [10]

Stalemate=win chess did not impact the beginning or mid-
dle of the game in any interesting way. Being as stalemates
typically occur towards the end, this variation only really
changed the evaluation of the end game. Therefore, this
chess variant is deemed to be not very useful and not super
interesting since the overall effect of game play and strategy
is minor. [10]
Torpedo chess makes the game a lot more decisive and

adds value to pawns that have no opposing pawns in front
of them. Pawns become a lot harder to stop since the rule
essentially halves the amount of moves before promotion
for every pawn. This creates new patterns in all stages of the
game and creates more opportunities for attacking. Overall
the game becomes more decisive and strategic. [10]

Pawn-sideways becomes very complex very fast for those
who are experienced in looking at pawn structures normal
to classical chess. Being able to move pawns sideways makes
it harder for players to force weaknesses in their opponent’s
pawn structure. Both players inevitably have very fluid pawn
structures and each position becomes hard to evaluate. Due
to the complexity, this variation of chess is heavily dependent
on deep calculation of the position. In AlphaZero’s games a
lot of strategies are developed that are not possible in classi-
cal chess. This variation is very tactical and complex. [10]
Self-capture chess is an entertaining variant, since the

only new move provides another way of sacrificing pieces
to gain some form of positional advantage. However, not
every game involves self-capture since it is not possible in
most positions to sacrifice a piece for an advantage. Only
about half of the games use this strategy, and most of the
time it is used to open up a position that is being blocked by
pawns. [10]

5 Conclusion
AlphaZero allows testing rule variations without involving
any human subject. As shown in this paper, variations of
chess can have both drastic and small changes to the flow
of the game. For example, self-capture chess had a surpris-
ing low usage rate as well as low influence on the game,
whereas pawn-sideways chess was the most complex vari-
ation of chess. Being as AlphaZero is already capable of
learning chess, shogi, and go, it is not too far reaching to
say that AlphaZero could be adapted for other board games
as well. There are some obstacles to be overcome for mul-
tiplayer games that have more than 2 players and single
player games. Going one step further, it would be amazing
to see an implementation of this for video games or similar
complicated real-time rule sets. Overall this research can be
helpful for the chess community as is, but hopefully in the
future it can be used for other kinds of games as well.



Conner Hettinger

References
[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of monte carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[2] J. Brownlee. Difference between a batch and an epoch in a neural
network, 2022.

[3] chess.com. Pawn structure in chess - chess terms. https://www.chess.
com/terms/pawn-structure.

[4] chess.com. Special chess moves: Chess terms. https://www.chess.com/
terms/special-chess-moves.

[5] I. C. Education. Convolutional neural networks, 2020.
[6] I. C. Education. Neural networks, 2020.

[7] T. McGrath, A. Kapishnikov, N. Tomaev, A. Pearce, D. Hassabis, B. Kim,
U. Paquet, and V. Kramnik. Acquisition of chess knowledge in alp-
hazero. ArXiv, abs/2111.09259, 2021.

[8] C. Shorten. Introduction to resnets, 2019.
[9] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

[10] N. Tomasev, U. Paquet, D. Hassabis, and V. Kramnik. Assessing game
balance with alphazero: Exploring alternative rule sets in chess. CoRR,
abs/2009.04374, 2020.

[11] Q. Zhou. Has the number of draws in chess increased?, 2018.

https://www.chess.com/terms/pawn-structure
https://www.chess.com/terms/pawn-structure
https://www.chess.com/terms/special-chess-moves
https://www.chess.com/terms/special-chess-moves

	Abstract
	1 Introduction
	2 Background
	2.1 General chess concepts
	2.2 Chess artificial intelligence

	3 Methods
	3.1 Chess Variants
	3.2 Training

	4 Results
	4.1 Utilization of special moves
	4.2 Analysis

	5 Conclusion
	References

