EXPLORING CHESS VARIANTS WITH LPHA ZERO **CONNER HETTINGER**

THESTUDY

Assessing Game Balance with AlphaZero: Exploring **Alternative Rule Sets in** Chess

Authors:

- Nenad Tomašev
- Ulrich Paquet
- Demis Hassabis
 - **DeepMind**
- Vladimir Kramnik
 - World chess champion 2000 - 2007

Chess Engine:

AlphaZero

https://www.extremetech.com/extreme/260215-alphazero-new-chess-champion-harbinger-brave-new-world-ai

WHAT IS A VARIANT?

A chess variant is a version of chess where the original rules have been altered in some way.

In this study we will explore versions of chess with 1-2 rule changes. We don't consider changes that alter:

- Starting position
- The pieces
- The board

IN THIS TALK

Chess Ideas

12]

- Alpha Zero
 - Monte Carlo Tree Search
 - Deep Neural Networks

Special Chess Move

PAWN WEAKNESSES

Types of weaknesses

- Isolated pawn
- Holes
- Backwards pawn
- Doubled pawn

Strength:

Passed pawn

MONTE CARLO TREE SEARCH (MCTS)

11İ

MCTS

Two principles:

- The value of an action can be approximated using random simulation
- These values can be used to adjust some policy to choose the best action in a given state.

Procedurally generates a tree based on these two principles

FOURMAIN STEPS

http://www.incompleteideas.net/609%20dropbox/other%20readings%20and%20resources/MCTS-survey.pdf

- Selection: Choosing some "best" move based on some strategy
- Expansion: Expanding on the chosen move
- Simulation: Playing random moves, giving value
- Backpropagation: Spread value

DEEP NEURAL NETWORKS

12 I

- Feedforward
- Convolutional
- Residual

FEED FORWARD NETWORK

Three sections:

- Input layer
- Hidden layers
- Output layer

Node parts:

- Input/Output edges (with weights)
- Activation function
 - ReLu:
 - Maps negatives to 0

How does it learn?

- Training
- Loss function
- Changing weights

https://www.ibm.com/cloud/learn/neural-networks

Convolutional

CONVOLUTIONAL NETWORK

https://medium.com/swlh/an-overview-on-convolutional-neural-networks-ea48e76fb186

CONVOLUTIONAL LAYER

Three sections: Input image Output array

The filter scans the image looking for some pattern or feature using the same concept as a feedforward network.

POOLINGLAYER

2	2	7	3	
9	4	6	1	Max Pool
8	5	2	4	Filter - (2 x 2 Stride - (2, 2
3	1	2	6	

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Three parts:

- Input (output from conv. layer)
- Aggregation function
- Output layer

9	7
8	6

FULLY CONNECTED LAYER

https://medium.com/swlh/an-overview-on-convolutional-neural-networks-ea48e76fb186

Like a feedforward network:

- Every node connected to next layer
- Activation functions
- Output has some classification for each node

All other layers are partially connected to the output

- Adds complexity
- Doesn't increase computation as much

ALPHA ZERO

AlphaZero:

- MCTS
- Residual Network

Residual Network:

- Outputs:
 - Vector of move probabilities
 - Expected outcome
- **MCTS:**
 - Uses vector for selection
 - Uses expected outcome for simulation
- **Training:**
 - Self play
 - Doesn't change weights till the end

METHODS

Variants Training

11I

VARIANTS

Variant	Primary rule change	Secondary rule change
No-castling	Castling is disallowed throughout the game	_
No-castling (10)	Castling is disallowed for the first 10 moves (20 plies)	_
Pawn one square	Pawns can only move by one square	-
Stalemate=win	Forcing stalemate is a win rather than a draw	_
Torpedo	Pawns can move by 1 or 2 squares anywhere on the board. En passant can consequently happen anywhere on the board.	_
Semi-torpedo	Pawns can move by two square both from the 2nd and the 3rd rank	-
Pawn-back	Pawns can move backwards by one square, but only back to the 2nd/7th rank for White/Black	Pawn moves do not count towards the 50 move rule
Pawn-sideways	Pawns can also move laterally by one square. Captures are unchanged, diagonally upwards	Sideway pawn moves do not count towards the 50 move rule
Self-capture	It is possible to capture one's own pieces	_

This is a list of all the variants used in the study.

For this presentation I will cover Pawn-sideways and self-capture chess.

TRAINING

- For each variation AlphaZero starts with the same set of hyperparameters each time
- The models were trained for 1 million training steps
- To encourage exploration, during training noise is injected into the prior move probabilities.

RESULTS

11]

- 10,000 games at 1 second per move
- 1,000 games played at 1 minute per move

	TEST WI	TH 10,000
		BECOND
	White wins	Draw
	772	8820
al	772	8820

- Classico 8783 871 **Self-Capture** 871 8783 8815 872 Pawn sideways 872 8815 7191 2086 2086 7191 Torpedo
 - Draw rates are always fairly high in high-level chess
 - White typically has an advantage
 - The 1 second time limit on moves makes each game more decisive which showcases the white side advantage more.

	White wins	Draw
	18	979
Classical	.8	979
	17	981
Self-Capture	7	981
	15	980
Pawn sideway	s 5	980
	93	894
Torpedo	93	894

- With 1 minute moves the games become a lot less decisive
- White side advantage still exists, but becomes more subtle
- Draw rates increase

s decisive nore subtle

Torpedo Chess:

- Aggressive
- More decisive
- Passed pawns are valuable
- En passant becomes more common

Pawn-sideways chess:

- Complex
- New strategies
- Hard to analyze
- Open vs Closed pawn structures

Self-capture chess:

- Not much changed
- Rare for self-captures to happen
- Some self-captures are for exploration

WORKSCITED

Nenad Tomasev, Ulrich Paquet, Demis Hassabis, Vladimir Kramnik: Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess. https://arxiv.org/abs/2009.04374 (2020)

McGrath, Thomas et al. "Acquisition of Chess Knowledge in AlphaZero." ArXiv abs/2111.09259 (2021): n. Pag

Michael C. Fu. 2018. Monte Carlo tree search: a tutorial. In **Proceedings of the 2018 Winter Simulation Conference (WSC '18). IEEE** Press, 222–236.

Slides designed by Kimberly Novotny

