
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Lloyd Hilsgen

Security Interventions: Pushing Programmers To
Become The Solution

Lloyd Hilsgen
hilsg008@umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
In recent literature, there has been a move away from deal-
ing with security breaches and towards proactively fighting
them before they happen. To best address potential security
breaches we must address both code vulnerabilities and the
developers whose coding practices produce them. We can
break down the sources of human error into 3 major groups:
knowledge deficits, attention deficits, and intention deficits.
To address this human error, we use security interventions.
Security interventions are techniques and resources that
push the programmer to implement secure code. While most
security interventions address knowledge deficits, address-
ing the other 2 requires convincing programmers of the value
of using more secure implementations of what they’re writ-
ing or havewritten. This paper describes research on security
interventions produced by Rauf et al. [6]. This research con-
cludes that security interventions are more successful when
there is less attention on specific code fixes and more on
convincing programmers of potential security issues. De-
velopers that are successfully convinced will adjust their
coding habits and therefore be more likely to implement
secure code.

1 Introduction
When developers write applications people use everyday,
it is possible to introduce unexpected vulnerabilities that
can be exploited by those with less than pure intentions.
The theme of this paper will be identifying and developing
strategies to combat the introduction of these vulnerabilities.

One might think code vulnerabilities are purely accidental
mistakes that arise from inexperience or ignorance, and once
a source of vulnerabilities has been identified, it is quickly
removed. However, 83% of data breaches occurred in organi-
zations that have previously dealt with data breaches, with
the average cost of each data breach being $4.35 million [1].
When security breaches like these happen, it is easy to focus
on the simple code change that would’ve avoided such a
breach. As such, when programmers and suggestions pro-
vided by developer tools are trying to prevent such breaches,
it is too common to simply step in and improve single lines of
code. While code fixes can remove vulnerabilities, avoiding

the introduction of security flaws requires a more developer-
centric approach that incorporates more context than can
be captured by any individual line of code [3].

The human error that leads to code vulnerabilities can be
categorized into three main groups [6] that will be explained
further in Section 3.

• Knowledge deficits: when a developer or group of
developers do not know enough information about a
vulnerability to be able to identify it.

• Attention deficits: when code becomes so complex
that it becomes difficult to pay attention to details,
thus allowing subtle errors that cause vulnerabilities
to be overlooked.

• Intention deficits: when an issue is known, but the
easier and more simplistic solution is chosen anyways.

To avoid these deficits and produce better code, software
developers have started incorporating security interventions.
Security interventions are when other programmers, experts
or security tools search for and attempt to correct potential
security breaches before they happen. These interventions
can only be effective if used correctly. As such, develop-
ers must examine how these interventions are used and
change their habits to maximize the benefits of security in-
terventions. Rather than solving simple mistakes, focusing
on adopting the best practices results in better developers,
who produce fewer vulnerabilities [3].

These security interventions can be categorized into three
main groups.

• Awareness Interventions: Resources and solutions
designed to improve the coding habits of developers
by providing information to developers about poten-
tial issues. This can happen while writing code, or
asynchronously.

• Automated Interventions: Resources and solutions
designed to automatically provide corrections for prob-
lematic code while the developer is writing it.

• Interactive Interventions: Resources and solutions
that test code and provide information through the
use of APIs. Interactive interventions differ from auto-
mated interventions in that they provide a list of po-
tential fixes and further resources through a developer-
friendly interface.

Security Interventions: Pushing Programmers To Become The Solution

The primary focus of this paper is on the security para-
digm developed by Rauf et al. [6] to help developers avoid
the code practices responsible for code vulnerabilities. In
Section 2, I expand upon the 3 groups of security interven-
tions. In Section 3, I will examine the sources of human error
that lead to code vulnerabilities. In Section 4, I will explain
how Raum et al. used the sources of human error to analyse
the 3 groups of security interventions. In Section 5, I will
show how existing security interventions can be improved
to adapt to developer needs.

2 Security Interventions
In this paper, security interventions are going to be defined
as techniques and resources that push the programmer to
implement more secure code. These can be anything from
code review sessions, to programs that automatically test
code for potential security vulnerabilities. While the depth of
said interventions varies wildly depending on circumstance,
workplace culture, and source, there can still be many cru-
cial parallels between them, as illustrated in Figure 1. Inter-
ventions that focus on persuading developers to implement
solutions rather than instructing them to do a certain fix, are
much more successful [3].

Figure 1. Crucial differences between secure development
and developer centric interventions, from [3]

Analysis of existing security resources provides us with
3 major categories of security interventions, detailed in the
following 3 subsections.

2.1 Awareness Interventions
Awareness interventions are resources and approaches used
by the developer to improve security, designed to bring
awareness of new threats. These can be things such as vul-
nerability databases, checklists, or online articles. Because
the majority of programmers source their security informa-
tion directly from Google [4], these can often be the only
resources a developer uses. Like Google itself these resources

provide the developer with quick and relatively easy solu-
tions to the most blatant programming errors [6]. Awareness
interventions by their nature bring awareness to a specific
issue or group of issues.

2.2 Automated Interventions
Automated interventions are programs that run through code
to search for and often mitigate known vulnerabilities. They
range in their methodology, from those written to directly
check for well-known, specific code problems, to Machine
Learning algorithms that attempt to break your code. The
largest benefit from these systems is that they automatically
implement checks for new vulnerabilities, so that developers
can avoid the high overhead of trying to keep up with the
latest discoveries, while still feeling confident in the security
of their work. They also often provide more than the simple
code fix. A large number of them will reference awareness
interventions as a way to provide further understanding
and actually convince a developer of the value of a specific
solution [6].

2.3 Interactive Interventions
Interactive interventions are interfaces that provide the de-
veloper with a better understanding of the vulnerabilities
being addressed by incorporating suggestions for code fixes
and information into a far more easily understood package.
While the majority of interactive interventions are relatively
new, the increased accessibility of such programs makes
them much better at convincing the majority of developers
to adopt security fixes [6].
Interactive interventions combine the best of the other

two types. Their interfaces make them much easier for in-
experienced developers, while their automated checks can
quickly provide feedback and be continuously improved to
be up to date with the latest vulnerabilities.

3 Sources of Security Issues
When writing code, developers can make mistakes which
lead to vulnerabilities. By categorizing the sources of these
mistakes, we can get a better understanding of how to stop
developers from producing insecure code. Rauf et al. cate-
gorizes the deficits that developers may have when writing
code into the three categories outlined in the following 3
subsections. In this paper we will define internal factors as
specific to an individual developer and external factors as
organization wide factors. In table 2 we provide examples
of the 3 deficits and the differences between internal and
external factors.

3.1 Knowledge Deficits
The clearest source of security issues are those arising from
a lack of information. The majority of programmers do not

Lloyd Hilsgen

Table 1. A list of common security tools, organized based
on the categories outlined in this section. AW= Awareness
Interventions, AU= Automated Interventions, IN= Interac-
tive Interventions

Intervention Type
Open Web Application Security Project AW
Common Vulnerability and Exposures AW
Info Pamphlets AW
Vulnerability Databases AW
Checklists AW
Code Review AW
Application Testing AU
Automated Theorem Provers AU
Vulnerability Prediction Tools AU
Self Written Tests AU
Snyk IN
ASIDE IN
PyCrypto API IN

write their code completely from scratch: they will take ad-
vantage of other resources such as libraries, packages, and
executables. However these resources can have vulnerabili-
ties that the developer is unaware of. When a programmer,
resource, or expert doesn’t know that the implementation
being provided is insecure, this is known as a Knowledge
Deficit. These deficits can come from a variety of sources.
For example, the most common source of code solutions

for most programmers is Google, rather than the special-
ized tools shown in Table 1 [4]. Even those who use security
interventions may be too inexperienced or the solutions
themselves may still be vulnerable to attack. For those who
are only working with awareness interventions the potential
for Knowledge Deficits can be much higher without constant
research. For security interventions to be useful to develop-
ers, those without experience need to be given the time and
resources to deepen their understanding.

3.2 Attention Deficits
Building larger and more complex systems will inevitably
lead to the introduction of more bugs, which can potentially
be exploited by malicious third parties. With any kind of
complex task the most difficult problems to avoid are ones
where the difficulty involved with programming causes short
lapses in judgement, known as attention deficits. Practices
that force developers to multitask can make these lapses far
more common.

We know that lapses in judgement regarding socially engi-
neered breaches such as phishing emails are more common
during multitasking [7]. Multitasking while programming
has the same effect, it causes what would be the knowledge

and intent necessary to program securely to falter. Keeping
a developer engaged with and an active component of the
production of secure code can push them towards the better
solutions.

3.3 Intention Deficits
Currently, the majority of developers consider software se-
curity to be "not their problem" [3]. Because the majority of
attitudes that developers have towards security source from
the organizations that they work in [3], if an organization
does not prioritize security, neither will its developers. While
all organizations have barriers to producing secure code such
as time and money requirements, customer priority, and the
extra effort required, those that do not care about security
will often unintentionally create more. Organizations that do
not care about security will often place security in the hands
of a small portion of their staff and encourage those not in

Table 2.A list of several common factors in security breaches.
I: Internal Factors, E: External Factors, KD= Knowledge
Deficit, AD= Attention Deficit, ID= Intention Deficit

No. Internal/External Factor Deficit
I1 Misconceptions KD
I2 Use of Outdated Information KD
I3 False Assumptions/ Inferences KD
I4 Misplaced Trust on Frameworks/APIs KD
I5 Lack of Domain Knowledge KD
I6 Lack of Experience KD
I7 Lack of Knowledge of Tools/Vulnerability KD
I8 Not Identifying Security Blind Spots AD
I9 Not Handling Cognitive Load AD
I10 Developer’s Insecure Habits AD
I11 Loss of Focus on Security AD/ID
I12 Requires Too Much Effort ID
I13 Disregarding Usefulness of Secure Practices ID
I14 Perceived Lack of Own Security Knowledge ID
I15 Attitude of "Someone Else’s Responsibility" ID
I16 Attitude of "No One Will Notice/Care" ID
E1 Inadequate Information To Be Found KD
E2 Lack of Information Sharing Among Teams KD
E3 Task Complexity AD
E4 Poor Division of Labor AD
E5 Absence of Expectation of Secure Coding AD/ID
E6 Limited Resources AD/ID
E7 Lack of Security Culture ID
E8 Lack of Prioritization of Security Features ID
E9 Usability Issues With Security Tools KD/ID

Security Interventions: Pushing Programmers To Become The Solution

that group to rush through solutions. Customers and man-
agers who do not value security will accept vulnerabilities
as a fact of life and encourage others to do the same.
While the systemic use of security tools decreases the

chances of code vulnerabilities [6], workplaces that use se-
curity tools can still create cultures that do not prioritize
security. When security is seen as a hindrance on the devel-
opment process, such as when it feels as though security
tools are being "forced onto" the organization by higher ups,
developers will ignore the suggestions provided by these se-
curity tools. If an organization wants to produce secure code,
developers need to be convinced that security is valuable,
such as in Figure 1

4 Drawbacks of Current Security
Interventions

4.1 Awareness Interventions
By their very nature, awareness interventions are designed
to bring attention to very specific issues. They assume that
by even engaging with these tools a developer has already
been convinced of the value of secure code and the specific
solutions provided. Code reviews, for example, are generally
as effective as workplace culture allows them to be [2]. If the
developers already place security as a priority, so they don’t
have intention deficits, and are able to comprehend the code
being reviewed, so they don’t have attention deficits, code
reviews can be incredibly effective at avoiding vulnerabili-
ties.
This means that while awareness interventions can be

great at avoiding knowledge deficits, these interventions
provide little for the majority of developers lacking in either
attention or intention. This can worsen the existing problem
if the developer already does not have confidence in their
own security knowledge, as their lack of understanding and
the complexity of the solution can serve as a barrier to entry.
Developers who lack confidence may also use these inter-
ventions as evidence that security should be left to experts.
Not only does this lack of understanding make it harder to
believe in the value of implementing a certain fix, but it also
convinces developers that they need some kind of training
to produce any secure code.

4.2 Automated Interventions
Because automated interventions search through code and
provide solutions to known errors, they are automatically
fighting errors regardless of the type of deficit responsible for
the error. However, it is crucial that the programmer using
automated interventions uses them responsibly. Developers
who use a single automated intervention as the only proof
that code is secure will introduce vulnerabilities into their
code if they try to brute force a solution. On the same note,
an over reliance on these tools without a deeper understand-
ing of the vulnerabilities being caught can contribute to an

existing knowledge or intention deficit. Because the majority
of these systems are designed as a "black box" where code
goes in and vulnerabilities come out [6], if a developer does
not understand the tool being provided, there’s a strong in-
centive to ignore the tools findings [6]. These black box style
systems can also convince developers that they do not have
the skills necessary to produce secure code. If the resource
does not provide adequate information about the potential
for a vulnerability of being exploited, developers can make
poor decisions whether to implement solutions to the vul-
nerabilities produced as they lack the knowledge necessary
to know what to prioritize [8].

4.3 Interactive Interventions
By combining the best of the previous two types of interven-
tions, interactive interventions are much better at pushing
developers to see themselves as a part of the push for more
secure code. They provide both solutions to and the resources
for insecure implementations while remaining user friendly.
This helps developers focus on improving their habits rather
than the specific code fixes. Focusing on the developer has
been shown to be far more effective in the short and long
term at producing secure code [3]. The increased accessibil-
ity, especially given that some of these interventions such
as Snyk can be installed as a simple VSCode plugin, makes
interactive interventions easier to implement and better at
getting developers to use them.

Table 3. The ability for each group of interventions to ad-
dress deficits [6]. KD: Knowledge Deficits, AD: Attention
Deficits, ID: Intention Deficits

Awareness Automated Interactive
KD ✔ ✔ ✔

AD ? ✔ ✔

ID × ? ✔

4.4 Comparing These Interventions
To summarize the previous 3 subsections, I will use Table 3.

Awareness interventions, by providing awareness to a po-
tential code vulnerability are designed to combat knowledge
deficits. However, depending on the quality of the aware-
ness intervention, it may increase or decrease a developer’s
ability to notice the vulnerability it’s trying to combat. For
example, an awareness intervention could be filled with jar-
gon or poorly designed. This would make it so a developer
may know that the vulnerability exists, but unlikely that
the developer would be able to identify it. Also dependant
on the quality of an intervention is the general ability for
it to combat intention deficits. The majority of awareness
interventions are designed to be viewed by those with some
reason to care about security in the first place [6]. As such,

Lloyd Hilsgen

these awareness interventions would not be able to combat
any intention deficit.

Because automated interventions are able to run through
the code itself, they are able to combat all three deficits.
However, developers may not have the intent necessary to
implement the more secure versions that are provided by
these interventions. Depending upon the quality of an auto-
mated intervention, it may provide little information on how
to solve any vulnerabilities it detects. If a developer with an
intention deficit was given this sparse information, it would
likely cause them to ignore the responses given. Automated
interventions may also be difficult to use, or in some way act
as a barrier to the development process. These barriers to a
security tool would turn the security tool, and therefore se-
cure coding practices, into an enemy that developers would
much rather avoid.
Interactive interventions are similar to automated inter-

ventions, as such they are also able to combat all three deficits.
However, unlike automated interventions, interactive inter-
ventions provide further resources for any of the vulnerabil-
ities it finds, work with the developer, and focus on being
developer friendly. This developer centric focus means that it
is far less likely that a developer with some intention deficit
would ignore the solutions provided. These interventions
also acknowledge that there are instances when a vulner-
ability is unlikely to be exploited, and therefore could be
ignored to safe time and resources. By scoring any vulner-
ability on the chance that it will be exploited, interactive
interventions allow developers to implement securely even
in organizations that do not prioritize security.

5 Adapting Security Interventions To
Developer Needs

As shown above, security interventions can have a vary-
ing ability at addressing knowledge and attention deficits,
however they often miss the human aspect of how the solu-
tions provided actually gets implemented. These tools often
assume that the developer has an infinite amount of time,
energy, and resources. No matter how useful an intervention
can be, it can not be assumed that the developer will change
their attitudes towards security as a whole.

5.1 Changing the attitude towards security
To combat intention deficits, we must change the culture
surrounding development. While some of this can be done
simply by convincing people to use any kind of intervention
[5], adopting more secure practices must be a more active
process. As was discussed in Section 4.4, developers with
intention deficits may attempt to ignore any security inter-
vention implemented. If incorporated into an organization
in the wrong way, security interventions can bring far less
improvement than expected. Therefore, improving security
on an organizational level requires also changing security

culture. Security must be something that the majority of
individual developers feel invested in. Developers must feel
that it is valuable to improve their coding practices and im-
prove organization wide security culture [3]. This also means
combating the "blame game." If a culture is to take security
seriously, all involved are an essential piece in writing secure
code.

5.2 Convince the programmer
Security is an active process, done by all developers involved.
By pushing individual developers to not just be forced into
secure programming, but to see themselves as someone who
writes secure code, the typical barrier to entry associated
with security can be heavily reduced [3]. Additionally, pro-
viding solutions to vulnerabilities is not enough. The devel-
oper implementing such changes needs to understand what
they’re implementing and why. Moving towards interven-
tions that provide the developer with more information on
how said vulnerabilities work and the level of threat they
pose if left untouched allows developers to make better se-
curity decisions.

5.3 Provide Resources
Even though all security interventions provide some im-
provement to the security of code, the majority of these tools
do not provide enough information about the code fixes be-
ing provided [6]. If they do provide further explanation, it
is done in a way that does not adequately fulfill a devel-
opers need to understand a code fix before implementing
it. Even if this means something as simple as linking to a
Wikipedia page, inclusions of further reading encourage a
different relationship with security knowledge [3]. Higher
quality resources will provide an understanding that being a
secure programmer is an achievable goal and will provide
some portion of the path towards that goal.

6 Conclusion
In conclusion, to combat knowledge, attention, and intention
deficits developers need to move towards security interven-
tions that provide more than simple code fixes. Security
interventions need to be improved in 3 main ways: focusing
on pushing developers towards embracing security, provid-
ing the resources to come to deeper understandings, and
convincing developers that the solutions they provide are
worth implementing and learning about. Security however,
is about more than just the tools programmers use, it also
requires addressing workplace culture. Developers need to
see themselves as a part of security. More developers need
to get on board with improving their programming habits
so that they will produce better code overall. Rauf et al. and
Jordan et al. make a case that to achieve these goals those
who create security interventions need to adapt interven-
tions to developer needs. These researchers also make the

Security Interventions: Pushing Programmers To Become The Solution

case that developers and organizations need to adopt inter-
ventions that better address the potential deficits leading to
code vulnerabilities.

References
[1] [n. d.]. Cost of a data breach 2022. https://www.ibm.com/reports/data-

breach
[2] [n. d.]. OWASP Code Review Guide | OWASP Foundation. https:

//owasp.org/www-project-code-review-guide/
[3] Charles, Charles Weir, Ingolf Becker, James Noble, Lynne Blair, M. An-

gela Sasse, and Awais Rashid. 2019. Interventions for software se-
curity: creating a lightweight program of assurance techniques for
developers. In Proceedings of the 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP ’19). IEEE
Press, Montreal, Quebec, Canada, 41–50. https://doi.org/10.1109/ICSE-
SEIP.2019.00013

[4] Felix Fischer, Yannick Stachelscheid, and Jens Grossklags. 2021. The
Effect of Google Search on Software Security: Unobtrusive Security
Interventions via Content Re-ranking. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
Virtual Event Republic of Korea, 3070–3084. https://doi.org/10.1145/
3460120.3484763

[5] Tiffany Brooke Jordan, Brittany Johnson, Jim Witschey, and Emerson
Murphy-Hill. 2014. Designing Interventions to Persuade Software
Developers to Adopt Security Tools. In Proceedings of the 2014 ACM
Workshop on Security Information Workers (SIW ’14). Association for
Computing Machinery, New York, NY, USA, 35–38. https://doi.org/10.
1145/2663887.2663900

[6] IrumRauf, Marian Petre, Thein Tun, Tamara Lopez, Paul Lunn, Dirk Van
Der Linden, John Towse, Helen Sharp, Mark Levine, Awais Rashid, and
Bashar Nuseibeh. 2022. The Case for Adaptive Security Interventions.
ACM Transactions on Software Engineering and Methodology 31, 1 (Jan.
2022), 1–52. https://doi.org/10.1145/3471930

[7] Craig Williams, Helen M. Hodgetts, Candice Morey, Bill Macken, Dy-
lan M. Jones, Qiyuan Zhang, and Phillip L. Morgan. 2020. Human
Error in Information Security: Exploring the Role of Interruptions and
Multitasking in Action Slips. In HCI International 2020 - Posters, Con-
stantine Stephanidis and Margherita Antona (Eds.). Vol. 1226. Springer
International Publishing, Cham, 622–629. https://doi.org/10.1007/978-
3-030-50732-9_80

[8] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill. 2014. Techni-
cal and Personal Factors Influencing Developers’ Adoption of Security
Tools. In Proceedings of the 2014 ACMWorkshop on Security Information
Workers (SIW ’14). Association for Computing Machinery, New York,
NY, USA, 23–26. https://doi.org/10.1145/2663887.2663898

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://owasp.org/www-project-code-review-guide/
https://owasp.org/www-project-code-review-guide/
https://doi.org/10.1109/ICSE-SEIP.2019.00013
https://doi.org/10.1109/ICSE-SEIP.2019.00013
https://doi.org/10.1145/3460120.3484763
https://doi.org/10.1145/3460120.3484763
https://doi.org/10.1145/2663887.2663900
https://doi.org/10.1145/2663887.2663900
https://doi.org/10.1145/3471930
https://doi.org/10.1007/978-3-030-50732-9_80
https://doi.org/10.1007/978-3-030-50732-9_80
https://doi.org/10.1145/2663887.2663898

	Abstract
	1 Introduction
	2 Security Interventions
	2.1 Awareness Interventions
	2.2 Automated Interventions
	2.3 Interactive Interventions

	3 Sources of Security Issues
	3.1 Knowledge Deficits
	3.2 Attention Deficits
	3.3 Intention Deficits

	4 Drawbacks of Current Security Interventions
	4.1 Awareness Interventions
	4.2 Automated Interventions
	4.3 Interactive Interventions
	4.4 Comparing These Interventions

	5 Adapting Security Interventions To Developer Needs
	5.1 Changing the attitude towards security
	5.2 Convince the programmer
	5.3 Provide Resources

	6 Conclusion
	References

