
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Cole N. Maxwell

Multipath TCP, and New Packet Scheduling Method
Cole N. Maxwell

maxwe206@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Todaymany devices contain hardware to transmit data across
the internet via cellular, WiFi, and wired connections. Many
of these devices communicate by using a protocol known as
Transmission Control Protocol (TCP). TCP was developed
when network resources were expensive, and it was rare
for a typical network-aware device to have more than one
connection to a network. An extension to TCP known as
Multipath TCP (MPTCP) was developed to leverage the mul-
tiple network connections to which devices now have access.
While the MPTCP extension has been successful in its goal
of using multiple network connections to send data simulta-
neously, MPTCP presents new challenges. Scheduling data
to be sent across multiple network connections with varying
network conditions can result in data arriving out of order,
adding increased system overhead and network latency. This
paper presents the challenges of MPTCP packet scheduling
and summarizes a proposed solution that has been found
to increase performance over existing MPTCP scheduling
methods.

1 Introduction
Multipath transmission control protocol (MPTCP) is a net-
work protocol that leverages the use of any network con-
nections a device may have, for example, the cellular and
WiFi connection of a smartphone, to deliver more failure-
tolerant connections. Efficient scheduling of how data moves
across all the connections a device has is challenging. Increas-
ing MPTCP’s network performance with new data sched-
uling methods is an active area of research. Section 2 pro-
vides the necessary background on basic computer network-
ing, Transmission Control Protocol (TCP), the motivation
for the MPTCP extension to TCP, and an overview of how
MPTCP utilizes multiple network connections when facili-
tating communication between a client and server. Network
metrics used to evaluate network performance are described
in Section 3. Section 4 provides an explanation of a pro-
posed MPTCP scheduling method for heterogeneous wire-
less networks. The network simulations used to measure
performance results of the proposed scheduling method are
explained in Section 5. The newly proposed MPTCP schedul-
ing method was found to have an increase in overall network
performance compared to other existing MPTCP scheduling
methods.

2 Background
The Internet Protocol (IP) is composed of a set of standards
and techniques that underlay the exchange of information
between two devices that are connected to the internet. Ev-
ery device, or host, connected to the internet is assigned an
IP address, which is analogous to the traditional mailing
address used by the Post Office. IP takes data provided by
a host and divides that data into smaller pieces of informa-
tion called packets. IP attaches additional information to the
start and end of each data packet, referred to as the header
and footer of a packet. IP works similarly to placing a letter
into an envelope, where the letter represents some piece of
data, and a packet represents an envelope. The source and
destination address are contained in the packet header much
like the return and delivery address of an envelope. IP is
only concerned with the movement of packets and does not
handle packet ordering or error checking. To ensure data
integrity additional data transport protocols are built on top
of IP, the most common of which is TCP.

2.1 Transmission Control Protocol
TCP is responsible for providing reliable data transmission
that is error-checked upon delivery and presents that data to
an application in the correct order. To provide this reliability,
TCP requires two hosts to establish a connection before any
data transmission can take place between them. The host
that is attempting to access a resource from another host
is called a client. The host that is providing the resource to
other hosts is called a server. In order to establish a reliable
connection to exchange a resource the client and server must
perform a TCP three-way handshake. The steps for creating
a connection are as follows and are also illustrated in Fig. 1:

1. The client sends a synchronize (SYN) informing the
server that the client wants to start communication.

2. The server responds to the client’s request with an
acknowledgment (ACK) of the client’s request to start
communication. Along with the ACK the server also
sends a SYN informing the client that the server also
seeks to start communication.

3. The client sends a final ACK of the server’s request
to start communication back to the server and a reli-
able connection with which the client and server can
transfer data is established.



Multipath TCP, and New Packet Scheduling Method

Figure 1. An illustration of the TCP three-way handshake

After a TCP connection is established, both the client and
server can act as a sender and receiver of data in the connec-
tion. During the TCP handshake, several other options can
be exchanged between the client and server regarding the pa-
rameters of the connection. The most important exchange in
the three-way handshake are sequence and acknowledgment
numbers which are used to detect missing or misordered data
[4]. When a host initiates a TCP session, its initial sequence
number is effectively a random 32-bit number (between 0
and 4,294,967,295, inclusive). Here the initial sequence num-
ber will be discussed in relative terms, meaning that each
side of a TCP session starts out with a relative sequence
number of zero. Likewise, the acknowledgment number is
also zero, as there is not yet a complementary side of the
conversation to acknowledge. First, the client sends a SYN
with a relative sequence number of zero. The server responds
to the client with a sequence number of zero, as this is the
first packet in this TCP session, and an acknowledgment
number of 1 to indicate the receipt of the client’s SYN. No-
tice that the acknowledgment number has been increased by
1 even though no data has yet been sent by the client. This is
because the presence of the SYN is a received packet, which
triggers an increase of 1 in the sequence. Next, the client
ACK responds to the server’s sequence number of zero with
an acknowledgment number of 1. The client includes its own
sequence number of 1, which has been incremented from
zero because of the SYN. At this point, the sequence number
for both hosts is 1. This initial increment of 1 on both hosts’
sequence numbers occurs during the three-way handshake
of all TCP sessions. Figure 1 also shows this process using
absolute numbers rather than relative ones.
Now the first exchange of a data payload can take place.

For example, the client might send a request for a resource
to the server. Suppose the request for that resource required
100 bytes in total. Assuming the complete request is received
by the server, the server’s acknowledgment number will be
increased by 100– the ACK number is now 101. The server
then responds with the resource requested by the client.
The server’s sequence number is still 1 since none of the
server’s packets (prior to this one) have carried a payload.
Continuing our example, suppose that the resource being
sent is 1500 bytes in total. Recall that the sequence number

of the client has been increased to 101 because of the last
packet the client sent. Upon receiving the 1500 bytes from
the server, the client increases its acknowledgment number
from 1 to 1501. As data continues to be exchanged between
the client and server this process repeats. In the event that
data goes missing, the receiver’s acknowledgment number
will not be incremented by the full amount of the sender’s
sequence number. In this case, TCP can re-transmit the data
until all of the data is successfully transferred to the receiver.
While TCP provides reliable data transport, it was orig-

inally designed in the early 1970s. During this era, it was
extremely uncommon for devices with network interfaces
to have multiple mechanisms to deliver packets across a
network. In today’s modern networks it is common for de-
vices like smartphones to have cellular andWiFi connections
simultaneously. The original TCP design does not allow de-
vices to leverage multiple connections, called subflows, be-
cause the connection is bound to the IP addresses of each
party’s network interface. [1] Consider the case where a
smartphone user is connected to a streaming music service
via a WiFi connection. The TCP connection is bound to the
IP address assigned to the WiFi interface of the smartphone.
If the smartphone is moved from the home to a vehicle, los-
ing WiFi connectivity, the connection will be interrupted. In
order to continue the music stream, a new TCP connection
must be established using the smartphone’s cellular network
connection which is assigned a different IP address. This
can result in service interruptions that pause the streaming
music while establishing the new TCP connection. Network
overhead is also increased when TCP connections need to be
reestablished, putting an added burden on service providers.

2.2 The MPTCP Extension
To effectively use multiple network connections, the Internet
Engineering Task Force (IETF) formally proposed the Mul-
tipath TCP extension of TCP in request for comment (RFC)
6824 in January of 2013. The standard was revised in 2020
in RFC 8684. Along with the specification, the RFC details
two key features of MPTCP; it is compatible with the exist-
ing TCP standard, and MPTCP can operate over the same
Internet infrastructure as TCP [1]. MPTCP establishes a con-
nection using the same three-way handshake described in
section 2.1. However, there are additional options exchanged:

1. The client sends a SYN with the MP_CAPABLE option
which indicates the client is capable of using MPTCP.
The option contains a token generated by the client,
which will be used to identify the MPTCP session.

2. The server responds with SYN-ACK which contains
the MP_CAPABLE option indicating the server is also
capable of MPTCP and returns a session token gener-
ated by the server.



Cole N. Maxwell

3. The client sends an ACK and the first subflow is es-
tablished. Data can now be transmitted on the first
subflow.

Notice that an MPTCP connection must be initialized on a
single network interface. In the event that a server does not
support MPTCP, the client and server can still use a standard
TCP connection upon completion of the handshake, but will
not be able to add additional subflows. If the establishment
of an MPTCP connection is successful, additional subflows
can now be added to the connection. The same three-way
handshake described above is performed on the client’s sec-
ond network interface. The client SYN uses the same client
token to ensure that the new subflow is associated with the
existing MPTCP connection. This process can be repeated
for each network interface.

In order to track and retransmit any lost data, MPTCP also
makes use of traditional TCP sequence and acknowledgment
numbers. Each subflow maintains a standard TCP sequence
and numbers per subflow which is called a subflow sequence
number (SSN). At the sender, MPTCP places packets that are
ready to send into a sending buffer which has an additional
tracking number called a data sequence number (DSN). The
SSN is mapped to a DSN during data transmission. This helps
maintain MPTCPs backward compatibility with TCP. Then
a data scheduler allocates packets to each subflow based on
a specific packet scheduling algorithm. All subflows can be
used simultaneously, which is also known as inverse multi-
plexing. Inverse multiplexing can increase the capacity and
rate of data transmission, leading to better network perfor-
mance. After the data are delivered across the network, it is
reordered at the receiver’s receiving buffer according to their
DSNs and delivered to the application in order. If packets
transmitted through different paths arrive at the receiver out
of order, the receiving buffer would be blocked because the
data can not be delivered to the application out of order, so
an appropriate and efficient packet scheduling algorithm is
necessary for MPTCP.
Multipath TCP can improve network performance and

reliability but presents new challenges. The network per-
formance of subflows in an MPTCP connection relies on
the condition of the path which is the sequence of network
nodes the data is routed through to the destination. The path
condition is determined by metrics, such as packet loss rate
and throughput capacity. To deal with diverse and changing
network conditions across many paths, a scheduler tries to
select the best available subflow to send each packet. The
concept of best subflow depends on the scheduler. There-
fore the decision of a packet scheduler plays a key role in
MPTCP performance [3]. The diverse situations that can
arise in complex networks can cause certain types of sched-
uling methods to perform well in one scenario and poorly
in another. Research into optimal subflow packet scheduling
is ongoing [3].

3 Performance Metrics
Networks have several performance metrics that can be used
to aid MPTCP packet scheduling across subflows. Bandwidth
is a metric that is commonly advertised by internet service
providers (ISPs) as the speed of their service. Network band-
width is measured in bits per second (bps) but, due to the
speed of modern networks, is rounded to megabits per sec-
ond (Mbps) or gigabits per second (Gbps). Bandwidth mea-
sures the maximum potential rate of data transfer across
a given path. However, in real-world scenarios, the maxi-
mum is rarely achieved. The measure of data transferred
successfully in a network is known as throughput.

During data transmission, unexpected issues can occur in
networks that lead to differences in bandwidth and through-
put. When data packets fail to arrive at a receiver, it is known
as packet loss. Packet loss can occur for many reasons such
as network congestion and hardware failure, but these rea-
sons are unknown to MPTCP. Packet loss is measured as a
percentage, where the packets that reach the receiver in a
transmission round are divided by the total packets sent by
the sender in that round.

Networks require time to transmit data across physically
distant links between the sender and receiver. Round Trip
Time (RTT) is the length of time it takes for a data packet to
be sent to a destination plus the time it takes for an acknowl-
edgment of that packet to be received back at the sender.
RTT is typically measured in milliseconds. MPTCP is also
concerned with out-of-order packet arrival at the receiver.
This can occur when MPTCP schedules packets across sub-
flows that have different RTTs, which can result in increased
resource overhead whenMPTCP re-assembles data and delay
the delivery of data to an application. [2]

4 Newly Proposed Scheduling Method
When MPTCP is used in wireless networks, the condition of
a subflow’s connection can change rapidly as a device moves
through space.When subflow quality changes rapidly it is im-
portant for an MPTCP scheduler to adjust quickly to changes
in subflow conditions. In their 2018 paper, A Dynamic Packet
Scheduling Method for Multipath TCP in Heterogeneous Wire-
less Networks [5] authors Guannan Xie, Huifang Chen, Lei
Xie, and Kuang Wang proposed a new method of MPTCP
packet scheduling that considers several path characteristics
of a subflow to improve throughput and minimize out of
order packets. The authors also used MPTCP feedback in-
formation to adjust subflow scheduling values dynamically.
The proposed method is laid out in two stages. In stage one,
a low-complexity model estimates the duration of packet
transmission across each subflow and predicts the total num-
ber of packets (𝑁 ) that can be transmitted simultaneously
across slower subflows. If the scheduling 𝑁 is estimated cor-
rectly, the packets sent through multiple paths will arrive at
the receiver in order. To aid the accuracy in the prediction of



Multipath TCP, and New Packet Scheduling Method

Figure 2. The model of MPTCP in a heterogeneous wireless
network [5].

Figure 3. Illustration of forward prediction. Note that each
rectangle represents a single packet of the same data-width–
a thinner retangle means it took less time to send the packet

the scheduling value 𝑁 , stage two modifies the scheduling
𝑁 according to the feedback information from MPTCP at
the end of each transmission round.

4.1 Stage One
The model consists of a sender, a receiver, and 𝑃 wireless
paths. The sender and receiver have established an MPTCP
connection along with 𝑃 subflows. Suppose that all the sub-
flows are independent, and the characteristics of subflow
𝑖 (1 ≤ 𝑖 ≤ 𝑃) are denoted by the bandwidth 𝐵𝑊𝑖 , round trip
time 𝑅𝑇𝑇𝑖 and packet loss rate 𝑃𝐿𝑅𝑖 , respectively.

In order to adjust packet scheduling based on a subflow’s
RTT to minimize out-of-order packet arrival described in
Section 2.2, a forward prediction of the amount of the earlier-
arriving packets, denoted as 𝑁𝑖 , must be estimated. Then
subflow 𝑖 should be allocated from the (𝑁𝑖 + 1) − th packet
in the sending buffer to keep the packets arriving in order.
Figure 3 illustrates this concept. Subflow A is the fastest
subflow, and no packets will arrive before the packets are
delivered on A. Subflow B is slower than A; in this case,
two packets will arrive on A before one packet arrives on B.
Subflow C is the slowest, and four packets will arrive on A,
and two packets arrive on B before one packet is delivered
on C.
𝑇𝑖 represents the duration of the packet sent from the

sender to the receiver in subflow 𝑖 . Then 𝑇𝑖 can be directly
set as 𝑅𝑇𝑇𝑖/2, the authors assume the path conditions to be
the same in both directions of the subflow in this calculation.
During the time of 𝑇𝑖 , the amount of data sent through an-
other faster subflow 𝑗 (𝑅𝑇𝑇𝑗 < 𝑅𝑇𝑇𝑖 ), denoted as 𝐷𝐴𝑇𝐴𝑖, 𝑗 ,

can be calculated by:

𝐷𝐴𝑇𝐴𝑖, 𝑗 = 𝐵𝑊𝑗 ·𝑇𝑖 · (1−𝑃𝐿𝑅 𝑗 ) = 𝐵𝑊𝑗 ·
𝑅𝑇𝑇𝑖

2
· (1−𝑃𝐿𝑅 𝑗 ) (1)

where (1 ≤ 𝑖 ≤ 𝑃) and 𝑅𝑇𝑇𝑗 < 𝑅𝑇𝑇𝑖 .
Then the amount of data sent simultaneously through all

the other subflows with smaller 𝑅𝑇𝑇 than subflow 𝑗 during
the time of 𝑇𝑖 , denoted as 𝐷𝐴𝑇𝐴𝑖 , is calculated by

DATA𝑖 =
∑

1≤ 𝑗≤𝑃𝑅𝑇𝑇𝑗<𝑅𝑇𝑇𝑖
𝐷𝐴𝑇𝐴𝑖, 𝑗 =

∑
1≤ 𝑗≤𝑃𝑅𝑇𝑇𝑗<𝑅𝑇𝑇𝑖

𝐵𝑊𝑗 · 𝑅𝑇𝑇𝑖2 · (1 − 𝑃𝐿𝑅 𝑗 )
(2)

Next, the authors suppose each packet has a fixed packet
length maximum segment size (MSS) of TCP packet. The
value of 𝑁𝑖 is evaluated as

𝑁𝑖 =

⌊
𝐷𝐴𝑇𝐴𝑖

𝑀𝑆𝑆

⌋
(3)

where ⌊𝑥⌋ denotes the largest integer less than or equal to 𝑥
As data is transmitted, a simple exponential smoothing

statistical method is used to periodically estimate all the
path characteristics such as bandwidth, RTT, and packet loss
rate. For subflow 𝑖 , the value of 𝑅𝑇𝑇𝑖 is updated per round
of transmission. 𝑆𝑅𝑇𝑇𝑖 is the smoothed 𝑅𝑇𝑇𝑖 . More recent
observations better reflect the current state of a path, there-
fore the 𝛼 smoothing parameter is set to a value between 0.8
and 0.9 in order to weigh the most recent observations more
heavily in the prediction.

𝑆𝑅𝑇𝑇𝑖 = 𝛼 · 𝑆𝑅𝑇𝑇𝑖 + (1 − 𝛼) · 𝑅𝑇𝑇𝑖 (4)

Bandwidth 𝐵𝑊𝑖 and the packet loss rate 𝑃𝐿𝑅𝑖 for subflow
𝑖 can be calculated by

𝐵𝑊𝑖 =
𝑠𝑒𝑛𝑑𝑖 ·𝑀𝑆𝑆

𝑡𝑖
(5)

𝑃𝐿𝑅𝑖 =
𝑙𝑜𝑠𝑠𝑖

𝑠𝑒𝑛𝑑𝑖
(6)

where 𝑡𝑖 is the estimation period, which the authors set as
5 ∗ 𝑅𝑇𝑇𝑖 to guarantee the statistical characteristic. 𝑠𝑒𝑛𝑑𝑖 and
𝑙𝑜𝑠𝑠𝑖 represent the transmitted and lost packets during time
period 𝑡𝑖 . This allows 𝐵𝑊𝑖 and 𝑃𝐿𝑅𝑖 to be estimated using the
same weighted average form of simple exponential smooth-
ing as 𝑆𝑅𝑇𝑇𝑖 where 𝑆𝐵𝑊𝑖 is the smoothed 𝐵𝑊𝑖 and 𝑆𝑃𝐿𝑅𝑖 is
the smoothed 𝑃𝐿𝑅𝑖 . Both 𝛽 and 𝛾 are smoothing parameters
and weigh smoothing with the same values as 𝛼

𝑆𝐵𝑊𝑖 = 𝛽 · 𝑆𝐵𝑊𝑖 + (1 − 𝛽) · 𝐵𝑊𝑖 , (7)
𝑆𝑃𝐿𝑅𝑖 = 𝛾 · 𝑆𝑃𝐿𝑅𝑖 + (1 − 𝛾) · 𝑃𝐿𝑅𝑖 , (8)

4.2 Stage Two
Recall that 𝑁 is the predicted number of packets that can be
transmitted simultaneously through all the faster paths. The
estimation of the scheduling value 𝑁 may not be precise in
a real heterogeneous wireless environment because, in stage
one, the authors assume a path is stable over a short period



Cole N. Maxwell

of time. In a case where the path condition changes quickly,
the prediction error will accumulate rapidly. In this stage,
the authors adjust the scheduling value to minimize devia-
tions between the predicted and the actual values. To do this,
the authors rely on an additional TCP option called selec-
tive acknowledgment (SACK). The information provided by
SACK allows the receiver to describe which pieces of data
it has received from the sender. This enables the sender to
re-transmit only the missing data needed by the receiver
[4]. Denote 𝛿𝑖 (𝑛) as the adjustment value of subflow 𝑖 in the
𝑛 − th round, after computing the scheduling value 𝑁𝑖 (𝑛) at
the start of the 𝑛 − th round, 𝑁𝑖 (𝑛) should be adjusted by

𝑁 ′𝑖 (𝑛) = 𝑁𝑖 (𝑛) + 𝛿𝑖 (𝑛) (9)

where 𝑁 ′𝑖 (𝑛) is the modified estimation value and will be
used for the scheduling of subflow 𝑖 in the 𝑛 − th round. The
adjustment 𝛿𝑖 (𝑛) is dynamically updated by

𝛿𝑖 (𝑛 + 1) = ⌊𝛿𝑖 (𝑛) + \ · 𝜎𝑖 (𝑛)⌋ (10)

where 𝛿𝑖 (𝑛 + 1) is the updated adjustment value for the next
round, \ is the updating parameter which is set as 1/8, so
the integer truncation of ⌊·⌋ is needed. The deviation value
obtained at the end of the 𝑛𝑡ℎ round, 𝜎𝑖 (𝑛), is based on the
feedback information provided by SACK, which indicates
the data that was not received by the sender during the
transmission round. The authors consider two cases, one in
which the estimation of the scheduling value 𝑁𝑖 (𝑛) is greater
than the actual value and one in which the estimation value
is less than the actual value.

4.2.1 Case One. Consider 𝑁𝑖 (𝑛) is greater than the actual
value, which means more packets are scheduled for transmis-
sion on the faster subflows than are actually sent. This means
that subflow 𝑖 is behaving faster than expected (either be-
cause subflow 𝑖 has sped up, or because the previously faster
subflows have slowed down). The sequence numbers, includ-
ing both the data sequence number and subflow sequence
number, of the missing packets in the receiver’s buffer are
recorded in the corresponding SACKs and returned to the
sender. The sender can utilize the receiver’s SACK informa-
tion to determine if the sender is missing data transmitted
on another subflow. Missing packets, or holes, indicate to
the scheduler that data is arriving faster on subflow 𝑖 and
the predicted scheduling value should be decreased. ℎ𝑖,𝑘 (𝑛)
represents the number of holes belonging to the faster sub-
flow k in the 𝑛 − th round, then the deviation value 𝜎𝑖 (𝑛)
should be updated as

𝜎𝑖 (𝑛) ← 𝜎𝑖 (𝑛) −
∑︁

1≤𝑘≤𝑃
𝑅𝑇𝑇𝑘<𝑅𝑇𝑇𝑖

ℎ𝑖,𝑘 (𝑛) (11)

4.2.2 Case Two. Consider 𝑁𝑖 (𝑛) is less than the actual
value, which indicates fewer packets are scheduled for the
faster subflows during the scheduling time of subflow 𝑖 . For

a faster subflow 𝑗 , after transmitting the scheduled pack-
ets, the proposed scheduling method will continually send
new packets with more data, meaning larger data sequence
number DSNs, which may arrive earlier than the packets
transmitted from slower subflow 𝑖 . The sender may receive
the SACK from subflow 𝑗 , which indicates that there are
holes in the DSNs, but the SSNs of subflow 𝑗 are successive,
indicating that the missing packets are caused by inappro-
priate scheduling for the subflows slower than it and the
predicted scheduling value should be increased.

𝜎𝑖 (𝑛) ← 𝜎𝑖 (𝑛) +
∑︁

1≤𝑘≤𝑃
𝑅𝑇𝑇𝑚<𝑅𝑇𝑇𝑖

ℎ𝑖,𝑚 (𝑛) (12)

In summary, when a transmission round begins, the algo-
rithm 1 estimates a scheduling value for each subflow. Then
the algorithm modifies the scheduling value with the adjust-
ment value. At the end of the round, the sender recalculates
the path characteristics for the next scheduling and computes
the deviation value of the prediction based on the TCP SACK
information from the receiver. The adjustment value is also
updated with the deviation for the next round. In addition,
the authors calculated computation complexity of dynamic
packet scheduling algorithm to be linear𝑂 (𝑛), which means
that the run-time of the algorithm grows almost linearly
with the input size.

Algorithm 1 Dynamic Packet Scheduling Method [5].
1: Sender starts the n-th round transmission of subflow 𝑖 , es-

timates the scheduling value 𝑁𝑖 (𝑛) according to (1, 2, 3);
2: Modify 𝑁𝑖 (𝑛) with the adjustment value 𝛿𝑖 (𝑛) by (9);
3: Subflow 𝑖 sends from the (𝑁𝑖 (𝑛) + 1)-th packet in buffer;
4: Update the path characteristics 𝑅𝑇𝑇𝑖 , 𝐵𝑊𝑖 and 𝑃𝐿𝑅𝑖 ;
5: Sender receives the SACK of subflow 𝑖 and there is no

missing packet of subflow 𝑖 itself
6: if some holes in DSNs belong to the faster subflows,

decrease the deviation value 𝜎𝑖 (𝑛) by (11); then
7: end if
8: if some holes in DSNs belong to the slower subflows,

increase the deviation value 𝜎𝑖 (𝑛) by (12); then
9: end if
10: Update the updated adjustment value 𝛿𝑖 (𝑛 + 1) for the

next round with 𝜎𝑖 (𝑛) by (10)

5 Results
The authors used the ns-3 network simulator software (see
[5] for details) to evaluate the performance of the proposed
packet schedulingmethod in Section 4. The proposedmethod
was compared with two other packet scheduling schemes,
Forward Prediction Scheduling (FPS) and Dynamic Packet
Scheduling and Adjusting with Feedback (DPSAF). FPS uses
the forward predictionmethod to estimate a scheduling value



Multipath TCP, and New Packet Scheduling Method

Figure 4. Simulation topology ofMPTCP used for scheduling
method comparison [5].

but ignores the packet loss rate and bandwidth. DPSAF con-
siders the packet loss rate and also uses the TCP SACK infor-
mation as feedback to adjust the scheduling value. However,
DPSAF does not take the path bandwidth into consideration
and uses a more complicated analysis model with a high
computation complexity.
The network topology of the simulation is described in

Figure 4. The client establishes three MPTCP subflows A, B,
and C with the server. Each subflow path consists of wired
and wireless links with varying path characteristics. In the
simulation, the authors manipulated the packet loss rate
from 0.1% to 3% and the receiving buffer size from 16KB
to 512KB on subflow C to compare the performance of the
packet scheduling methods.

5.1 Increase In Packet Loss Rate
In the first simulation, the packet loss rate of subflow C is in-
creased from 0.1% to 3%. Figure 5 shows that the throughput
performance is degraded across all scheduling methods as
packet loss rate increases. The FPS scheduling method per-
forms the worst as it only considers the path latency. The de-
viation in the FPS scheduling value increases with increased
packet loss and is not adjusted to account for packet loss
increase. The newly proposed method slightly outperforms
DPSAF by taking the path bandwidth into consideration,
which helps to enhance the scheduling value accuracy and
the overall throughput.
In addition to throughput, the average number of out-

of-order packets in the receiving buffer was also measured
as packet loss increased on subflow C. Fewer out-of-order
packets indicate a more favorable result. Figure 5 shows that
as packet loss increases, the average out-of-order packets
increase across all scheduling methods. However, the pro-
posed scheduling method outperforms both FPS and DPSAF,
consistently having the lowest average out-of-order packets
as packet loss increases.
In the next simulation, the MPTCP receiving buffer size

was varied from 16 KB to 512 KB, and packet loss rate of
subflow C was held constant at 1%. The overall throughput
of the three scheduling methods increased as buffer size in-
creased. The overall performance increase occurs because
when the buffer size is large enough, out-of-order packets

Figure 5. Throughput and average out-of-order packets as
packet loss rate increases [5].

Figure 6. Throughput and average out-of-order packets as
buffer size increases [5]

can be temporarily stored and do not block the transmission
of additional packets. Figure 6 shows that the proposed sched-
uling method outperformed both FPS and DPSAF. However,
as buffer size increased beyond 128KB the proposed method
only slightly outperformed DPSAF in overall throughput.
Figure 6 shows the average out-of-order packets as the

size of the receiving buffer increased. As the receiving buffer
becomes larger, more packets can be stored in the buffer
which leads to an increase in the number of out-of-order
packets, as higher sequence number packets are not blocked
from being received. As the buffer size increased, all three
scheduling methods had an increase in the total number of
out-of-order packets. The proposed scheduling method has
the lowest average out-of-order packets compared to FPS
and DPSAF across all tested buffer sizes.

6 Conclusion
MPTCP is an exciting addition to the existing network infras-
tructure currently in place around the world. The backward
compatibility MPTCP has with TCP means that MPTCP
is likely to be widely adopted across the network indus-
try to improve connection quality. While MPTCP presents
new challenges related to packet scheduling across subflows,
new techniques are being developed to minimize MPTCP
packet scheduling issues. The method described in this paper
demonstrates throughput performance improvement and a
reduction in the number of out-of-order packets by consider-
ing network metrics not used in current MPTCP scheduling
method implementations.



Cole N. Maxwell

Acknowledgments
I would like to thank my advisor Peter Dolan, Ph.D. for
providing outstanding feedback and guidance throughout
the research and writing of this paper. I also want to thank
Kristin Lamberty, Ph.D for facilitating the senior seminar
process and Kevin Arhelger for his professional review and
feedback.

References
[1] Mark ; Raiciu Costin Bonaventure, Olivier ; Handley. 2012. AnOverview

of Multipath TCP. login: 37, 5 (2012), 17–23. http://hdl.handle.net/2078.
1/114081

[2] Pingping Dong, Jingyun Xie, Wensheng Tang, Naixue Xiong, Hua
Zhong, and Athanasios V. Vasilakos. 2019. Performance Evaluation of
Multipath TCP Scheduling Algorithms. IEEE Access 7 (2019), 29818–
29825. https://doi.org/10.1109/ACCESS.2019.2898110

[3] Bruno Y. L. Kimura, Demetrius C. S. F. Lima, and Antonio A. F. Loureiro.
2021. Packet Scheduling in Multipath TCP: Fundamentals, Lessons, and
Opportunities. IEEE Systems Journal 15, 1 (2021), 1445–1457. https:
//doi.org/10.1109/JSYST.2020.2965471

[4] W. Richard Stevens and Kevin R Fall. 2011. TCP/IP Illustrated: The
Protocols (2 ed.). Vol. 1. Addison-Wesley Professional, Upper Saddle
River, NJ, USA.

[5] Guannan Xie, Huifang Chen, Lei Xie, and Kuang Wang. 2018. A Dy-
namic Packet Scheduling Method for Multipath TCP in Heterogeneous
Wireless Networks. In 2018 IEEE 18th International Conference on Com-
munication Technology (ICCT). 678–682. https://doi.org/10.1109/ICCT.
2018.8600179

http://hdl.handle.net/2078.1/114081
http://hdl.handle.net/2078.1/114081
https://doi.org/10.1109/ACCESS.2019.2898110
https://doi.org/10.1109/JSYST.2020.2965471
https://doi.org/10.1109/JSYST.2020.2965471
https://doi.org/10.1109/ICCT.2018.8600179
https://doi.org/10.1109/ICCT.2018.8600179

	Abstract
	1 Introduction
	2 Background
	2.1 Transmission Control Protocol
	2.2 The MPTCP Extension

	3 Performance Metrics
	4 Newly Proposed Scheduling Method
	4.1 Stage One
	4.2 Stage Two

	5 Results
	5.1 Increase In Packet Loss Rate

	6 Conclusion
	Acknowledgments
	References

