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Abstract
This paper introduces the significant shift techniques of fea-
ture detection and matching from classical methods like SIFT
and NN(Nearest Neighbor) to advanced deep learning-based
methods like SuperPoint and SuperGlue. Feature detection, a
critical process in computer vision, involves identifying and
describing salient points or regions within images, laying the
foundation for numerous applications such as object recogni-
tion and augmented reality. SuperPoint and SuperGlue, used
in conjunction, represent a paradigm shift in feature detec-
tion and matching, replacing the traditional role of SIFT. This
paper explains the functioning of SIFT, SuperPoint, and Su-
perGlue, and compares their performance, illustrating how
deep learning has reshaped feature detection and matching
in the field of computer vision.
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1 Introduction
Computer vision is the field of computer science which aims
to enable machines to interpret and make decisions based
on visual data or similar. One of the foundational challenges
in this field has been the task of reliably detecting, describ-
ing and matching features within images. These features,
identifiable as distinct points or regions in an image, lay the
groundwork for numerous applications, from image recog-
nition to augmented reality.
A feature in computer vision refers to distinct elements

within an image, such as edges, corners, or objects, that
are significant for analyzing and understanding the image’s
content. A feature usually consists of two parts: the keypoint
and the descriptor. A keypoint is a point in image to point
out where a feature is, so the keypoint stores 2D spatial
information of a feature. A descriptor is the appearance of a
feature, and its purpose is to distinguish a feature from other
features. Homography, a critical concept in image processing,
involves a transformation that maps points from one plane to
another, typically used in tasks like image stitching and 3D
reconstruction. It is essential to understand these concepts
for effective feature detection and matching, as illustrated in
Figure 1.

In the early days of computer vision, handcrafted fea-
ture detectors and descriptors began to emerge, and Scale-
Invariant Feature Transform (SIFT) became the most signif-
icant example of this era. SIFT is completely handcrafted,
meaning it is designed based on predefined algorithms and
mathematical models that specify how to identify features in
images. The core technique SIFT utilizes is Gaussian pyramid.
A Gaussian function blurs an image, and this process can
be repeated, creating a series of increasingly blurred images.
This sequence forms a Gaussian pyramid. By examining the
differences between these blurred images at various scales,
key information is extracted to determine keypoints related
to important features in the image. The robustness of SIFT
to changes in image scale, rotation, and illumination made
it a preferred choice for a variety of applications and set a
benchmark for future algorithms. However, while SIFT and
its contemporaries were groundbreaking, they had limita-
tions, particularly when it came to adaptability and handling
a broader range of visual distortions.
With the advent and success of neural networks in vari-

ous fields, computer vision too experienced a great change.
Instead of handcrafting features and algorithms, researchers
could now "teach" systems to learn these features directly
from vast amounts of data. This paradigm shift led to sig-
nificant advancements in accuracy, adaptability, and capa-
bility. The emergence of methods like SuperPoint and Su-
perGlue, which utilize deep learning for feature detection
and matching, showcased the potential of this new era. In
the indoor/outdoor localization challenges of CVPR2020
/ECCV2020, the solution using SuperPoint and SuperGlue
tops the list, fully demonstrating the advantages of these
two methods in feature extraction and matching.

2 Background
Both SuperPoint and SuperGlue use neural networks and
SuperPoint uses Fully Convolutional Networks while Super-
Glue uses Graph Neural Network. Therefore, before diving
into SuperPoint and SuperGlue, it is necessary to understand
the neural networks that they use.

https://www.computer.org/csdl/proceedings/cvpr/2020/1m3n9N02qgE
https://eccv2020.eu/
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Figure 1. Feature detection and matching. The small boxes in the image represent the local features that were extracted. The
connecting line between two images represents the matching relationship between features. In this example, green represents
a correct match. Red represents an incorrect match. Blue means there is no corresponding feature to match. [6]

2.1 Neural Networks
In the realm of machine learning, neural networks play a
pivotal role. These networks, conceptualized as a series of in-
terconnected nodes or neurons, perform calculations involv-
ing intermediate results. The structure of a neural network
is layered, with each layer processing a collection of nodes
in a stepwise pattern, and these calculations are iterative
and occur in batches. The layers are interconnected, with
each layer’s output forming the input for the subsequent
layer. This design allows the network to extract and process
complex patterns in the input data. The operations within
a neural network are governed by parameters, which are
’weights’. These weights are crucial in controlling the net-
work’s responses and learning process. A more detailed and
technical explanation of neural networks can be found in
specialized textbooks on the subject, which delve into the
intricacies of their design and function.

2.2 Fully Convolutional Networks (FCN)
As the neural network technology used by SuperPoint, FCN
represents a class of deep neural architectures tailored for
image semantic segmentation, where the goal is to assign a
class label to each pixel in an input image. FCN is a variant of
traditional convolutional neural network (CNN). Unlike CNN
that often includes fully connected layers for classification,
an FCN continuously uses convolutional layers, allowing
it to handle inputs of any size and generate spatially dense
outputs. By converting the fully connected layers into convo-
lutional layers, FCNs can produce pixel-wise segmentation
maps, offering detailed spatial information about the image’s
content. FCN has played an important role in driving recent

results in the task of image semantic segmentation. The fol-
lowing illustrates the differences between FCN and CNN by
explaining the main structure of CNN.
Convolutional Layers: The purpose of convolutional

layers is to detect local features, such as edges, corners, and
textures. This is achieved using the convolution operation,
where a small matrix known as a filter (or kernel) slides or
convolves across the input data, often an image. At each
position, a dot product is computed between the filter and
the input, resulting in a pixel in the output feature map.
The network trains multiple filters, allowing it to detect a
variety of features, from vertical and horizontal edges to
more complex patterns in deeper layers.
Pooling Layers: The purpose of pooling layers is to re-

duce the computational demand and the number of param-
eters by downsampling the spatial dimensions of an input.
This not only speeds up the computation but also enhances
the ability to recognize features. The pooling operation in-
volves sliding a filter(often square-shaped, e.g., 2x2 or 3x3)
over the input feature map and aggregating the values within
that filter into a single value using a specific aggregation func-
tion. Pooling is divided into average pooling and maximum
pooling, with maximum pooling being the most commonly
used. In the process of aggregating values within the filter,
max pooling takes only the maximum value as its output
while average pooling computes the average of the values.

Fully Connected Layers: In CNN, the fully connected
(FC) layers serve as the decision-making units, typically sit-
uated at the end of the network. After the convolutional
and pooling layers extract features from the input data, the
FC layers process these features to produce a final outcome,
such as class probabilities in image classification tasks. They
are termed "fully connected" because every neuron in these
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Figure 2. This is one example of FCN doing Semantic Segmentation. In the Convention networks, The size of the image
becomes smaller and smaller after the conventional and max pooling layers until its size is 1. Then in the Deconvolutional
networks, the size of the image is gradually restored until it is the same size as the input image. [4]

layers is interconnected with all neurons from the previous
and subsequent layers, ensuring comprehensive integration
of feature information for decision-making. Each neuron
uses ReLU(Rectified Linear Unit), which is a widely used
activation function in neural networks and directly outputs
the positive input and ouputs zero for else input, to speed
up the computation. Because of the strict limitations of the
fully connected layer on the size of the input, CNN can only
accept images of a specific size.
The main difference between CNN and FCN is FC layers.

FCN replaces the FC layer with a convolutional layer, and
then uses deconvolutional layers to upsampling the feature
map of the last convolutional layer (which can also be called
the heatmap in FCN), restoring it to the same dimensions
as the input image, so that it can generate pixel wise predic-
tion. Since there is no fully connected layer, FCN can accept
images of any size. Figure 2 clearly shows the architecture
of a FCN.

2.3 Graph Neural Network (GNN)
As the neural network technology used by SuperGlue, GNN
is a type of neural network designed to operate directly on
graphs, a data structure that captures entities (nodes) and
their interactions (edges). Traditional neural networks, such
as CNN and RNN, are often unsuited for graph-structured
data due to the irregular and dynamic nature of graphs. GNN,
on the other hand, is specifically engineered to handle this
kind of data, effectively passing information through graph
structures.
The basic and core job of GNNs is to perform pairwise

message passing. All nodes in a graph have their own in-
formation. At each layer of GNN, each node aggregates in-
formation from its neighbors and then possibly updates its
own information based on the aggregated information. This
local aggregation and update mechanism allows GNN to cap-
ture complex patterns and dependencies in graph-structured
data.

Attention mechanisms in GNNs enhance the model’s abil-
ity to focus on specific parts of the graph structure. In a
GNN, attention operates by calculating and assigning dif-
ferent weights to the nodes or edges in the graph. These
weights represent the importance or relevance of each node
or edge in the context of a given task. Weighting works by
influencing the message passing process. In general, each
node aggregates more information from neighboring nodes
that have higher weights on it. For instance, in node classifi-
cation tasks, the attention mechanism can help the model to
focus more on neighboring nodes that have a higher influ-
ence on the target node’s class. This selective focus allows
GNNs to be more accurate and efficient in processing graph-
structured data. Attention in GNNs is particularly useful in
tasks where the importance of nodes or their connections
varies significantly, such as in social network analysis, mole-
cule structure prediction, or recommendation systems. The
complexity of attention is beyond the scope of this paper. For
an in-depth understanding, the interested reader is referred
to ’Attention is all you need’. [7]

3 Scale Invariant Feature Transform(SIFT)
SIFT is an algorithm in computer vision developed by David
Lowe in 1999 to detect and describe local features in images.
It takes an image as input and outputs extracted features in
the image with keypoints and descriptors. The SIFT algo-
rithm has four main steps to generate a set of image features:
Scale-Space Extrema Detection: To identify potential

interest points that are invariant to scale changes in the
input image, SIFT first employs a Gaussian pyramid to pro-
duce blurred images at different scales. It then computes the
Difference of Gaussians (DoG) between successive Gaussian-
blurred images and identifies potential keypoints as local
maxima and minima in the DoG images across scales. This
step ensures that the features detected are consistent across
varying scales, making the algorithm robust to scale changes
in the input image.

https://arxiv.org/abs/1706.03762


Deep Learning in Feature Detection and Matching in Computer Vision: From SIFT to SuperPoint+SuperGlue

Keypoint Localization: In this step, each candidate key-
point is examined for its stability. SIFT performs a detailed fit
to the nearby data for location, scale, and ratio of principal
curvatures. This helps in discarding low-contrast points and
edge responses, reducing the likelihood of instability and
noise. This step enhances the reliability of the keypoints
detected, ensuring they are distinctive and stable, which is
important for the matching process.
Orientation Assignment:The purpose of this step is to

ensure the keypoints are rotation invariant. In this step, the
gradients of image intensities at surrounding pixels of each
keypoint are computed. A histogram of gradient orientations
is created, and the peaks in this histogram correspond to
dominant directions of local gradients. The highest peak and
other peaks within 80% of the highest are assigned as the
keypoint’s orientations. [3]
Keypoint Descriptor:In this step, a descriptor is gener-

ated for each keypoint based on the intensity gradients in its
surrounding region. This involves dividing the region around
the keypoint into sub-regions and creating a histogram of
gradient directions for each sub-region. These histograms
are then combined to form the final descriptor, which is ro-
bust to variations in illumination, 3D viewpoint, and slight
changes in geometry.

4 SuperPoint
SuperPoint is a deep learning based method of feature ex-
traction using FCN. It can be said to be the deep learning
version of SIFT in terms of classic degree. Superpoint is fun-
damentally different from SIFT because it can learn to detect
keypoints and generate descriptors from vast amounts of
data, rather than relying on handcrafted rules. The Super-
Point network is trained in a self-supervised manner using
both synthetic and real-world images. It is also designed
to output both keypoint locations and their corresponding
descriptors in one forward pass. The learning-based nature
of SuperPoint allows it to potentially adapt and generalize
better to various image conditions and scenarios, as it de-
rives its behavior from patterns observed in training data.
This approach contrasts with the fixed operations of SIFT,
offering flexibility and adaptability at the cost of requiring
training data and computational resources for training. The
SuperPoint is mainly composed of two parts: MagicPoint
and Homographic Adaptation. [1]

MagicPoint: The MagicPoint is the predecessor of the Su-
perPoint algorithm that specializes in detecting salient points
in images. Magicpoint is a FCN trained on a large amount of
virtual data, which is consisted of some basic shapes such
as line segments, triangles, rectangles and cubes, and these
basic shapes have uncontested feature point locations. [1]
After being trained on a large amount of data, MagicPoint’s
performance in detecting feature points in virtual images is
significantly better than traditional approaches, but it still

does not perform well in real, complex images. Therefore,
the authors had to improve Magicpoint.

Homographic Adaptation: This is an improvement pro-
posed and applied by the authors to Magicpoint. The ho-
mographic adaption enhances the robustness of keypoint
detection by applying various geometric transformations,
known as homography, to images. These transformations in-
clude scaling, rotating, and translating the image to simulate
different viewing conditions. Magicpoint is called SuperPoint
after the homographic adaption training. Training the algo-
rithm on features invariant to these transformations ensures
that SuperPoint can reliably identify keypoints across di-
verse images and conditions. This adaptability distinguishes
SuperPoint from traditional feature detectionmethods, show-
casing its effectiveness in handling complex visual tasks.

5 SuperGlue
SuperGlue is the feature matching algorithm based on graph
neural networks. It introduces an attention mechanism to
strengthen the network’s ability to represent features, thus
making it possible to still find a good match between fea-
ture points between two images with large parallax. Unlike
traditional methods like Nearest Neighbor algorithm which
only use descriptors to match features, SuperGlue takes the
keypoints coordinate of the two images and their correspond-
ing descriptors as input and outputs an assignment matrix
representing the matching relationship between two sets of
features. This ensures the resulting matches can take into
account both the spatial information and appearance of fea-
tures. The structure of superglue has three parts: the feature
encoding, the Attentional Graph Neural Network, and the
optimal matching layer. They are showed in Figure 3 [5]

Feature Encoding: In contrast to traditional featurematch-
ing methods, which only focus on descriptors while often
neglecting the spatial aspects of keypoints, SuperGlue in-
troduces an innovative approach. It integrates a feature en-
coding process that combines both spatial and appearance
attributes of features. This integration results in a compre-
hensive feature representation, encapsulating both spatial
location and visual characteristics. The equation that com-
bines space and appearance is as follows:

(0)x𝑖 = d𝑖 +MLPenc (p𝑖 ). (1)

where 𝑑𝑖 is the descriptor of the number i feature, and 𝑝𝑖
is the 2D position(keypoint) of feature i. The MLP is a multi-
layer perceptron to increase the dimension of 𝑝𝑖 to make it
able tomergewith descriptor. 𝑥𝑖 represents the newly created
node after merging the descriptor and spatial information of
a feature. [5]
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Figure 3. The SuperGlue architecture.

Attentional Graph Networks: The attentional graph
neural network in SuperGlue is a key component of the sys-
tem, and it’s designed to process sets of features by consider-
ing the relationships between them within the same image
(self-attention) and across two images (cross-attention).

Graph Construction: SuperGlue treats the set of local fea-
tures extracted from images as a graph. Each feature 𝑥𝑖 is
considered a node in the graph, and the goal is to determine
the edges that represent the relationships between these
nodes.
Self-Attention: The self-attention mechanism allows the

network to learn contextual information for each feature
within the same image. It does this by considering all the
features (nodes) and learning which features are relevant
to each other. This part of the network helps to refine the
features before matching, by allowing each feature to be
influenced by the presence of other features in the same
image.

Cross-Attention: Cross-attention extends the self-attention
mechanism across two different images. The network learns
to attend to features in one image based on the informa-
tion from the other image. This process is crucial for feature
matching because it allows the network to compare features
from one image with features from another image, consid-
ering not just individual feature similarities but the global
context as well.
Optimal Matching Layer: After the Attentional graph

part, each feature point 𝑥𝑖 will be transformed into 𝑓𝑖 called
feature descriptor, which is a powerful representation for fea-
ture matching. [5] When combining the feature descriptor 𝑓𝑖
in image A and the feature descriptor 𝑓𝑗 in image B, a match-
ing score 𝑆𝑖, 𝑗 will be generated. A higher matching score
represents a higher match potential for the two features.
Therefore, if we arrange all feature descriptors in image A
vertically and all feature descriptors in image B horizontally,
a score matrix, which contains scores of all possible matches,
can be constructed. The author also adds a dustbin for each
set of feature descriptors so that the feature without a corre-
sponding matching feature can be thrown away. Then, the

optimal matching layer uses the Sinkhorn algorithm to trans-
late all scores in the score matrix into percentage, that means
the sum of any column or row should be one. The principle
of the Sinkhorn algorithm is to divide each element of a
row/column by the sum of that row/column so that the sum
of that row/column becomes 1. The process of applying the
Sinkhorn algorithm to all rows/columns in the score matrix
is called row/column normalization. The optimal matching
layer will iterate row and column normalization T times until
the sum of every row and column is 1, and the result is the
final partial assignment.

6 Comparsion
One of the applications of feature detection and matching
is Homography estimation. Homography estimation lies at
the heart of many computer vision applications, serving as a
foundational bridge between images of the same scene cap-
tured from varying perspectives. At its core, a homography is
a 3x3 transformation matrix that describes how points from
one image plane correspond to points on another. Homogra-
phy estimation is also a projective transformation, meaning
it preserves straight lines but not necessarily angles or dis-
tances, and it is able to capture the complex variation of
rotation, translation, scaling, and even perspective shifts
between two images. This technique becomes invaluable
in scenarios where understanding the spatial relationship
between images is crucial, such as in image registration,
panorama stitching, and 3D scene reconstruction. In order
to estimate the homography, The first step is to extract local
features from images and match these features to establish a
global correspondence. Then, based on these matched fea-
tures, we will use an estimator such as RANSAC(Random
Sample Consensus) and DLT(Direct Linear Transform) to
estimate homography. The difference between RANSAC and
DLT is that RANSAC is an estimator with robustness while
DLT has no robustness. Usually, incorrectmatches of features
known as outliers can lead to an inaccurate estimation result.
When there are more outliers, RANSAC with robustness
works better than DLT because RANSAC is able to discard
the outliers that it detects while DLT directly receives all
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Figure 4

matches. But when there are only a few outliers, DLT will
produce better results than RANSAC.
Figure 4 is a comparative study on homography estima-

tion, which uses SuperPoint as the local feature extractor
and uses SuperGlue, NN and NN’s combination with outlier
rejector mutual constraint, PointCN, Order-Aware Network
(OANet) as the feature matchers. [5] The Homography esti-
mation AUC(Area Under Curve) in the middle is a common
evaluation index of estimation accuracy, and higher AUC
represents higher accuracy. For more details on the AUC,
please read ’An introduction to ROC analysis’. [2] The P and
R on the right represents matching precision(P) and recall(R).
They are calculated using the following formula:

𝑃𝑟𝑒𝑐 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) (2)
Where TP(True Positive) is the number of positive/correct

matches found by a matcher, FP(False Positive) is the number
of negative/incorrect matches, and FN(False Negative) is the
number of positive/correct matches that were ignored by a
matcher. [8] The higher precision means a matcher has more
correct matches in all matches found by it. The higher recall
means a matcher overlooks fewer correct matches. It is evi-
dent from the data that SuperGlue outperforms other match-
ers in terms of precision and recall, achieving an impressive
90.7% precision and 98.3% recall. This shows that SuperGlue
is adept at recognizing most correct matches while simulta-
neously filtering out incorrect ones. Meanwhile, due to the
low precision of NN, non-robust estimator DLT almost got 0
on estimation accuracy, while SuperGlue’s match precision
is so high that even DLT performs better than RANSAC. This
suggests that the matches provided by SuperGlue are pre-
dominantly correct, rendering the outlier rejection capability
of RANSAC redundant.

7 Conclusion
The evolution of feature detection and matching in computer
vision has witnessed a transformative shift from handcrafted
techniques like SIFT to the contemporary deep learning-
based methods like SuperPoint and SuperGlue. While the
traditional method SIFT laid the foundational groundwork,
it’s the integration of neural networks and deep learning that

has significantly elevated the capabilities of feature detection
and matching. SuperPoint’s proficient feature point extrac-
tion combined with SuperGlue’s robust matching algorithm
underscores a synergistic approach, setting new standards
in accuracy and adaptability across various computer vision
tasks. This combined efficacy, as observed in homography
estimation and pose estimation, affirms the unmatched su-
periority of deep learning-based methods. As the field of
computer vision continues to evolve, deep learning-based
methods like SuperPoint and SuperGlue represent the future
of development.
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