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Abstract
In a study titled "Deep Learning Methods for Forecasting
COVID-19 Time-Series Data: A Comparative Study" five
deep learning methods forecast a time-series of COVID-
19 cases. The networks include: Recurrent Neural Network
(RNN), Long short-termmemory (LSTM), Bidirectional LSTM
(BiLSTM), Gated recurrent units (GRUs), and Variational Au-
toEncoder (VAE). The neural networks were trained on daily
case numbers spanning from January 22nd, 2020, to June
1st, 2020, while the period from June 1st, 2020, to June 17th,
2020, was reserved for testing the models on unseen data.
Data from Italy, France, Spain, China, USA and Australia
was used. Performance metrics quantified the accuracy of
each forecast and based on the scores the authors concluded
that the VAE model performed the best. However, the table
of the performance metrics appears to contain errors that
makes understanding the authors’ claim difficult. The paper
also graphs the curves of the forecasts alongside the true
data and based on the graphs the VAE does appear to have
performed better.

Keywords: neural networks, covid, variational auto encoders,
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1 Introduction
One of the challenges of the COVID-19 pandemic was mak-
ing decisions in the present to prepare for an unknown num-
ber of COVID-19 cases in the future. A tool that can forecast
the future number of cases has the potential to inform de-
cisions in the present. A study conducted by Zeroual et al.,
titled "Deep Learning Methods for Forecasting COVID-19
Time-Series Data: A Comparative Study" [6] tests five neural
networks: Recurrent Neural Network (RNN), Long short-
term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated
recurrent units (GRUs), and Variational AutoEncoder (VAE)
on their ability to forecast COVID-19.
The neural networks were trained on daily COVID-19

cases from six countries: Italy, France, Spain, China, USA
and Australia. The training data spans from January 22nd,
2020, to June 1st, 2020, while the period from June 1st, 2020,
to June 17th, 2020, was reserved for testing the models on
unseen data.

The authors acknowledged that this is a relatively small
amount of data to train the neural networks. Forecasting
tasks generally have years of diverse and cyclical data to train
their neural networks. However, due to the circumstances
of the COVID-19 pandemic, the available data was limited,
which added to the challenge of making accurate forecasts.

Section 2 will discuss basic mechanics that all neural net-
works share before discussing two types of neural networks
that appeared in the study, RNN and VAE. The other three,
LSTM, GRU, and BiLSTM are variants of RNN; for the sake of
simplicity and space they will be excluded from discussion.
The authors did not discuss the architectures of the neural
networks; instead, a brief discussion of the general concepts
behind each was given and few parameters. The specifics
of the models would’ve assisted in understanding the study
better; in absence of this information, the discussion will be
limited to basic mechanics and the underlying concepts of
each neural network.

Section 3 will analyze the results of the study. Five perfor-
mance metrics were used to quantify how good the forecasts
were compared to true data, and they will be explained for
the sake of understanding results. Unfortunately, the paper’s
results table appears to contain errors, making analyzing the
authors’ claims difficult. Discussion of the errors will be part
of the analysis.

2 Background
Understanding the basic mechanics of neural networks is a
prerequisite for comprehending RNNs andVAEs. An overview
of neural networks will be provided as the basis before dis-
cussing RNNs and VAEs.

2.1 Neural Networks
A neural network is a series of interconnected functions re-
ferred to as nodes. The nodes are organized in layers, where
the outputs of nodes in a preceding layer become the in-
puts of nodes in the following layer. Figure 1 represents a
single node within a neural network and will be referenced
throughout this section.
In Figure 1 the node has 𝑥𝑛 inputs, and each of these is

multiplied by a corresponding weight𝑤𝑛 . The weights are
negative or positive numbers that act to scale each input’s
relative contribution to the final output of the node. These
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Figure 1. A single node of a neural network.

weighted inputs 𝑥𝑛𝑤𝑛 are all added together by the sum-
mation into a single number representing all the weighted
inputs. A bias term 𝑏 is added to the summation, acting as
a final adjustment before it becomes the input for an an ac-
tivation function. “Activation” denotes that a node will be
more or less activated, produce a bigger or smaller output,
depending on the input [3].
An example of an activation function, Softplus was arbi-

trarily chosen, can be seen in Figure 1 with its corresponding
graph. An activation function introduces non-linearity nec-
essary for representing complex patterns and relationships
in the data.
In Figure 4, the true data is plotted with the x-axis rep-

resenting the day, and the y-axis representing the number
of cases. The goal of forecasting is to match a curve to the
true data as closely as possible. Non-linearity enables the
forecast to more closely match the true data. Conceptually,
non-linearity is like overlaying an expressive curve that can
closely match the true data, while linearity is like overlaying
an inexpressive line that poorly matches the true data.

Mechanistically, a neural network is no more complicated
than the algebraic operations described above. Each node
in a network repeats this process of transforming its inputs
into a single number. By changing the weights and biases of
a node the output of the activation function can be increased
or decreased. The process of calibrating each weight and
bias to contribute to a desired final output is referred to as
“training” the model.

During the training process, themodel’s biases andweights
are adjusted iteratively using an optimization algorithm. The
goal of the optimization is to minimize the difference be-
tween the forecasted values and the true values. The dif-
ference or “loss” is quantified in a loss function. Training
involves feeding the data through the model, computing the
loss, and then updating the model’s weights and biases to
reduce the loss. This iterative optimization allows a neural
network to learn and improve its performance.

2.2 Recurrent Neural Network (RNN)
Recurrent neural networks are designed for use with time
series or sequential data in which the order of the data mat-
ters [4]. An RNN processes inputs sequentially, as illustrated
in Figure 2. The dotted arrows indicate each input is being
sequentially inputted one at a time: 𝑥1 is inputted, followed

Figure 2. A single recurrent node.

by 𝑥2 up to 𝑥𝑛 . In the context of forecasting COVID-19, these
inputs could represent the daily infected count: day 1 is in-
putted, followed by day 2 up to day 𝑛.
A recurrent node is made up of weights, a summation, a

bias, and an activation function, like the node discussed in
the prior section about neural networks. The distinguishing
characteristic of an RNN is found after the activation function
produces an output. In Figure 2, the output is weighted and
directed back to the summation as represented by the looping
arrow. When the next input is introduced, it is summed with
the previous output that represents all the previous inputs
in the series. This recurrence is what makes an RNN suited
for time-series data, as the node essentially references its
own output from the previous time step. This cyclical action
can be iterated to influence the current output by a desired
number of preceding outputs.

The recurrence plays a crucial role in capturing short-term
dependencies in time-series data. Short-term dependencies
are patterns that exist in a small sequence of inputs. For
example, when forecasting COVID-19 making a prediction
about today is dependent on yesterday or the day before.
RNNs can capture those short-term patterns between days
or maybe weeks.
Long-term dependencies are patterns that span further

back in time across a large sequence of data. Traditional
RNNs can struggle with learning long-term dependencies.
One issue is vanishing gradients, where the influence of
early and distant inputs diminish during training [4]. Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)
and Bidirectional Long Short-Term Memory (BiLSTM) net-
works were developed to address this issue by incorporating
mechanisms to better control the flow of information as it
sequentially receives inputs, enabling early inputs that are
important to have an effect on later outputs. This is likely
why the authors’ included LSTM, BiLSTM, and GRU in the
in the study alongside RNN.

2.3 Variational Autoencoder (VAE)
A Variational Autoencoder comprises two neural networks:
an encoder and a decoder. The encoder progressively com-
presses the input in each layer, reducing the dimensionality,
or in other words, the number of values make up the en-
coding. Architecturally this is reflected in a decrease of the
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Figure 3. A diagram of a VAE

number of nodes in each following layer of the encoder. Fig-
ure 3 depicts a VAE, illustrating the reduction from the first,
second, and third layers of the encoder [2].
This compression acts as a mechanism to remove irrel-

evant and repetitive data. This compressed input captures
patterns, relationships, and features that are not apparent
in the original input. This compressed representation is re-
ferred to as latent because it was hidden or underlying [5].
Once multiple inputs are encoded into their latent form, each
dimension of the latent representation can be thought of as
a coordinate with each coordinate representing a dimension
in latent space. Similar encodings can be described as being
closer in this latent space. Ideally, similar input data should
have similar encodings in the latent space and dissimilar
inputs should have dissimilar encodings in the latent space.

When the desired dimensionality 𝑛 is reached, one set of
𝑛 nodes outputs 𝑛 means based on their connections and the
second set 𝑛 nodes outputs 𝑛 standard deviations based on
their connections. The encoder outputs the parameters of
normal distributions, mean and standard deviation, for each
dimension of the latent representation.
In a normal distribution, the mean represents the most

likely value. The probability of sampling a value decreases
the farther away it is from the mean. How drastically the
probability decreases is determined by the standard deviation.
The normal distributions when sampled give a variation of
the encoding; the degree to which the sampled encoding is
different from the encoding is dependant on the means and
standard deviations.

Conceptually, the normal distributions of an encoding can
be imagined as clouds of encodings in a three dimensional
space with the mean determining the center of the cloud and
standard deviation determining how densely the encodings
that can be sampled surround the mean.

Ideally, these clouds will be close enough to overlap while
still being distinct; minimizing this distance is an objective
of training [1]. Overlap allows interpolation, which means
that a meaningful encoding between two distributions of
encodings can be found, since gaps don’t exist between the
distributions in latent space. This allows the creation of new

encodings by interpolating in a latent space that smoothly
transitions between distributions of encodings [2].
The decoder takes an encoding and decodes it back to a

desired higher dimension. In Figure 3 each layer of the en-
coder progressively decompresses the input, as reflected in
the increase of nodes in each following layer of the decoder.
The encoder and decoder are usually trained together to bal-
ance finding a meaningful latent space that can be decoded
and a latent space that allows interpolation [2].

In the paper a short and general description mainly about
the probabilistic nature of VAEswas given. Discussion of how
the VAE was inputted the time-series and if the architecture
was was tailored for temporal data would’ve been helpful in
understanding the study. Because the authors did not discuss
those specifics, this section is missing those details.

3 Analysis
The accuracy of the forecasts were evaluated with five per-
formance metrics [6]. Before analyzing the results of the
study as well as the authors’ claims, the performance metrics
will be explained in the following section.

For each formula 𝑦𝑖 represents the series of true values
and 𝑦𝑖 represents the series of forecasted values. Each metric
computes somemeasure of how similar𝑦𝑖 and𝑦𝑖 are, in other
words, how useful 𝑦𝑖 is as estimates of the true values 𝑦𝑖 .

3.1 Performance Metrics
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) represent the average difference (error) between fore-
casted values and corresponding true values. A score closer
to zero represents a more accurate forecast.

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

Because RMSE squares the difference, values far from the
true data can have a bigger effect on the result. MAE takes
the absolute value of the difference and as a result is less
sensitive. RMSE is by definition greater than or equal to MAE
because it squares the difference.
Mean Absolute Percentage Error (MAPE) represents the

average errors as a percentage of the true values, making
it useful for determining the relative accuracy of forecasts.
A score closer to zero percent represents a more accurate
forecast.

MAPE =
1
𝑛

𝑛∑︁
𝑖=1

����𝑦𝑖 − 𝑦𝑖

𝑦𝑖

���� × 100%

Root Mean Squared Log Error (RMSLE) is an average of
errors on a logarithmic scale. RMSLEwas likely chosen by the
authors for its added benefit of penalizing underestimations
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more than overestimations. In the context of using a forecast
to inform decisions about COVID-19, an underestimation
could lead to being underprepared, while an overestimation
and overpreparing are preferred when lives are at stake. A
score closer to zero indicates a more accurate forecast.

RMSLE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(log(𝑦𝑖 + 1) − log(𝑦𝑖 + 1))2

Explained Variance (EV) measures how closely the slope of
the forecast matches the slope of the true data, ranging from
0 (indicating poor EV) to 1 (representing perfect EV). A good
EV score results from consistent differences between actual
and forecasted values. As long as the forecast maintains a
consistent distance from the true data, even if it’s a significant
difference, the EV will be closer to 1.

EV = 1 − Var(𝑦 − 𝑦)
Var(𝑦)

3.2 Results
The authors claimed that the VAE gave the most accurate
forecast of daily COVID-19 cases.

It can be easily seen that the VAE model
outperformed the other models by pro-
viding good forecasting performance with
lower RMSE,MAE,MAPE and RMSLE, and
EV values closer to 1.

The authors presented graphs of the forecasts and a table of
the performance metrics for each neural network in their
discussion of results. Figure 4 displays the true curve of each
country plotted alongside the forecasts, Table 1 contains the
corresponding performance scores.
The scores are unedited from the original paper and as

such, the authors use of commas is confusing. Commas of-
ten appear where a decimal separator would logically ap-
pear. In most English-speaking countries, decimal points are
typically used as a decimal separator, but across the world
commas are commonly used instead. The authors seem to
be from non-English speaking countries, which could be the
cause of the confusion. However, for reasons that will be
discussed, even if commas are assumed to be the decimal
separator, these scores are inconsistent with the graphs.
In Figure 4, the top-left graph of Italy shows an example

of forecasts with favorable RMSE and MAE scores. The re-
current models (RNN, LSTM, BiLSTM, and GRU) are all very
close to the dotted blue curve, representing the true data.
VAE is far off and based off the graph has a RMSE and MAE
of around 10,000. Despite this it closely matches the slope
of the true curve and it likely has an EV close to 1. The four
recurrent models appear to have good RMSE and MAE score
of about 2,500, but likely posses poor EV scores since the
gap between the forecasts and the true curve is inconsistent.

Table 1. Unedited performance metrics for forecasts of
COVID-19 cases using RNN, LSTM, BiLSTM, GRU, and VAE
models. RMSLE was excluded for space. Adapted from [6].

Nation Model RMSE MAE MAPE EV
Italy RNN 1,070,474 1,062,061 4,519 0201

GRU 113,775 1,130,957 4,813 0314
LSTM 1,054,089 1,046,257 4,452 0267
BiLSTM 1,041,374 1,033,467 4,398 0269
VAE 1,386,225 1,385,829 5,901 0951

Spain RNN 1,683,011 167,719 6,944 0272
GRU 1,795,678 1,791,683 7,419 0467
LSTM 1,254,449 1,247,959 5,166 0396
BiLSTM 1,194,711 1,187,629 4,916 0372
VAE 5,315,748 5,288,172 2,19 0891

France RNN 1,287,786 1,279,681 6,827 0224
GRU 1,204,139 1,196,438 6,383 0311
LSTM 1,085,008 1,075,795 5,738 0258
BiLSTM 1,168,893 1,160,923 6,193 0308
VAE 3,688,083 3,522,353 1,88 0554

China RNN 1,252,034 1,250,442 1,485 0095
GRU 1,085,698 1,083,975 1,287 0151
LSTM 101,482 1,013,002 1,203 0163
BiLSTM 1,205,955 1,204,413 1,43 0156
VAE 11,103 107,873 0128 0843

AU RNN 39,928 397,443 5,47 0279
GRU 295,978 293,738 4,042 0349
LSTM 327,123 325,203 4,476 0383
BiLSTM 335,033 333,098 4,584 0363
VAE 18,732 17,186 0236 0952

USA RNN 5,227,287 5,136,497 26,373 0208
GRU 4,369,108 4,240,145 21,697 0066
LSTM 1,129,183 1,123,909 58,008 0
BiLSTM 4,330,228 4,194,141 21,451 0024
VAE 4,079,244 3,976,682 2,04 0993

For Italy, the graph is inconsistent with Table 1. Instead
of being in the thousands or tens of thousands, the RMSE
and MAE scores are all, except for GRU, about a million. The
scale of these scores is way off based on expectations from
the graph. GRU having a much smaller RMSE doesn’t make
sense since by definition RMSE is greater than or equal to
MAE as discussed earlier. An EV score is between 0 and 1,
but all the EV scores are missing decimal separators. If a
decimal separator was added after the zero for each of these
scores the EV scores would make sense and align with the
authors’ claim of the VAE having EV scores close to 1.

In Figure 4, the-bottom right graph of Australia provides
an example of the VAE likely having an EV close to 1. Al-
though the distance between the VAE forecast and the true
curve is significant, the VAE forecast appears to have the best
EV because it matches the slope of the true curve the best.
For these EV scores, if a decimal separator is again added
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Figure 4. Forecasted cumulative cases from June 1st to June 17th, 2020, using RNN, LSTM, BiLSTM, GRU, and VAE for Italy,
France, Spain, China, USA, and Australia. The true data is represented by the dotted blue curve, and the forecast colors are as
follows: VAE (brown), BiLSTM (purple), GRU (red), LSTM (green), and RNN (orange). Adapted from [6].

after the zero then this supports the authors’ claim that the
VAE has EV scores close to 1.

The MAPE scores also appear to be inconsistent with
the formulas provided in the paper. MAPE is a percent and
should be between 0 and 100, even if it’s assumed the commas
are decimal separators the scores still appear to be incon-
sistent with the graphs. For example, based on the top left
graph of Figure 4, Italy should have a poor MAPE and the
others should have great MAPEs. But if it’s Assumed that the

comma is a decimal separator, they would all have around
the same score which is inconsistent with Figure 4.
For RMSE and VAE scores, commas look like they’re fol-

lowing the English norm as delimiters marking the thou-
sands and millions places. This is incompatible with our
earlier assumption that commas may act as decimal separa-
tors for MAPE scores. But assuming commas are following
the English norm, RMSE and MAE scores for the majority of
forecasts would suggest that on average the forecasts are off
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by millions or hundreds of thousands. But when compared
to the graphs the average difference is much smaller.

A pattern to the errors in RMSE, MAE, andMAPE columns
are not as obvious as the EV column. The errors may have
been caused by a mistake in formatting the table, but any
explanation here would be speculation.

4 Conclusion
Zeroual et al. used a 131 day univariate time-series of daily
COVID-19 cases to train and test their RNN, GRU, LSTM,
BiLSTM, and VAE models. The following 17 days were used
to test models in forecasting accuracy. The authors employed
RMSE, MAE, MAPE, EV, and RMSLE as performance metrics
to quantify the accuracy of the forecasts. According to the
study’s claims, the VAE was superior based on its perfor-
mance in the 17 day forecast.
A table containing their performance scores as well as

graphs of the forecasts were provided to corroborate their
claim. But the performance table appears to contain errors
based on the formulas provided and the errors complicate
understanding the results of the study making drawing con-
clusions from the authors’ claims difficult. A corrected ver-
sion of the performance metric table would allow a more
accurate assessment of the models’ performance.
Despite the discrepancies in the table, inspection of the

graphs that plot the forecasts alongside the true data does
support the authors’ claim that the VAE performed the best
in forecasting daily COVID-19 cases.

This is result is interesting, considering the other models
benefit from recurrence to capture temporal patterns in the
data. The authors acknowledged that the VAE may have
outperformed others due to the challenge of forecasting with
a relatively small amount of data.
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