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Abstract
This paper aims to outline the advancements of audio gen-
erative technology, specifically AudioLDM 2, a model that
creates audio given a set of inputs. As an overall summary
of the work and working parts of AudioLDM 2, this paper
will cover; latent diffusion models and their inefficiencies;
the optimization of GPUs inside of LDMs; Language of Au-
dio (LOA); the GPT-2 Language model; and the results of
tests done on AudioLDM 2 through the scholarly paper
"AudioLDM 2: Learning Holistic Audio Generation With
Self-Supervised Pretraining" by Haohe Liu, Yi Yuan, Xubo
Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang,
Wenwu Wang, Yuxuan Wang, and Mark D. Plumbley ([7].
With the evaluation and results presented later, this paper
demonstrates the effectiveness of new and old systems in
audio-generative AI, and aims to push computer science
towards continued improvement in the field. Special atten-
tion will be drawn to Language of Audio as it is unique to
AudioLDM 2.

Keywords: autoencoder, self-supervised pretrained,Mel spec-
trogram, patches, dimensional latent space

1 Introduction
Generative AI effectively accomplishes the tasks that are
given to them, specifically text-to-text generation. As pri-
marily text-generators, the AI that we are most familiar with
excels at producing one type, or subdomain, of content. The
question that this paper seeks to answer is: Does there ex-
ist an AI model that can produce different subdomains of
quality audio content?
While some generative AI models have the capacity to

create quality content in one or two subdomains, there is yet
to exist a model that can generate quality content in several
subdomains. For example, AudioLDM (the predecessor to Au-
dioLDM 2) generates high quality audio in the text-to-audio
and text-to-music subdomain, but cannot create satisfactory
audio in the text-to-speech subdomain [7]. The speech gen-
erated by AudioLDM loosely resembles spoken word, but
is mostly unintelligible. What AudioLDM 2 aims to do is
create a wide variety of audio by paying more attention to
the information that makes quality audio.
To demonstrate the advancements of AudioLDM 2 com-

pared to similar counterparts like AudioLDM, AudioLDM

Figure 1. Audio generated by AudioLDM 2 given two dif-
ferent text prompts. Audio is represented using Mel spectro-
grams [7].

2 is tasked with generating three different subdomains of
audio - general audio (sound effects), music, and speech. Au-
dioLDM 2 was given three different kinds of data during
testing; for general audio, AudioCaps; music - MSD; and
speech - LJSpeech. AudioCaps is a dataset including 50,000
general sound effects, each one labeled with an event descrip-
tion. The event descriptions provide information about the
sound effects in the data, answering questions like "Where
was the sound created?" and "What made that sound?" MSD,
or Million Song Dataset, is a collection of over one million
popular music songs. However, only 510,000 were used to
train AudioMAE and GPT-2 during this paper’s experiment.
LJSpeech is a dataset composed of 13,100 audio samples of
one person reading from a set of non-fiction books [7]. The
results of these tests show that AudioLDM 2 generates exem-
plary audio and music compared to other audio generators,
and speech that is improved compared to AudioLDM. While
generated speech may not be AudioLDM 2’s specialty, the re-
sults show that the speech generated is certainly comparable
to other speech generators, such as FastSpeech2.
In this paper, we will dive into background information

to better understand specialized terms, examine Language
of Audio, go through both GPT-2 and latent diffusion mod-
els, and conclude with the results of experiments done on
AudioLDM 2.

2 Background
In order to thoroughly understand the process of deep learn-
ing throughoutAudioLDM 2’s generation, we need to explore
training. Training is the act of teaching a learning model,
in this case Audio LDM 2. Learning models are given large
amounts of training data, and with this data these models
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gain knowledge so that they can create the most accurate pre-
dictions possible. AudioLDM 2 is trained on large numbers
of sample audio, ranging from something like contemporary
rock music to something as random as animal noises. The
immensity of data that AudioLDM 2 is trained on allows the
model to create accurate predictions on what a successful
output would look like given varying kinds of inputs. The
more accurate the prediction, the more accurate the output
audio [4].
However, unlike most learning models, AudioLDM 2 fea-

tures deep learning architectures that are self-supervised
pretrained. The "self-supervised" part of self-supervised pre-
trained models takes important information from unlabeled
training and testing data. Other learning models require
labels in the training data so that the models know what
to focus on when learning information. AudioLDM 2 is im-
proved compared to other models because it does not require
labeled data, which is often hard to find [4]. Using models
that are self-supervised pretrained, such as AudioMAE and
the core LDM (the audio generator in AudioLDM 2), allows
AudioLDM 2 to use unlabeled training and testing data. Unla-
beled data is easier to find and is less costly than purchasing
labeled information [4]. "Pretraining" functions similarly to
self-supervision as it removes complexity in the training
and testing phases. Pretraining is when an a component, in
our case an autoencoder, is given information before being
trained on conditioning information. This gives the autoen-
coder context BEFORE being trained further. AudioMAE and
the LDM were pretrained on large amounts of varying audio
data from datasets like AudioSet and GigaSpeech. Being that
AudioMAE and the LDM have learned from such a large
amount of varied data before training, they can be trained
and tested on much smaller datasets with less descriptive
labeling. For example, the LDM is tested on only a random
10-second clip from the thousands of audio samples provided
by AudioCaps, MSD, and LJSpeech. The LDM in AudioLDM
2 is able to take such limited testing information because it
was first pretrained on a wider sample of data.

AudioMAE and VAE are learning and extraction models
that take information from training and testing data and
represent it in a more usable format, such as LOA. VAE
stands for variational autoencoder, and it is the autoencoder
inside of the LDM. What these models learn from data is
semantic and acoustic information. The process of learning
in AudioMAE, VAE, and LDMs is through an autoencoder
architecture (Fig. 2). Autoencoders take in an input; encode
it, compressing the information; then decode the compressed
format to most closely resemble the input data [2]. Doing this
gives us the acoustic and semantic information that is within
the input conditioning information (information organized
specifically for a systems purpose) that we need to generate
audio.
AudioMAE takes in an audio sample and converts the

sample into a Mel spectrogram - an image of the audio

Figure 2. Example of an autoencoder architecture. Instead
of images, AudioMAE takes audio as an input and the LDM
takes in text prompts [2].

sample’s waveform (Fig. 1). AudioMAE deconstructs the Mel
spectrogram into individual chunks called patches that are
used as the input for the AudioMAE autoencoder. The en-
coder adds noise to these patches, creating masked patches.
AudioMAE then decodes these masked patches, learning the
semantic and acoustic information that makes up LOA in
the process. By adding noise to these patches, the encoder
makes it harder for the decoder to find the useful information
it needs to recreate the input. This challenge given to the
decoder enforces the self-supervisory nature of the autoen-
coder, forcing the decoder to focus on only the important
information. Imagine looking for a red balloon that is 200
yards away. You could keep your eyes wide open, taking
in the entire landscape, or you could squint, focusing your
eyes on the target and cutting out your peripherals. This is
essentially how noising/masking works in autoencoders.
VAE (variational autoencoder) is used as a "feature com-

pressor" [7] and a model that learns from the compressed
audio representation (z) created by VAE during testing. Input
z is the compressed testing information that VAE is given
during the testing phase, which can be seen in the green
box of Fig. 3. In this experiment, AudioLDM 2’s VAE is given
a text prompt that it will use to generate a relevant audio
sample.

3 Language of Audio (LOA)
LOA is a representation of data that is easier to model than
the initial input x. Our initial input x is conditioning infor-
mation, specifically an audio sample. Important semantic
and acoustic information is taken from our conditioning in-
formation and turned into our representational LOA using
AudioMAE.

• Semantic information: the meaning of audio (or
speech within audio)

• Acoustic details: frequency (pitch), amplitude (vol-
ume), etc.

LOA is accepted later on in the audio generation process as
an input, eventually producing 𝑥 , the final output created
by AudioLDM 2, is a sample of high quality audio, speech,
or music. The process for creating audio using AudioLDM 2
is shown in Fig. 3. The training phase includes the red and
blue boxes, respectively, the AudioMAE and GPT-2 language
models. These two boxes give us a prediction (LOA and LOA
ground truth) of what the output should look like, and the
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Figure 3. Three colored modules represent the AudioMAE, GPT-2 model, and LDM. The red and blue modules are used during
testing to gather LOA. Green generates audio given testing data [7].

green box (latent diffusion model) uses that prediction to
create an accurate output.

LOA gives AudioLDM 2 the ability to accept lots of differ-
ent inputs, essentially acting as a universal translator for the
model. Without the additional step of creating LOA, Audi-
oLDM 2 could only receive labeled training and testing data,
and all predictions would be made by the LDM. The addition
of LOA adds a productive step to AudioLDM 2’s framework
that gives it a leg up against other audio generators.

4 GPT-2 Language Model
Language of Audio is generated from the input x, but what
happens when we introduce an input outside of the tradi-
tional format that x comes in? If given training or testing
data other than audio, the GPT-2 (Generative Pretrained
Transformer) pretraining model is used. This model takes
in conditioning information in the form of audio, text, and
transcription (text derived from speech.)
GPT-2 language model creates a more accurate represen-

tation of conditioning information than AudioMAE that is
used in the audio generation stage of AudioLDM 2. What
the GPT-2 language model creates is called the ground truth
LOA which is used as a comparison between our experimen-
tal LOA and the separate ground truth. Ground truth: an
estimation of the true or correct output of the dataset [5].
The ground truth LOA is the most correct representation
of data within LOA. In other words, the ground truth LOA
is the semantic and acoustic details that relates most to the
output audio.

The GPT-2 language model has the benefit of being able to
transform multiple types of conditioning information; audio,
text, and transcription. GPT-2 language model formats con-
ditioning information into a representation that is usable by
AudioMAE features [7]. In order to train on different types
of input data than AudioMAE, GPT-2 uses separate encoders.
CLAP (Contrastive Language and Audio Pretraining) is a
pretrained text encoder that is the "default" when handling
conditioning information. FLAN-T5 is an aid to CLAP as
CLAP oftentimes misses important semantic information
in the conditioning input. FLAN-T5 is also pretrained, simi-
larly to CLAP. Our last encoder in the GPT-2 model is the
Phoneme Encoder, whose job is to find "the smallest units
of sound in a language that can distinguish one word from
another [7]". The Phoneme Encoder is not pretrained because
its parameters are based off of another generative system,
Natural Speech.

5 Latent Diffusion Model
The diffusion process is an example of an autoencoder ar-
chitecture (Figure 2) which refines the quality of a model’s
output. More specifically, autoencoder architectures work
to re-represent an output based on an input. Autoencoders
do so by compressing an input into a dimensional latent
space, or a simplified, coded version of our source informa-
tion [2]. Taking an input and transforming it into a lower
dimensional latent space is part of the encoding process. This
lower dimensional latent space is the middle ground between
the encoder and decoder. Once this simplified coded version
of the input is established, the decoder does its best to create
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another representation of the input based on the exclusive
information given by the latent space. This output is often
a crude version of the input, but with the output represen-
tation, we can get a clear idea of how close our model is to
generating a quality output.

Another important step in the diffusion process is getting
the model to notice important material more efficiently. This
is done by adding noise, or a random distribution of data,
to the input. Without the original input, the autoencoder
architecture has nothing to reference, therefore we know it
is doing its job by producing a noise free output [2]. This
trains the model to pinpoint the important information and
subtract unnecessary material.

5.1 GPU Optimization
Graphics Processing Units, or GPUs, are essential hardware
components in generative artificial intelligence models (such
as AudioLDM 2) that directly impact the efficiency of latent
diffusion models. GPUs perform computation processes for
generative AI, and are effective tools used to process large
amounts of data and/or complex computations. However,
during the complex compuatations involved with autoen-
coders and LDMs, GPUs tend to slow down. This leads to
longer training times and an over-consumption of energy
which can negatively affect the environment [1]. By find-
ing inefficiencies in autoencoders and LDMs, we can both
reduce training times and improve the energy efficiency of
generative AI. Profiling and monitoring tools are used to
find and subsequently reduce inefficiencies.

GPU inefficiencies are tracked using these three metrics:

• GPU Utilization: amount of time the GPU is process-
ing data

• GPU Memory Allocation: the amount of memory
assigned to a process

• GPU Power Usage: amount of energy used during
processing

In terms of GPU utilization, higher utilization means more ef-
ficient GPU usage. Likewise, GPU memory allocation gauges
the complexity of computations and the size of datasets used
by the model as the GPU utilizes more memory.

Profiling tools analyze the performance of neural network
processes such as execution runtime (the amount of time
a process runs from beginning to end) and memory usage
(the amount of memory a process uses). Through these met-
rics we can monitor how deep-learning algorithms interact
with hardware, thus finding GPU inefficiencies. Some help-
ful profiling tools in the search for these inefficiencies are
NSight by NVIDIA and PyTorch Profiler. These tools target
the training process of diffusion models as this is the process
that generates an output.

Optimizing GPUs is a difficult process in terms of genera-
tive AI, seeing that different models have different optimiza-
tion needs. AudioLDM and Stable Diffusion are two models

with contrasting optimization necessities. AudioLDM man-
ages memory less efficiently than Stable Diffusion because
AudioLDM processes more information and operates on a
more complex architecture. Stable Diffusion struggled with
complex computations, indicating that the GPUs used with
Stable Diffusion could work on optimizing data utilization
[1].

6 Evaluation Metrics
Two different types of metrics are used to rate the audio
outputs of AudioLDM 2 during this experiment: Quantitative
and Subjective metrics. The CLAP, FAD, and KLD scores
are all quantitative metrics, meaning they are numerically
measurable metrics used to rate AudioLDM 2’s outputs. The
CLAP score is an independent metric compared to the FAD
and KL scores which were created by AudioGen - another au-
dio generative AI model. The CLAP score is used to measure
how close the input text prompt is to the generated audio.
Frechet Audio Distance measures the mean distribution

distance between the generated audio and a target, in this
case, pre-recorded music. FAD is a reference free evalu-
ation metric, meaning it doesn’t need a sample of audio
from outside of AudioLDM 2 to compare generated audio. In
order to make these comparisons, FAD takes statistics from
the generated audio (in this case music) and compares them
with a set of statistics from clean, studio-recorded music.
This gives us a measure of how close the generated audio is
to quality music [6].
The next evaluation metric, Kullback-Leibler divergence,

compares the similarity of the generated audio and a target
with a baseline standard output from another audio gener-
ation model. KL divergence takes probability distributions
from the generated and target audio, and the baseline audio
and compares their drift - or how far a distribution is from
the baseline. Think of a bar graph with a set of purple bars
(reference distribution) and gold bars (baseline distribution)
sitting next to each other. KL divergence measures the differ-
ence in size between the two sets of bars - the closer in size
the reference distribution is to the baseline, the better [3].

Beyond comparing the semantics of generated audio, Au-
dioLDM 2 includes subjective evaluation metrics in order
to capture the qualitative accuracy of generated audio. A
set of questions (labeled OVL, REL, and MOS) were given
to 10 different raters per generated audio clip, and their an-
swers were either given on a numeric rating scale or through
multiple choice.
The OVL metric presented raters with the question How

would you rate the overall quality of this music? Consider
its resemblance to real-world audio and its naturalness, and
asked them to rate their answers on a scale of 5-Excellent to
1-Bad [7]. REL proposed a similar question to OVL and used
the same rating scale: How would you rate the relevance of
music to the text description? Raters were given the following



Ethan Graybar

question in MOS:How natural does this recording sound? Take
into account emotion, prosody, and other human-like details.
Raters in this group expressed their opinions using a range
of answers ranging from completely unnatural to speech to
perfectly natural speech.

7 Results
The results in Tables 1, 2, and 3 show that AudioLDM 2,
with its usage of a latent diffusion model and LOA, matches
the performance of other generative AI models (SoTa) in
text-to-music and text-to-audio tasks [7]. AudioLDM 2 was
tasked with generating audio through three different pro-
cesses during testing: text-to-speech, text-to-audio, and text-
to-music. Three different datasets were used to test the dif-
ferent sub-domain outputs of AudioLDM 2: AudioCaps, MSD,
and LJSpeech. AudioCaps is a subset of AudioSet, and it
features 46,000 ten-second clips of audio samples. MSD or
Million Song Dataset contains 510,000 music clips including
artists names, titles, and song labels. Lastly, LJSpeech offers
small clips of an individual speaker, numbering at 13,100
audio samples [7]. In order to effectively measure how suc-
cessful AudioLDM 2 is at generating audio, AudioLDM 2
was compared with these generative models: AudioLDM,
AudioGen-Large, Make-an-Audio (both original and Make-
an-Audio 2), and TANGO.

Table 1. Text-to-Audio (AudioCaps) Results Table

FAD ↓ KL ↓ CLAP ↑ OVL ↑ REL ↑
AudioLDM 4.53 1.99 0.141 3.61 3.55
Make-an-Audio 2.05 1.27 0.173 3.68 3.62
TANGO 1.73 1.27 0.176 3.75 3.72
AudioLDM 2-AC 1.67 1.01 0.249 3.88 3.90
AudioLDM 2-AC-Large 1.42 0.98 0.243 3.89 3.87

Concluding text-to-audio tests (Table 1), AudioLDM 2 per-
formed better than all three comparison generators. Audi-
oLDM is the predecessor to AudioLDM, AudioLDM 2-AC
is AudioLDM 2 tested on AudioCaps, and AudioLDM 2-AC-
Large is AudioLDM 2 tested on a scaled up version of Audio-
Caps. The most basic form of text-to-audio tested, AudioLDM
2-AC, received the highest CLAP score and rated the highest
in the REL subjective metric. When AudioLDM 2-AC was
given larger amounts of testing data, making it AudioLDM 2-
AC-Large, it performed better in all other metrics compared
to TANGO, Make-an-Audio 2, and AudioLDM. Of particular
notice is AudioLDM 2’s advancement in comparison to its
predecessor AudioLDM-M. Both were models pretrained on
large datasets, but AudioLDM 2 performed far better.

Moving on to text-to-music generation (Table 2), we find
that AudioLDM 2 passed its competitors in test result scores.
AudioLDM 2-MSD is AudioLDM 2 tested on the MSD dataset
and AudioLDM 2-Full is AudioLDM 2 that generates both
audio output and music output simultaneously. Our basic
text-to-music model, AudioLDM 2-MSD, received the highest

Table 2. Text-to-Music (MSD) Results Table

FAD ↓ KL ↓ CLAP ↑ OVL ↑ REL ↑
AudioLDM 3.20 1.29 0.360 3.03 3.25
MusicGen 3.40 1.23 0.320 3.37 3.38
AudioLDM 2-MSD 4.47 1.32 0.294 3.41 3.30
AudioLDM 2-Full 3.13 1.20 0.301 3.34 3.54

OVL score and AudioLDM 2-Full received the highest REL
score. For reference, models with the suffix "Full" are given
more training data and are capable of generating audio and
music at the same time [7]. AudioLDM 2-Full earned higher
FAD and KL divergence scores compared to MusicGen, Audi-
oLDM, and MusicLM. This shows that AudioLDM 2 performs
text-to-music generation at such high efficiency that it can
multitask.

Table 3. Text-to-Speech (LJSpeech) Results Table

MOS ↑
GroundTruth 4.63
FastSpeech2 3.78
AudioLDM 2-LJS 3.65
AudioLDM 2-GIG 4.00

Unlike the previous two generated subdomains, text-to-
speech (Table 3) was less successful. AudioLDM 2-LJS is
AudioLDM 2 tested on the LJSpeech dataset and AudioLDM
2-GIG is the results of AudioLDM 2 tested on GigaSpeech.
AudioLDM 2-LJS received the lowest MOS score compared to
the other generators, coming in at 3.65. However, when Au-
dioLDM 2 was pretrained on GigaSpeech instead of LJSpeech
it performed better than LJSpeech at a score of 4.00. Gi-
gaSpeech is a dataset with more audio samples in a larger
variety than what LJSpeech offers, which shows the impor-
tance of diversifying the training data. Text-to-speech pro-
cesses where only scored with the MOS scale because of the
subjectivity of speech. Comparing Table 1 and Table 2 to
our text-to-speech Table 3, we find that AudioLDM was not
included. This is because AudioLDM - AudioLDM 2’s prede-
cessor - generated unintelligible audio, thus incomparable
to the generated outputs of AudioLDM 2 and FastSpeech2.

8 Conclusion
AudioLDM 2 is comparable to other audio generative AI in
text-to-audio, text-to-music, and text-to-speech generation.
However, AudioLDM 2 excels at text-to-audio and text-to-
music generation, even going as far as generating both sub-
domains simultaneously.
Throughout each sub-domain experiment, it was clear

that without LOA, the efficiency and quality of the results
would have been different. LOA changes the motivation
of optimization from "How can we improve learning?" to
"What datasets provide the best results?" Because LOA acts
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as a universal audio translator, AudioLDM 2 and other audio
generative AI have the ability to focus on different areas of
improvement.
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