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Abstract
Myoelectric Prosthetics are advanced prosthetics that use the
electrical signals given off by a user’s residual limb to predict
what gesture a user intends and then perform that gesture.
This paper discusses two methods of gesture recognition
that were experimented with and the background knowl-
edge needed to understand them. Deep Recurrent Neural
Networks follow a more traditional design and use sequen-
tial data to predict hand gestures. Spiking Neural Networks
are an uncommon approach to gesture recognition and use
sequences of spike-encoded data. Both methods were found
to perform well in the metrics chosen for each of them. Both
methods are promising ventures into improving hand ges-
ture recognition.

1 Introduction
Modern science and engineering have brought about the
creation of more advanced prosthetics. Myoelectric pros-
thetics is one of these areas of advanced prosthetics. Myo-
electric prosthetics use the electrical signals in the residual
limb to trigger movement corresponding to what the user
intends [10]. This allows users of myoelectric prosthetics
to have more advanced and life-like control. The methods
used for gesture recognition in commercial prosthetics are
proprietary, and information regarding them is not publicly
available. This paper will explore twomethods studied in aca-
demic research: Deep Recurrent Neural Networks (DRNNs)
from Aliman et al. [2] and Spiking Neural Networks (SNNs)
from Garg et al. [5]. DRNNs are a more traditional way of
thinking about neural networks. SNNs offer a more unique
and uncommon approach.

In section 2, we present the background information needed
to understand Deep Recurrent Neural Networks. Then, we
discuss in section 3 Spiking Neural Networks. In section 4,
we will focus on how the data is collected and on the results
of the two methods. Finally, in section 5, we will present our
final thoughts on the two methods.

2 Background
2.1 Neural Networks
Neural Networks (NNs) are machine learningmodels that are
inspired by the way that human brains process information,
weigh options, and make decisions [13]. Neural networks

are made up of at least three layers of nodes. These layers
consist of the input layer, the hidden layer(s), and the output
layer. A feature is an aspect of the data. The input of an NN is
the feature(s) given to the input layer to be used. Information
from the input layer is passed to the hidden layer(s). The
output of a neural network is the result given in the output
layer once the input has been run through the network.
Nodes have either one or no activation function. They also
have weights on their edges, leading to other nodes. Initially
these weights are randomly assigned on all edges. The output
of a node is multiplied by the weight before being passed
onto the next node.

Before NNs can be used for predictions based on new data,
they must be trained on large amounts of already existing
data. NNs learn patterns within the data given. NN training
can be supervised or unsupervised. In the case of this pa-
per, supervised training will be the main focus. Supervised
training is when a NN is given a dataset where all outcomes
are known. This is known as a labeled dataset. Error comes
from the difference in the outcomes from the labeled data set
and the network’s predicted outcomes [13]. Using backprop-
agation, the model works backward from the output layer
to the input layer to calculate the error of each node and
gradually adjusts the weights in the model until the output
matches the labeled outcome for all or the majority of the
dataset. For example, we input the gesture data of the hand
sign “scissors”, and the network’s output is “rock”. In back-
propagation, the difference between “rock”, the network’s
output, and “scissors”, the true output, is calculated. This
is known as the error. The error is used to adjust weights
backward to get the network’s output closer to the true out-
put of the data. It’s important to keep in mind that neural
networks encode outcomes numerically. Backpropagation is
adjusting weights to get incorrect outcomes across all of the
data to shift closer to the correct number based on labeled
data while keeping correct answers from shifting closer to
the incorrect number.
When an algorithm, such as a NN, is trained to separate

labeled input data into different classes, it is known as a
classifier. An example of a classifier NN is an NN that sep-
arates and labels images as either a cat or not a cat (binary
classifier) or as a cat, a dog, or a bird (multi-class classifier).
Once trained, a classifier can use new unlabeled input data
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Figure 1. Folded and Unfolded Recurrent Neural Network
Node [6]

from the same classes (for example, a picture of a cat the NN
hasn’t seen) and make a prediction of what class it belongs
to. [3]

2.2 Recurrent Neural Networks
RNNs are a variation of neural networks that work with
sequential data [14]. A sequence of data can be words in
a sentence or hourly temperature readings. A traditional
NN takes individual data points, whereas RNNs take into
account the order of the sequence when making predictions.
For example, an RNN may predict what the next word in a
sentence is or what class sequential data belongs to. RNNs
accomplish these predictions by having “memory”. Each
node in the hidden layer can loop back to itself while taking
in a new input. The node’s input is now the previous layer’s
output and its own output from its previous calculation. This
allows an RNN to take into account previous elements in its
sequential data while working with a new input.

For RNNs, the weight parameters are the same each time
data is repeated through a node. As seen in Figure 1. u, w,
and v are all weights on edges and stay the same as the RNN
loops through the input represented as x. Once the hidden
layer, represented by h, has processed the data, the output of
h is given to the output layer, represented as L. The image
on the right side of Figure 1 visualizes the “unfolding” of
the RNN, representing each time step as a separate path
through the RNN. RNNs employ backpropagation through
time (BPTT) for training. The difference between BPTT and
regular backpropagation is that BPTT sums the errors at
each time step [14]. Figure 1 can help visualize this. The
error at time steps ht+1, ht, and ht-1 are summed together and
used to adjust weights.

Long Short-Term Memory (LSTM) is an RNN architecture
that allows the model to learn long-term relationships in
sequential data. The way LSTMs accomplish this is with the
use of memory cells in the hidden layers. These memory
cells have a forget gate, an input gate, and an output gate.
Forget gates determine what information from the previous
hidden state is to be remembered or forgotten. The input
gate determines what information from the current input is
important to remember. The output gate uses the state of
the memory cell to determine what information to pass on.

Figure 2. Long Short-Term Memory Cell [7]

[7] This setup allows for finer control over the influence of
data items (past state, the input, and the output) on the next
memory cell. This allows the network to maintain memory
across different inputs on sequential data [2].

As seen in Figure 2, the input and output gates use 𝑡𝑎𝑛ℎ as
a function. 𝑡𝑎𝑛ℎ is used to create a normalized vector of the
values between -1 and 1. All three gates use 𝑠𝑖𝑔𝑚𝑎 functions
to determine if values are of use. 𝑠𝑖𝑔𝑚𝑎 functions normalize
the input values between 0 and 1 in the case of LSTMs [7].
For the forget gate, information of less importance has values
closer to 0, and information of greater importance is closer to
1 [11]. The more important information is remembered, and
the less important information is forgotten by the memory
cell. In the input gate, the sigma normalized data is multiplied
against the tanh vector to obtain useful information about
the input. In the output gate, the tanh vector is run through
the sigmoid function. This is done to determine what data
to output and send as input to the next cell. [7]
Additionally, in Figure 2 the lines and arrows that are

outside of the memory cell represent connections to other
nodes or hidden states within the RNN.

2.3 Deep Recurrent Neural Networks using LSTM
A DRNN is similar to an RNN, with DRNNs having multiple
hidden layers to process each item in a sequence. DRNNs
allow for the learning of complex feature relationshipswithin
a dataset [2]. In the context of this paper, DRNNs are used
to classify sequential data.

2.4 Support Vector Machines and Linear
Discriminant Analysis

Support vector machines (SVMs) and linear discriminant
analysis (LDA) are methods used to classify data.
SVMs find the optimal hyperplane that maximizes the

distance between classes in a binary classifier [12]. Like
a straight line separates data in a two-dimensional space,
an 𝑛-dimensional hyperplane separates data in an (𝑛 + 1)-
dimensional space. Figure 3 is an example of how an SVM
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Figure 3. Support Vector Machine demonstrating the hyper-
plane as a line separating two classes [16]

Figure 4. Data Projected onto a 2D space before LDA [8]

works. The hyperplane separates the two classes of data
where the margin between the two is the largest possible.

LDA is used when a dataset has multiple classes to classify
the data into. LDA accomplishes this by finding combina-
tions of features and the labels of the data to maximize the
distance between the mean of the classes and to minimize
the variance within a class. The data is then projected onto
a one-dimensional space and classified. [8]
In Figure 4, the red line is where the mean between the

two classes is maximized, and the variation within the classes
is minimized. The data points are then taken and projected
onto a one-dimensional space for classification.

Figure 5. Data projected onto a 1D space after LDA (adapted
from [8])

Figure 6. Spike Encoded Data where each spike signifies a
point in time where [5]

3 Spiking Neural Networks
SpikingNeural Network (SNN) design can vary greatly. There
are many different methods of implementing the different
parts of an SNN. In this paper, we will focus on SNNs as
applied to prosthetics.
SNNs use sequential data as input. However, unlike the

DRNNs described earlier, SNNs use sequences of discrete
events (or spikes) as input [15]. This requires data to be
encoded to represent where, in time, the value of the data
reaches a predefined threshold. These are known as Spike
Trains. For example, Garg et al. [5] calculate the amplitude of
an electromyographic signal across time, and if the difference
between two consecutive time samples’ amplitudes exceeds
a predefined threshold, a spike is labeled at that time. They
split the signals into two different inputs: one for upward
spikes and one for downward spikes. An abstract example
of what this spike-encoded data looks like can be found in
Figure 6. Each vertical line is a spike that represents where,
in time, the difference in amplitude was significant.

The spike-encoded data is fed into a network of intercon-
nected nodes called a reservoir.

Reservoirs behave like RNNs in that nodes can output back
to themselves as well as their connected nodes [5]. There
are various methods of training the weights on the edges
of an SNN reservoir [15]. In Garg et al. [5], the weights are
adjusted so that the branching factor of each node reaches a
target value; in the case of Garg et al., this value is one. At a
branching factor of one, when a node spikes, it should result
in the node effectively only outputting to one other node
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Figure 7. Reservoir Topology used in Garg et al. [5]

even with other connections [5]. This is known as critical
plasticity.

The reservoir’s topology (or shape) is important. The con-
nections between any two given nodes are random, with the
probability being based on the distance between the nodes.
For example, in Garg et Al. [5], a small-world-like topology
is used. The nodes are arranged in the way seen in Figure
7. The different color edges in Figure 7 represent different
types of connections. The details of these connections are
outside the scope of this paper, for details see Garg et al. [5].

In SNNs, the nodes are inspired by biological neurons. The
nodes in SNNs do not typically output immediately. Rather,
a node takes in input and updates its internal state until it
reaches a threshold. At this point, the node then fires off
a signal to the next node, known as spiking, and resets its
threshold to a predefined base value. These thresholds only
adjust as data is fed through the network. As a node receives
more input, the threshold needed to activate the node is
increased. These are known as Leaky Integrate-and-Fire (LIF)
nodes. The opposite is true for LIF nodes as well. The less
a node is activated, the lower the threshold to activate the
node becomes.
Once the input data has been processed by the reservoir,

the state of the nodes is taken as a vector. This vector is then
input into a classifier, for example, SVM or LDA [5]. The
classifier outputs the class of the gesture the prosthetic user
intends.

4 Data and Results
4.1 The Datasets
Surface Electromyography measures the electric activity of a
muscle’s response after being stimulated by a nerve through
the skin. Both machine learning methods discussed in this
paper use surface Electromyographic (EMG) signals as input
data. Surface EMG is often used to measure a person’s muscle
movement intentions as it is non-invasive and cost-effective.
An option for measuring EMG signals is the Myo armband, a
commercially available device. The Myo armband has eight
sensors that are capable of measuring EMG signals through

the skin. Both methods discussed use datasets collected with
the Myo armband. [2, 5].
The datasets used for the two methods are different. The

DRNN uses a dataset consisting of four hand gestures (Okay,
Rock, Paper, Scissors) and a dataset consisting of seven ges-
tures (Resting hand, Clenched hand, Wrist flexion, Wrist
extension, Radial deviation, Lunar deviation, Palm exten-
sion) [2]. The SNN uses a Roshambo dataset consisting of
three gestures (Rock, Paper, Scissors) [5] and a dataset of
five gestures named “Sensor fusion (EMG)” (Pinky, Elle, Yo,
Index, Thumb) [4, 5].

4.2 Result Metrics
The metrics used for the DRNN are defined for binary classi-
fiers. When used for multi-class classifiers, the metrics are
broken up into individual classes. For example, a data set
with three classes, “rock,” “paper,” and “scissors,” is broken
into three binary classifier problems; “rock” or “not rock,”
“paper” or “not paper,” “scissors” or “not scissors.”

The number of data points labeled as a class and classified
correctly as that class is known as the True Positive (TP). For
example, when looking at the TP of the class “rock”, the data
points labeled as “rock”, and are correctly classified as “rock”
is the TP. The number of data points correctly classified
as not belonging to a class is the True Negative (TN). For
example, when looking at the TN of the class “rock”, the data
points correctly labeled as not rock is the TN. The number
of data points that were incorrectly classified as a different
class is known as the False Negative (FN). For example, when
looking at the FN of the class “rock”, data points labeled as
“rock”, but are incorrectly classified as not “rock” is the FN.
The number of data points that are not labeled as a class
but are incorrectly classified as in that class is known as
the False Positive (FP). For example, when looking at the FP
of the class “rock”, data points labeled as “scissor” but are
incorrectly labeled as “rock” is the FP. [9]
The results for DRNN with LSTMs are evaluated using

precision, recall, and f1-score as metrics. In multi-class prob-
lems, it is important to remember that these metrics are
calculated as one class versus all other classes, resulting in
a score for each class in a dataset. For example, using the
dataset of the DRNN, “okay”, “rock”, “paper”, and “scissor”
will have individual precision, recall, and F1-scores.

Recall is the TP divided by the TP plus FN.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision is the TP divided by the TP plus FP.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1 Score uses both recall and precision.

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Figure 8. Results of the DRNN trained on the four gesture dataset adapted from [2]

Figure 9. Results of the DRNN trained on the seven gesture dataset adapted from [2]

From Alimam et al. [2], the multi-classification model’s
results for the four-gesture dataset are shown in Figure 8.
The DRNN does quite well with this dataset. It’s able to
classify the “okay” gesture very well, with a score of 0.98 in
all three metrics. The results of the seven-gesture dataset
are shown in Figure 9. The DRNN doesn’t perform quite as
well with this dataset. It struggled to classify the resting and
clenched hand, with scores of 0.72 or lower. On the rest of
the dataset, it scored in the high 0.90s. Unfortunately, Aliman
et al. [2] do not explore why certain gestures perform worse
than others.
The SNN from Garg et al. [5] uses accuracy as its met-

ric. Accuracy is the total number of correctly classified data

points divided by the total number of data points [9].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑇𝑜𝑡𝑎𝑙

The results of the SNN used by Garg et Al. can be found in
Table In Figure 10, the results of the Roshambo dataset and
the sensor fusion dataset are shown. Additionally, Garg et al.
[5] experimented on the datasets using other SNN methods.
These other methods are outside the scope of the paper, but
it should be mentioned that the SNN looked at earlier in the
paper (Reservoir with critical plasticity) performs the best
overall. On the Roshambo dataset, the SNN has an accuracy
of about 88 percent. The SNN doesn’t perform quite as well
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Figure 10. Results of the SNN [2]

on the sensor fusion dataset, with only an accuracy of 70.6
percent.

5 Conclusion
The two neural network methods can’t be compared because
they use different metrics. Looking at the scores of the DRNN,
it may be tempting to conclude that the DRNN is better as
it has higher scores. However, when calculating Recall and
Precision, incorrectly classified data is not taken into account
when looking at a specific class. For example, when looking
at the recall for “rock”, if a “scissor” is incorrectly classified
as “paper,” this isn’t reflected in the score for “rock.” This
error will eventually be taken into account when calculating
scores for “scissor” and “rock.” Since accuracy is a measure of
correctness on the dataset as a whole these incorrect classifi-
cations are always accounted for. Also, the different data sets
have different numbers of classes. When a data set has more
classes, it adds more complexity to classification, which can
result in lower scores [1].
Did one method do better than the other? It’s difficult to

determine an answer due to differingmetrics and data. It may
be that both methods are similar in ability. DRNNs expand
upon more common NN methods, such as RNNs and LSTM,
while SNNs offer a more unique approach. Both methods
offer promising ventures into improving the recognition of
gestures using EMG readings though. Whether these meth-
ods are improved upon or new methods are used, further
research into the recognition of gestures using EMG readings
can lead to more advanced and lifelike prosthetics.
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