
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Zerui Lyu

Deep Reinforcement Learning for Non-Player
Character Navigation in Open-World Games

Zerui Lyu
lv000013@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
The incorporation of Deep Reinforcement Learning (DRL)
into Non-Player Character (NPC) navigation has changed
how NPCs navigate in a complex game environment. DRL
combines classic reinforcement learning with the use of neu-
ral networks.. Gomes, Vidal, et. al [4] explored the effective-
ness of this approach using four different neural network
(NN) architectures in a DRL system utilizing the Advantage
Actor-Critic (A3C) algorithm . This paper explores the mech-
anisms of DRL, providing background for the neural network
architectures used by Gomes, Videl et.al and describes the
important details of the A3C algorithm which was used to
train the NPCs in their study. Their result shows that the
DRL system is efficient for the NPC navigation and that the
simplest NN architecture was the most effective.

Keywords: Deep Reinforcement Learning (DRL), Feedfor-
ward, Long-Short Term Memory(LSTM), Actor-Critic (A3C)
algorithm, reward functions

1 Introduction
Non-Player Characters are integral to open-world games,
enriching the player’s experience through interaction. Tra-
ditionally, NPC navigation relied on Waypoint Graphs (a
method of connecting predefined points to form a naviga-
ble path)[14] and NavMeshes which is a collection of two-
dimensional convex polygons (a polygon mesh) that define
which areas of an environment are traversable by agents[2].
While these approaches were once effective for simpler game
environments, the increasing complexity of modern game
worlds, with their intricate terrains, dynamic obstacles, and
complicated gameplay, has exposed the limitations of these
traditional systems. In response to these limitations, Deep Re-
inforcement Learning (DRL) has emerged, allowing NPCs to
learn and adapt in complex game environments. The authors,
Gilzamir Gomes, Creto A. Vidal, Joaquim B. Cavalcante-
Neto, and Yuri L. B. Nogueira[4], applied deep reinforcement
learning techniques to train NPCs for navigation. This paper
delves into the mechanisms of Deep Reinforcement Learning,
with a focus on the use of two configurations of the deeper
layers: feedforward and Long-Short Term Memory, reward
function and A3C algorithm. This paper is organized as fol-
lows: in Section 2 , we will discuss a detailed background on

traditional NPC navigation methods, neural networks, deep
learning, reinforcement learning . In Section 3, the paper in-
troduces the methods being used for training the NPC, such
as configurations of the deeper layers, the Asynchronous
Advantage Actor-Critic algorithm and the reward function.
Section 4 explores case studies on different neural network
configurations. Finally, in Section 5, we will compare both
the training phase and the testing phase results among differ-
ent neural network configurations and discuss the efficiency
of the DRL system.

2 Background
Understanding the core technologies behind Deep Reinforce-
ment Learning (DRL) is essential to appreciate its impact on
NPC navigation in open-world games. This section provides
an overview of neural networks, reinforcement learning prin-
ciples, and how adaptive learning processes occur within
dynamic virtual environments. Furthermore, it examines
the evolution of traditional NPC navigation systems, such
as Waypoint Graphs and NavMeshes, outlining their opera-
tional mechanisms and limitations compared to DRL-based
approaches.

2.1 NPC Navigations Methods in the past

Figure 1. Waypoint Graph and NavMesh [11]

Two main methods have traditionally been used for NPC
navigation [4]. The first is the Waypoint Graph, where devel-
opers manually place points on the map and connect them.



Deep Reinforcement Learning for Non-Player Character Navigation in Open-World Games

This method can cause navigation issues, especially if hu-
man errors occur during point placement[4]. The second,
NavMesh, divides the map into convex regions, allowing eas-
ier navigation. However, NavMesh struggles with dynamic
environments, as changes like destructible objects require up-
dates to the mesh[4]. Due to these limitations, both methods
have become less suitable for complex and dynamic game
environments.

2.2 Neural Networks
A neural network is an approach within the field of artificial
intelligence, used to teach computers to process data in a
way that mimics the human brain [3]. A neural network
consists of a set of interconnected layers. Layers consist of
a sequence of numeric values, graphically represented by
circle known as nodes or neurons.

1. Input Layer: This layer receives raw data and passes
it to the next layers in the network. Each input neuron
represents a feature or element of the data.

2. Hidden Layers: These intermediate layers apply com-
plex transformations to the data using non-linear func-
tions.

3. Output Layer: This final layer processes the trans-
formed data from the hidden layers and produces the
network’s prediction or classification result.

A Feedforward Neural Network (FNN) is a type of ar-
tificial neural network where information moves only in
one direction, from the input layer through any hidden lay-
ers and finally to the output layer [9]. Figure 2 illustrates
a feedforward neural network specifically designed to map
environmental data to potential NPC actions. The network
consists of an input layer with four features, a hidden layer,
and an output layer.

Figure 2. Illustration of a feedforward neural network with
input, hidden, and output layers (The input layer on the left,
the hidden layers in the middle, and the output layer on the
right).

Figure 2 illustrates how data flows through the network:
• Input Layer: This layer takes in environmental data,

including "Distance to Obstacle," "Distance to Enemy,"
"Distance to Goal," and "Resource Availability." Each
input node corresponds to one of these features, form-
ing the initial layer of the network.

• Hidden Layers: Hidden layers process inputs by ap-
plying weights, which represent the importance of

connections between neurons and influence how in-
formation flows through the network.

• Output Layer: The output layer contains three nodes
representing potential actions: "Move Towards Goal,"
"Avoid Obstacle," and "Collect Resources." The network
outputs a probability distribution of actions known as
a policy.

Activation Functions. Activation functions decide if a neu-
ron should pass its signal forward, helping the model handle
complex patterns.

• ReLU (Rectified Linear Unit): An activation func-
tion used in hidden layers that outputs the input if
it’s positive or zero if it’s negative. In NPC navigation,
ReLU helps the model quickly learn features like de-
tecting obstacles or targets by focusing on important
signals.

• Softmax: A function applied in the output layer to
convert raw scores into probabilities. For example, in
NPC navigation, Softmax can assign probabilities to
actions like "move forward" (70%), "turn left" (20%), or
"jump" (10%).

2.2.1 Neural Networks Training. Training a neural net-
work is the process of using training data to find the appro-
priate weights of the network for creating a good mapping
of inputs and outputs[5]. The following explanation is based
on the work presented in[5].

1. Forward Propagation: Input data passes through the
network layer by layer. Each layer processes the data
using weighted connections and activation functions.

2. Loss Calculation: The loss function measures the
error between the predicted output and the target
value.
• Predicted Output: The output generated by the
neural network based on its current weights and
input data. For example, in NPC navigation, the
predicted output would be the action probabilities
(e.g., move forward or avoid obstacle).

• Target Value: The desired value that the network
aims to match. In DRL systems there are not spe-
cific target value for the NN training, instead the
interaction of the NPC with its environment cre-
ates rewards and valuations that serve the same
role. This is discussed in greater detail in Sec-
tion 3.6.

3. Backward Propagation: The error calculated by the
loss function is propagated backward through the net-
work to compute gradients, which are measures of
how much a weight or bias contributes to the error,
with respect to each weight and bias.

4. Weight Updates: In training neural networks, the
optimization process aims to find a set of weights𝑊
that minimize the loss function 𝐿, which measures



Zerui Lyu

the error between the predicted and expected outputs.
Gradient Descent (GD) is the most widely used op-
timization algorithm for this purpose. The process
involves taking iterative steps in the direction oppo-
site to the gradient of 𝐿 with respect to 𝑊 . In the
policy network, the weights are updated to maximize
an expected reward (Section 3.7.1, bullet point e Pol-
icy Update) instead of minimizing a loss function, but
the mechanisms are almost identical to GD. In the
value network the update rules use a traditional GD
approach.

2.3 Recurrent Neural Network
Recurrent neural networks (RNNs) contains layers that store
a history of their past values [13]. Their built-in memory en-
ables RNNs to retain information from earlier time steps and
apply it in later steps. Unlike feedforward neural networks,
which process each input independently, RNNs include loops
in their structure, allowing information to be passed forward
and built on previous inputs.
Long Short-Term Memory (LSTM) networks, a type of

RNN, use gates to selectively retain or discard information, al-
lowing them to remember important patterns over extended
sequences [7]. In NPC navigation, LSTMs are used for cap-
turing temporal dependencies, such as tracking the sequence
of past movements or predicting future positions based on
the previous movements.

2.4 Reinforcement Learning
Reinforcement learning (RL) is an interdisciplinary area of
machine learning and optimal control concerned with how
an intelligent agent should take actions in a dynamic envi-
ronment in order to maximize a reward signal[15]. Unlike
supervised learning, where the agent learns from labeled
data, RL emphasizes decision-making, where the agent must
choose a series of actions that affect both its environment
and future choices.
As illustrated in Figure 3, the RL model consists of key

elements: an agent, a state, an action, an environment, and a
policy.

The state (𝑆𝑡 ) represents the current situation or condition
of the environment as observed by the agent. It encapsu-
lates all the relevant information needed to make a decision.
The environment is everything external to the agent that
the agent interacts with, and it evolves based on the agent’s
actions. An action (𝐴𝑡 ) is a decision or move made by the
agent to influence the environment. A policy is the agent’s
strategy for choosing actions based on the current state. It
can be learned through experience as the agent attempts to
maximize cumulative rewards. After each action, the agent
receives feedback from the environment in the form of a re-
ward (𝑅𝑡 ), indicating how successful the action was in achiev-
ing the desired goal, such as reaching a target or avoiding
obstacles in NPC navigation.

Figure 3. A Visual Representation of the Reinforcement
Learning Model [12]

2.5 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines the strengths
of neural networks with the decision-making process of rein-
forcement learning[10]. Unlike traditional supervised learn-
ing, DRL operates through trial and error, where an agent
interacts with the environment to learn optimal actions.

Deep reinforcement learning (Section 3) involves the use
of two neural networks. One is used for developing an ef-
fective policy (the policy network) for driving NPC actions.
The other is used to assess the expected value accessible to
the NPC (the value network) based upon the current state
of the game system. The authors of the paper used a single
neural network with two output layers (See Section 3.3) to
perform both calculations, but it’s easier to understand the
process if the two NN are treated as being separate.
In NPC navigation, DRL enables agents to navigate com-

plex environments by learning from rewards and penalties.
For instance, an NPC learns to avoid obstacles, and reach a
target location by maximizing cumulative rewards through
repeated interactions with the game world. The Section 3.6.1
introduces how rewards influence the NPC’s behaviors.

3 Method
3.1 Linear and Visual Data Collection
The NPC collects two types of inputs: linear data and 2D
visual data. A linear sensor gathers spatial and directional
information, including:

• Distance Vector 𝑑𝑡 : Unit vector pointing from the
agent to the target.

• Orientation 𝛿𝑡 : Alignment between the agent’s view
and target direction.

• Contact Status 𝑆𝑡 : Indicates if the agent is grounded
or airborne.

• Touch Signal 𝑇𝑡 : Signals contact with walls or the
target.



Deep Reinforcement Learning for Non-Player Character Navigation in Open-World Games

The 2D visual sensor generates a 30 × 30 matrix at each
timestep using ray-casting to capture the agent’s immediate
visual field.

3.2 Features Extraction
After collecting the linear data and the visual data, feature ex-
tractors need be used to process the raw data and simplify the
complexity of the input data. There are two feature extrac-
tors in the neural network: a convolutional bidimensional
feature extractor (a neural network layer that processes 2D
data by applying filters to detect patterns) for processing the
visual data, and a linear feature extractor for processing the
input data. After the features extraction stage, The input fea-
tures are concatenated to be processed by the deeper layers
(See Figure 4)[4].

3.3 Two Configurations of the Deeper Layers
After feature extraction, the processed data feeds into deeper
layers for advanced processing. These deeper layers use two
distinct configurations designed to handle different levels of
environmental complexity. Each configuration produces two
outputs:

1. Value (1 Linear Unit): Represents the expected re-
ward for the current state. This helps the agent evalu-
ate the desirability of a state and make decisions that
maximize cumulative rewards.

2. Actions (6 Softmax Units): Represents the proba-
bilities of six possible actions to guide the agent’s
decisions. The six actions are: Forward, Backward,
Turn Left, Turn Right, Jump, Jump Forward

3.4 Feedforward Configuration (Base Model)
The simpler configuration, shown in Fig. 4, employs tradi-
tional fully connected (dense) layers to process the extracted
features and directly produce the two outputs (value and
actions).

Figure 4. Feedforward Neural Network Configuration[4]

3.5 LSTM Configuration (Sequential Memory Model)
The more advanced configuration, shown in Fig. 5, incorpo-
rates two stacked Long Short-Term Memory (LSTM) layers.

• Key Features:
– Sequential Memory: Retains relevant past infor-

mation, helping the agent recognize patterns over
time.

– Dynamic Adaptability:Adapts to changes in the
environment, such as obstacles or target shifts.

• Applications: The LSTM model has been shown to
improve performance in complex, dynamic environ-
ments like NPC navigation tasks [7].

Figure 5. LSTM Neural Network Configuration [4]

3.6 Agent’s Training Methodology and
Reinforcement Process

The NPC in this study is trained using the Asynchronous
Advantage Actor-Critic (A3C) algorithm [8]. The A3C
algorithm’s structure consists of two key components: the
Actor and the Critic networks. Together, these networks
allow the NPC to optimize navigation by iteratively adjusting
weights based on rewards, reinforcing actions that lead to
successful outcomes.

3.6.1 Reward Function for Optimizing Navigation.
The reward function provides feedback to the NPC’s learn-
ing process, encouraging efficient navigation behavior while
penalizing inefficient movements. Inspired by prior work [6],
the reward function at each time step, 𝑅𝑡 , is designed to
balance progress toward the goal, penalize inefficiency, and
reward goal completion. The function is defined as:

𝑅𝑡 = max
(

min
∀𝑖∈[0,𝑡−1]

𝐸 (𝑡, 𝑖), 0
)
−𝛼 + 100 · touch(𝑎𝑔𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙),

(1)
where:

• 𝐸 (𝑡, 𝑖) = dist𝑖 (𝑎𝑔𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙) − dist𝑡 (𝑎𝑔𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙):
– Measures the change in distance to the goal, from

a previous time step 𝑖 to the current time step 𝑡 .
– A positive 𝐸 (𝑡, 𝑖) indicates the agent has moved

closer to the goal.
– A negative 𝐸 (𝑡, 𝑖) indicates the agent has moved

further away.
• 𝛼 : Represents a penalty for each action taken, discour-
aging unnecessary or inefficient movements.



Zerui Lyu

• 100 · touch(𝑎𝑔𝑒𝑛𝑡, 𝑔𝑜𝑎𝑙): Grants a reward of 100 if the
agent successfully reaches the goal, reinforcing goal
completion behavior.

3.7 Two-Stage Training Process
The training process of the NPC is divided into two stages
of increasing complexity, each with a specific success rate
requirement. Success rate is defined as the percentage of
episodes in which the NPC successfully reaches its target
within a set distance and action limit. The agent successfully
learned to navigate a scene with ramps, walls, and stairs,
avoiding obstacles and efficiently reaching its target despite
potential wandering in open spaces [4].

Figure 6. Actor Network and Critic Network [1]

3.7.1 Easy Navigation Training. Setup: In the initial
stage, the target is positioned within 4.5 units of distance
from the NPC in a simplified, obstacle-free environment. This
scenario enables the NPC to quickly learn basic navigation
skills. Training continues until the NPC achieves a success
rate of 50%, meaning it successfully reaches the target in at
least half of the episodes. An episode refers to a single trial
or attempt where the NPC starts from a specific position and
tries to reach the target within the defined environment.

Training Process:

1. Initial State and Actor’s Decision: The NPC ob-
serves its surroundings and inputs its current state
(𝑆𝑡 )—for example, its distance to the target. The Actor
(policy network) processes this state and outputs a
probability distribution over six possible actions (e.g.,
“move forward” or “turn left”). The action with the
highest probability is selected and executed.

2. Taking Action and Receiving Reward: Based on
the selected action (𝐴𝑡 ), the NPC interacts with the en-
vironment. If the action improves its position (e.g., re-
duces distance to the goal), the environment provides
a positive reward (𝑅𝑡 ). For example, moving closer to
the target might yield 𝑅𝑡 = 2.5.

3. Critic’s Evaluation: The Critic (value network) eval-
uates the new state (𝑆𝑡+1) after the action is taken and
predicts its value (𝑉 (𝑆𝑡+1)), which represents the ex-
pected future reward from this state. For instance, the
Critic might assign 𝑉 (𝑆𝑡+1) = 1.0.

4. Calculating Advantage: The advantage (𝐴(𝑆𝑡 , 𝐴𝑡 ))
quantifies how much better or worse the action per-
formed compared to the Critic’s prediction:

𝐴(𝑆𝑡 , 𝐴𝑡 ) = 𝑅𝑡 −𝑉 (𝑆𝑡+1)

For example, if 𝑅𝑡 = 2.5 and 𝑉 (𝑆𝑡+1) = 1.0, then
𝐴(𝑆𝑡 , 𝐴𝑡 ) = 1.5, indicating that the action was ben-
eficial.
• A positive advantage (𝐴 > 0) reinforces the action,
meaning it was more effective than expected.

• A negative advantage (𝐴 < 0) discourages the ac-
tion, indicating it was less effective than expected.

5. Policy Update: Using the advantage 𝐴(𝑆𝑡 , 𝐴𝑡 ), the
weights of Actor network is updated to produce a
reliable policy:

Δ𝜃 = 𝛼 · 𝐴(𝑆𝑡 , 𝐴𝑡 ) · ∇𝜃 log𝜋𝜃 (𝐴𝑡 |𝑆𝑡 )

where:
• Δ𝜃 : The change in the Actor’s weights.
• 𝛼 : The learning rate, controlling the update mag-
nitude.

• ∇𝜃 log𝜋𝜃 (𝐴𝑡 |𝑆𝑡 ): The gradient of the log-probability
of the chosen action.

For example, if “move forward” yields a positive advan-
tage, the probability of selecting this action in similar
states is increased in subsequent iterations.

6. Critic Update: Simultaneously, the Critic is trained
to minimize the difference between its predicted value
(𝑉 (𝑆𝑡+1)) and the actual reward (𝑅𝑡 ), using a loss func-
tion:

𝐿(𝜃𝑐 ) =
1
2
(𝑅𝑡 −𝑉 (𝑆𝑡+1))2

This updates the weights of Critic network and it
increases Critic’s accuracy in estimating state values
over time.

Although the authors combined both actor and value net-
work into a single NN, the two different output layers allow
the weight updates to occur separately in a way that allows
their NN to fulfill both roles. The authors are silent on the ad-
vantage gained by having the two networks sharing weights.

3.7.2 Progressive Training for Complexity. Once the
NPC achieves a 50% success rate in the easy navigation



Deep Reinforcement Learning for Non-Player Character Navigation in Open-World Games

scenario, the training progresses to more complex environ-
ments.

4 Comparison of Configurations
In evaluating the effectiveness of the Deep Reinforcement
Learning (DRL) system for NPC navigation, four configu-
rations were tested to assess the impact of different NN
architectural choices and state information on the NPC’s
performance. The details of the four configurations of the
policy network are summarized in Table 1 based upon the
work presented in [4]. Table 1 summarizes these configura-
tions:

Table 1. Reinforcement Learning System Configurations

Configuration Architecture State Information
Base Feedforward Includes animation status
VAR1 Feedforward Excludes animation status
VAR2 LSTM Includes animation status
VAR3 LSTMs Includes animation status

Note: Animation status refers to jump status and NPC height.

Each configuration represents a distinct approach:
• Base Configuration: A feedforward (FF) neural net-
work incorporating animation status (jump status and
NPC height) as part of the state. Serves as a baseline
in this experiment.

• VAR1: Similar to the base, but excludes animation
status information to examine its impact on the NPC’s
adaptation.

• VAR2: Uses a single-layer Long Short-Term Mem-
ory (LSTM) network with animation status included,
leveraging temporal information to assess the effect
of memory on navigation.

• VAR3: A two-layer stacked LSTM network (128 neu-
rons per layer) to capture complex temporal dependen-
cies, hypothesizing improved navigation by retaining
more historical data.

All configurations were trained for 6,000 episodes using
identical initial seeds to ensure fair comparison. This com-
parison reveals the influence of different neural network
architectures and state information on the NPC’s ability to
navigate effectively using the A3C algorithm.

5 Results and Conclusion
The experimental evaluation demonstrates the effectiveness
of the proposed Deep Reinforcement Learning (DRL) sys-
tem in training Non-Player Characters (NPCs) to navigate
complex 3D environments with point-to-point navigation
objectives. Figure 7 illustrates the evolution of the success
rate, represented using a moving average, for each configu-
ration over the course of 6,000 episodes during training. The
base configuration achieved the highest success rate both in

Figure 7. The success rate’s moving average of the last hun-
dred episodes during training of the agents [4].

Figure 8. The success rate’s moving average during testing
of the agents [4].

terms of stability and final performance. In contrast, VAR1
shows a slower learning rate.

The configurations utilizing LSTM layers (VAR2 andVAR3)
exhibited lower success rates compared to the feedforward
configurations. This result aligns with the hypothesis that,
for this navigation task, the inclusion of LSTM (which mod-
els temporal dependencies) does not significantly enhance
performance. The LSTM configurations may have added un-
necessary complexity.
During the test phase, it is natural that the success rate

at the beginning is high and decreases with time until it
stabilizes (see Figure 8), given that the probability of the
NPC making a mistake increases with time.

In conclusion, the results show that the feedforward neu-
ral network configuration with animation state information
(Base) was the most efficient and effective model tested by
the authors[4]. The problem’s partially observable nature
ensures the agent consistently has access to all relevant in-
formation, making LSTM memory redundant in this sce-
nario. Moreover, LSTMs may require more training to reach
their full potential. Future work could explore scenarios with
greater sequential dependencies, where LSTM architectures
may provide a stronger advantage.



Zerui Lyu

Acknowledgments
I would like to thank Professor Peter Dolan for invaluable
guidance throughout thewriting process, and Professor Elena
Machkasova for helpful feedback on my paper. Additionally,
I’d like to thank Scott Steffes for taking the time to review
my paper.

References
[1] 2024. Actor-Critic Methods. https://wikidocs.net/175903 Accessed:

2024-11-16.
[2] Wikipedia contributors. 2024. Navigation mesh. https://en.wikipedia.

org/wiki/Navigation_mesh. Accessed: 2024-12-02.
[3] Eastgate Software. 2023. Neural Networks Explained. https://eastgate-

software.com/neural-networks-explained/ Accessed: 2024-10-28.
[4] Gilzamir Gomes, Creto A. Vidal, Joaquim B. Cavalcante-Neto, and Yuri

L. B. Nogueira. 2021. Two Level Control of Non-Player Characters
for Navigation in 3D Games Scenes: A Deep Reinforcement Learning
Approach. In 2021 20th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames). 182–190. https://doi.org/10.1109/
SBGames54170.2021.00030

[5] Shih-Chia Huang and Trung-Hieu Le. 2021. Chapter 2 - Neural net-
works. In Principles and Labs for Deep Learning, Shih-Chia Huang and
Trung-Hieu Le (Eds.). Academic Press, 27–55. https://doi.org/10.1016/
B978-0-323-90198-7.00006-9

[6] Miguel Liu, Abhinav Gupta, and Saurabh Gupta. 2020. Learning
by Cheating: Using Imitation Learning to Train Agents for Tactical
Navigation. arXiv preprint arXiv:2011.04764 (2020).

[7] Wookhee Min, Bradford Mott, Jonathan Rowe, and James Lester. 2017.
Deep LSTM-Based Goal Recognition Models for Open-World Digital
Games. In Proceedings of the AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, Vol. WS-17-13. AAAI, 851–858.
[8] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex

Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783 (2016).

[9] Sasirekha Rameshkumar. 2023. Deep Learning Basics -
Part 10: Feed Forward Neural Networks (FFNN). https:
//medium.com/@sasirekharameshkumar/deep-learning-basics-
part-10-feed-forward-neural-networks-ffnn-93a708f84a31 Accessed:
2024-10-28.

[10] P. V. Rao, V. B., M. Manjeet, A. Kumar, M. Mittal, A. Verma, and D.
Dhabliya. 2024. Deep Reinforcement Learning: Bridging the Gap with
Neural Networks. International Journal of Intelligent Systems and
Applications in Engineering 12, 15s (2024), 576–. https://ijisae.org/
index.php/IJISAE/article/view/4792

[11] ResearchGate. [n. d.]. Different representations of waypoint graph
and NavMesh. https://www.researchgate.net/figure/Different-
representations-of-waypoint-graph-and-NavMesh_fig2_303369993.
Accessed: 2024-10-28.

[12] Spiceworks. [n. d.]. What Is Reinforcement Learning? https:
//www.spiceworks.com/tech/artificial-intelligence/articles/what-is-
reinforcement-learning/. Accessed: 2024-10-28.

[13] Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado Van Hasselt, David
Silver, Satinder Singh, and Rémi Munos. 2019. Discovery of useful
questions as auxiliary tasks. arXiv preprint arXiv:1912.05911 (2019).

[14] N.M. Wardhana, H. Johan, and H.S. Seah. 2013. Enhanced waypoint
graph for surface and volumetric path planning in virtual worlds. The
Visual Computer 29 (2013), 1051–1062. https://doi.org/10.1007/s00371-
013-0837-x

[15] Wikipedia contributors. 2024. Reinforcement learning. https://en.
wikipedia.org/wiki/Reinforcement_learning. https://en.wikipedia.
org/wiki/Reinforcement_learning Accessed: 2024-10-28.

https://wikidocs.net/175903
https://en.wikipedia.org/wiki/Navigation_mesh
https://en.wikipedia.org/wiki/Navigation_mesh
https://eastgate-software.com/neural-networks-explained/
https://eastgate-software.com/neural-networks-explained/
https://doi.org/10.1109/SBGames54170.2021.00030
https://doi.org/10.1109/SBGames54170.2021.00030
https://doi.org/10.1016/B978-0-323-90198-7.00006-9
https://doi.org/10.1016/B978-0-323-90198-7.00006-9
https://medium.com/@sasirekharameshkumar/deep-learning-basics-part-10-feed-forward-neural-networks-ffnn-93a708f84a31
https://medium.com/@sasirekharameshkumar/deep-learning-basics-part-10-feed-forward-neural-networks-ffnn-93a708f84a31
https://medium.com/@sasirekharameshkumar/deep-learning-basics-part-10-feed-forward-neural-networks-ffnn-93a708f84a31
https://ijisae.org/index.php/IJISAE/article/view/4792
https://ijisae.org/index.php/IJISAE/article/view/4792
https://www.researchgate.net/figure/Different-representations-of-waypoint-graph-and-NavMesh_fig2_303369993
https://www.researchgate.net/figure/Different-representations-of-waypoint-graph-and-NavMesh_fig2_303369993
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-reinforcement-learning/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-reinforcement-learning/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-reinforcement-learning/
https://doi.org/10.1007/s00371-013-0837-x
https://doi.org/10.1007/s00371-013-0837-x
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning

	Abstract
	1 Introduction
	2 Background
	2.1 NPC Navigations Methods in the past
	2.2 Neural Networks
	2.3 Recurrent Neural Network
	2.4 Reinforcement Learning
	2.5 Deep Reinforcement Learning

	3 Method
	3.1 Linear and Visual Data Collection
	3.2 Features Extraction
	3.3 Two Configurations of the Deeper Layers
	3.4 Feedforward Configuration (Base Model)
	3.5 LSTM Configuration (Sequential Memory Model)
	3.6 Agent’s Training Methodology and Reinforcement Process
	3.7 Two-Stage Training Process

	4 Comparison of Configurations
	5 Results and Conclusion
	References

