Deep Reinforcement Learning for Non-Player Character Navigation in Open-World Games

Zerui Lyu (Harry)

University of Minnesota Morris

November 16, 2024

What is a Non-Player Character (NPC)

Definition

An NPC (Non-Player Character) is any character within a game that is not directly controlled by the player.

An Example of a Game Map

Overview of the Grand Theft Auto Map[4]

Outline

Introduction to NPC Navigation

- Definition and Role of NPCs
- Background: Neural Network
- Deep Reinforcement Learning Framework for NPCs
 - Input Data
 - Training with A3C Algorithm
 - Reward Function Calculation
 - Policy and Value Updates

Experiment

Conclusion

Data Collection for Agent Navigation

Data Types: The agent collects:

- Linear Data
- 2D Visual Data
- Linear Data Details:
 - Distance to Obstacle
 - Distance to Enemy
 - Distance to Goal
 - Nearby Resource

Visual Data:

2D Visual Sensor captures immediate visual field.

Input Data for NPC Navigation Example

Mini-map illustration of the

NPC in a forest environment

- Scenario: NPC navigating through GTA map with obstacles, enemies, and a target destination.
- Input Data Elements:
 - Distance to Obstacle: 5 meters Obstacle (tree) close by
 - Distance to Enemy: 15 meters Moderate threat nearby
 - Distance to Goal: 30 meters Destination (safe zone) farther away
 - Nearby Resource: 1 Resource available (e.g., food or weapon)
- Input Data: [5, 15, 30, 1]

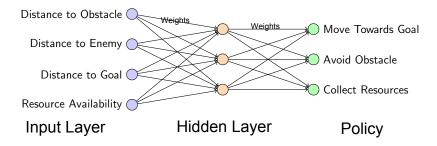
Output Decision Example

Output Layer Action Probabilities:

- Avoid Obstacle: 0.5
- Move Toward Goal: 0.35
- **Collect Resource**: 0.15

Decision: The NPC decides to avoid the nearby obstacle first.

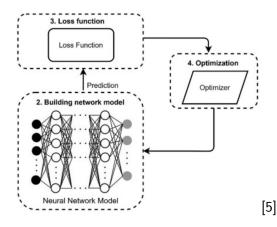
Neural Network for NPC Navigation Policy



Neural Network Processing

- Input Layer: Receives NPC data for navigation
- **Hidden Layer**: Processes input data to recognize patterns
- Output Layer: Outputs policy(A set of values over possible actions)(e.g., move forward, turn left, turn right)

Neural Network Training Process



Step 1: Prediction

 The neural network generates predictions using current weights

Step 2: Loss Calculation

- The loss function calculates the difference between predictions and actual targets.
- Step 3: Weight Update
 - The optimizer adjusts the weights using gradients to reduce the loss.

Limitations of Traditional Neural Network

Not Learning From Feedback

Setup: NPC Navigation Scenario

Input data:

- Distances to Obstacle
- Distance to the target location
- Goal: Learn optimal navigation

Initial State

Time Step 0 in State *S*_{*t*}:

- Distance to obstacle: 6 meters
- Distance to goal: 20 meters

▶ Input State: [6, 20]

Some Notations:

$$S_t A_t R_{t+1} S_{t+1}$$

Subscript t represents the time step in a sequential process

Introduction to A3C Algorithm

- Asynchronous Advantage Actor-Critic (A3C) helps an NPC learn optimal actions in complex environments.
- Example Scenario
 - The Actor suggests actions (e.g., "move forward" or "avoid obstacle").
 - ► The **Critic** evaluates the effectiveness of the actions.

Actor Network

(Proposes Actions)

Critic Network (Evaluates Actions) Actor's Initial Action and Critic's Value Estimation

Actor's Action Choices(Policy):

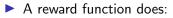
- Move toward goal Value: 0.6
- Avoid obstacle Value: 0.8

Critic's Estimated Value for Initial State V(s): 1.0

Actor Network (Proposes Actions)

Critic Network (Evaluates Actions)

Reward Function Overview



- Encourages efficient navigation
- Penalizes unnecessary movements
- Rewards goal completion

Reward Function Formula

► The reward at each time step t is defined as: $R_t = \max\left(\min_{\forall i \in [0,t-1]} E(t,i), 0\right) - \alpha + 100 \times \text{touch(agent, goal)}$

E(t, i) = dist_i(agent, goal) - dist_t(agent, goal):
Change in distance from goal (from time *i* to time *t*)

Explanation of dist:

- dist_i: Distance from the agent to the goal at a previous time step *i*.
- dist_t: Distance from the agent to the goal at the current time step t.
- Positive E(t, i): The agent got closer to the goal.
- Negative E(t, i): The agent moved further away.
- α : Penalty for previous action, $\alpha = 0.5$.
- touch(agent, goal): Returns 1 if the NPC reaches the goal, 0 otherwise.

Calculating the Advantage Function

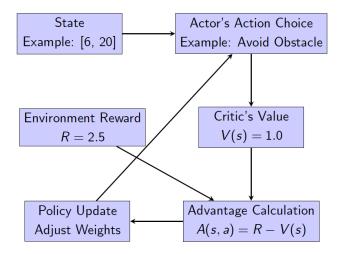
▶ The Critic calculates the advantage *A*(*s*, *a*):

$$A(s,a)=R-V(s)$$

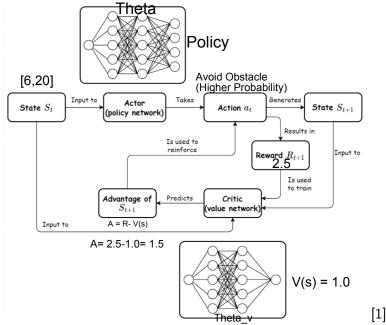
where:

- R = 2.5: Actual reward obtained
- V(s) = 1.0: Critic's estimated value for the state
- ► A(s, a) = 2.5 1.0 = 1.5: Positive advantage, reinforcing this action

A3C Process Overview for NPC Navigation



Deep Reinforcement Learning Overview



Policy Update and Weight Adjustment

Policy Update Formula:

$$\Delta \theta = \beta \nabla_{\theta} \log \left(\pi_{\theta}(a|s) \right) \cdot A(s,a)$$

Formula Breakdown:

- $\pi_{\theta}(a|s) = \text{action policy (last layer of actor NN)}$
- $\Delta \theta$: Change in Actor's weights to improve the policy.
- $\beta = 0.01$: Learning rate.
- A(s, a) = 1.5: How much better the action a performed compared to expectations.
- log $\pi_{\theta}(a|s)$: The log function works on $\pi_{\theta}(a|s)$.
- ∇_θ log π_θ(a|s): Calculates how much to adjust the policy's parameters (weights).

Iterative Learning and Final Behavior

Through repeated feedback, the Actor and Critic networks refine the NPC's navigation policy.

Final Learned Behavior:

- NPC reaches the goal efficiently
- Avoids obstacles effectively

Experiment Setup

- Objective: Demonstrate DRL system's capability in complex navigation tasks.
- ▶ Map Dimensions: 400m × 400m with a 35m height.
- Configurations Tested:
 - Base Configuration: Feedforward network with full state data.
 - **VAR1**: Feedforward network without full state data.
 - VAR2 and VAR3: LSTM networks (single and double layers).
- **Training Episodes**: 6,000 episodes per configuration.
 - Success Rate is calculated as:

 $\label{eq:success} \mbox{Success Rate} = \frac{\mbox{Number of Successful Episodes}}{\mbox{Total Number of Episodes}}$

Experimental Configurations

Table: Experimental Configurations

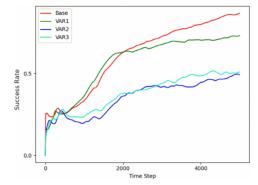
Configuration	Model Architecture	State Data Included
Base	Feedforward Network	Full state, including animation
VAR1	Feedforward Network	Without animation data
VAR2	Single-layer LSTM	Full state, including animation
VAR3	Two-layer LSTM	Full state, including animation

figureExperiment Environment[3]

Experiment Results: Training Phase

Overall Performance:

- All configurations improved in success rate during training.
- Base configuration (Feedforward) achieved the highest success rate.
- FeedForward Configurations (Base vs. VAR1)
- LSTM Configurations (VAR3 and VAR4)
- Conclusion



Training Phase Diagram Configurations[3]

Conclusion

Feedforward Models (Base, VAR1):

Performed best in training phase.

LSTM Models (VAR2, VAR3):

Lower performance

Thank You for Listening!

Any Questions?

References I

- Actor-Critic Methods. Accessed: 2024-11-16. 2024. URL: https://wikidocs.net/175903.
- [2] EGM Staff. GTA VI may have much smarter NPCs than we've ever seen. Accessed: 2024-11-16. 2024. URL: https://egmnow.com/gta-vi-may-have-much-smarternpcs-than-weve-ever-seen/.
- [3] Gilzamir Gomes et al. "Two Level Control of Non-Player Characters for Navigation in 3D Games Scenes: A Deep Reinforcement Learning Approach". In: 2021 20th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). 2021, pp. 182–190. DOI: 10.1109/SBGames54170.2021.00030.
- [4] IGN Staff. GTA 5 Interactive Map: Los Santos and Blaine County. Accessed: 2024-11-16. 2024. URL: https://www.ign.com/maps/gta-5/los-santos-blainecounty.

References II

[5] Neural Network Training - An Overview. Accessed: 2024-11-16. 2024. URL: https://www.sciencedirect.com/ topics/engineering/neural-network-training.