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What is a Non-Player Character (NPC)

[2]

Definition
An NPC (Non-Player Character) is any character within a game
that is not directly controlled by the player.



An Example of a Game Map

Overview of the Grand Theft Auto Map[4]
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Data Collection for Agent Navigation

▶ Data Types: The agent collects:
▶ Linear Data
▶ 2D Visual Data

▶ Linear Data Details:
▶ Distance to Obstacle
▶ Distance to Enemy
▶ Distance to Goal
▶ Nearby Resource

Visual Data:

▶ 2D Visual Sensor captures immediate visual field.



Input Data for NPC Navigation Example

Mini-map illustration of the

NPC in a forest environment

▶ Scenario: NPC navigating through
GTA map with obstacles, enemies,
and a target destination.

▶ Input Data Elements:
▶ Distance to Obstacle: 5 meters

Obstacle (tree) close by
▶ Distance to Enemy: 15 meters

Moderate threat nearby
▶ Distance to Goal: 30 meters

Destination (safe zone) farther
away

▶ Nearby Resource: 1
Resource available (e.g., food or
weapon)

▶ Input Data: [5, 15, 30, 1]



Output Decision Example

▶ Output Layer Action Probabilities:
▶ Avoid Obstacle: 0.5
▶ Move Toward Goal: 0.35
▶ Collect Resource: 0.15

▶ Decision: The NPC decides to avoid the nearby obstacle first.



Neural Network for NPC Navigation Policy

Distance to Obstacle

Distance to Enemy

Distance to Goal

Resource Availability

Move Towards Goal

Avoid Obstacle

Collect Resources

Neural Network Processing

▶ Input Layer: Receives NPC data for navigation

▶ Hidden Layer: Processes input data to recognize patterns

▶ Output Layer: Outputs policy(A set of values over possible
actions)(e.g., move forward, turn left, turn right)

Hidden Layer Policy

Weights
Weights

Input Layer



Neural Network Training Process

[5]

▶ Step 1: Prediction
▶ The neural

network generates
predictions using
current weights

▶ Step 2: Loss
Calculation
▶ The loss function

calculates the
difference between
predictions and
actual targets.

▶ Step 3: Weight
Update
▶ The optimizer

adjusts the
weights using
gradients to
reduce the loss.

▶ Step 4: Iteration
▶ This process

repeats until the
model achieves
satisfactory
accuracy.



Limitations of Traditional Neural Network

▶ Not Learning From Feedback



Setup: NPC Navigation Scenario

▶ Input data:
▶ Distances to Obstacle
▶ Distance to the target location

▶ Goal: Learn optimal navigation



Initial State

▶ Time Step 0 in State St :
▶ Distance to obstacle: 6 meters
▶ Distance to goal: 20 meters

▶ Input State: [6, 20]

Some Notations:

St At Rt+1 St+1

Subscript t represents the time step in a sequential process



Introduction to A3C Algorithm

▶ Asynchronous Advantage Actor-Critic (A3C) helps an
NPC learn optimal actions in complex environments.

▶ Example Scenario
▶ The Actor suggests actions (e.g., “move forward” or “avoid

obstacle”).
▶ The Critic evaluates the effectiveness of the actions.

Actor Network
(Proposes Actions)

Critic Network
(Evaluates Actions)



Actor’s Initial Action and Critic’s Value Estimation

▶ Actor’s Action Choices(Policy):
▶ Move toward goal — Value: 0.6
▶ Avoid obstacle — Value: 0.8

▶ Critic’s Estimated Value for Initial State V (s): 1.0

Actor Network
(Proposes Actions)

Critic Network
(Evaluates Actions)
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Reward Function Overview

▶ A reward function does:
▶ Encourages efficient navigation
▶ Penalizes unnecessary movements
▶ Rewards goal completion



Reward Function Formula

▶ The reward at each time step t is defined as:

Rt = max

(
min

∀i∈[0,t−1]
E (t, i), 0

)
− α+ 100× touch(agent, goal)

▶ E(t, i) = disti (agent, goal)− distt(agent, goal):
Change in distance from goal (from time i to time t)

▶ Explanation of dist:
▶ disti : Distance from the agent to the goal at a previous time

step i .
▶ distt : Distance from the agent to the goal at the current time

step t.
▶ Positive E (t, i): The agent got closer to the goal.
▶ Negative E (t, i): The agent moved further away.

▶ α: Penalty for previous action, α = 0.5.

▶ touch(agent, goal): Returns 1 if the NPC reaches the goal, 0
otherwise.



Calculating the Advantage Function

▶ The Critic calculates the advantage A(s, a):

A(s, a) = R − V (s)

where:
▶ R = 2.5: Actual reward obtained
▶ V (s) = 1.0: Critic’s estimated value for the state
▶ A(s, a) = 2.5− 1.0 = 1.5: Positive advantage, reinforcing this

action



A3C Process Overview for NPC Navigation



Deep Reinforcement Learning Overview

[1]Theta_v

A = R- V(s)

A= 2.5-1.0= 1.5

V(s) = 1.0 

Avoid Obstacle
(Higher Probability)[6,20]

Theta

Policy

2.5



Policy Update and Weight Adjustment

▶ Policy Update Formula:

∆θ = β∇θ log (πθ(a|s)) · A(s, a)

▶ Formula Breakdown:
▶ πθ(a|s) = action policy (last layer of actor NN)
▶ ∆θ: Change in Actor’s weights to improve the policy.
▶ β = 0.01: Learning rate.
▶ A(s, a) = 1.5: How much better the action a performed

compared to expectations.
▶ log πθ(a|s): The log function works on πθ(a|s).
▶ ∇θ log πθ(a|s): Calculates how much to adjust the policy’s

parameters (weights).



Iterative Learning and Final Behavior

▶ Through repeated feedback, the Actor and Critic networks
refine the NPC’s navigation policy.

▶ Final Learned Behavior:
▶ NPC reaches the goal efficiently
▶ Avoids obstacles effectively



Experiment Setup

▶ Objective: Demonstrate DRL system’s capability in complex
navigation tasks.

▶ Map Dimensions: 400m x 400m with a 35m height.
▶ Configurations Tested:

▶ Base Configuration: Feedforward network with full state
data.

▶ VAR1: Feedforward network without full state data.
▶ VAR2 and VAR3: LSTM networks (single and double layers).

▶ Training Episodes: 6,000 episodes per configuration.
▶ Success Rate is calculated as:

Success Rate =
Number of Successful Episodes

Total Number of Episodes



Experimental Configurations

Table: Experimental Configurations

Configuration Model Architecture State Data Included
Base Feedforward Network Full state, including animation
VAR1 Feedforward Network Without animation data
VAR2 Single-layer LSTM Full state, including animation
VAR3 Two-layer LSTM Full state, including animation

figureExperiment Environment[3]



Experiment Results: Training Phase

▶ Overall Performance:
▶ All configurations improved

in success rate during
training.

▶ Base configuration
(Feedforward) achieved the
highest success rate.

▶ FeedForward Configurations
(Base vs. VAR1)

▶ LSTM Configurations
(VAR3 and VAR4)

▶ Conclusion Training Phase Diagram Configurations[3]



Conclusion

▶ Feedforward Models (Base, VAR1):
▶ Performed best in training phase.

▶ LSTM Models (VAR2, VAR3):
▶ Lower performance



Thank You for Listening!

Any Questions?
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