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Abstract
Transformer-based large languagemodels (LLMs) have demon-
strated advanced natural language processing capabilities
in recent years. However, their abilities to reason through
problems involving multiple steps lag behind. Thus, their
usefulness for tasks of any significant complexity remains
questionable.
Researchers have found that their reasoning abilities are

improved if they are prompted to think step by step. How-
ever, this “chain of thought” (CoT) prompting strategy only
elicits reasoning at a model scale of around 100 billion param-
eters which is prohibitively expensive to train and do further
experiments on. Consequently, researchers have applied a
number of optimization techniques to LLMs with the goal of
improving their reasoning abilities at a smaller model scale.

This literature review explores two such techniques, fine
tuning and reinforcement learning, as well as the initial
technique of CoT prompting.

Keywords: natural language processing, language models,
reasoning, chain of thought, fine tuning, reinforcement learn-
ing

1 Introduction
ChatGPT defines reasoning as “the mental process of de-
riving conclusions or judgments from facts or premises. It
involves the cognitive functions necessary to process infor-
mation, integrate new knowledge with existing knowledge,
and generate logical, rational decisions and understanding
from this synthesis.” However, when asked, “Which weighs
more, a pound of water, two pounds of bricks, a pound of
feathers, or three pounds of air?” It responds, “Two pounds
of bricks weigh more than a pound of water, a pound of
feathers, or three pounds of air. . . . ”
These two responses illustrate the descriptive strengths

and logical weaknesses of this model. It has learned the
descriptive facts about reasoning and the lightness of air to
a greater extent than it has learned the formal relationship
between the numbers two and three. This kind of behavior
renders it useless for many use cases which involve “deriving
conclusions or judgments from facts or premises.”
LLMs like the one underlying ChatGPT have revolution-

ized natural language processing, demonstrating remarkable
capabilities in generating human-like text and processing

complex information. However, these models still struggle to
reason through multi-step problems. This literature review
explores the techniques aimed at enhancing the reasoning ca-
pabilities of language models, focusing on three approaches:
CoT prompting which improves general reasoning but only
at a large model scale, CoT fine tuning which improves rea-
soning at a smaller model scale but only in specific domains,
and CoT reinforcement learning which also improves do-
main specific reasoning in smaller models, and potentially
more-so than CoT fine tuning.

2 Large Language Models
This section will provide an overview of LLMs. A more nu-
anced and visually descriptive introduction can be found
in 3Blue1Brown’s YouTube series on Neural Networks and
LLMs [1].

At a high level, LLMs take in data, feed it through complex
functions defined in part by a large set of numerical parame-
ters, similar to coefficients in a mathematical equation, and
output the data in a new form.

These parameters are distributed across a variety of com-
ponents:

1. Embedding layer
2. Transformer blocks

a. Attention mechanism
b. Multi-layer perceptron (MLP)

3. Next word prediction layer

2.1 Embedding Layer
The embedding process begins by converting input text into
tokens which can be individual characters, words, or chunks
of words (e.g. “?”, “cat”, and “ology”). Each token is trans-
formed into a high-dimensional vector that captures seman-
tic and syntactic information. These embedding vectors rep-
resent the initial encoding of linguistic information, allow-
ing the model to begin processing the input’s meaning. The
embedding layer’s parameters learn to map tokens to vec-
tor spaces where semantically similar words are positioned
closer together.

2.2 Transformer Blocks: Attention Mechanism
LLMs contain many transformer blocks. The output from one
block is the input for the next. The first component within
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these blocks is the self-attention mechanism which allows
the model to update the embedding of each token to reflect
the context of the input. For example, if “Queen” was origi-
nally embedded as a kind of monarch but “Freddy Mercury”
appears earlier in the sentence, the attention mechanism
may update the embedding to represent “Queen” as the band
instead.

By the time the input passes through the attention mecha-
nisms in all the transformer blocks, the embedding for each
token reflects the syntactic and semantic context in which it
exists.

2.3 Transformer Blocks: Multi-Layer Perceptron
Following the attention mechanism, each transformer block
includes a neural network called a multi-layer perception
(MLP). In [1], Sanderson says that the MLP could be thought
of as adding facts to each embedding (e.g. given a vector
that represents “Michael Jordan”, the MLP may add to that
vector the representation of the phrase “plays basketball”).
It accomplishes this by passing the embedding vector for
each individual token through a neural network which has
been trained to recognize tokens add relevant information
to them in the form of new values.

2.4 Next Word Prediction
The final stage of language model processing involves pre-
dicting the next token. This occurs by passing the input
through multiple transformer blocks, generating a final em-
bedding vector for the last token, multiplying this vector
by the model’s vocabulary matrix, applying a softmax func-
tion to produce a probability distribution over all possible
next tokens and finally selecting one of the next most likely
tokens.

The vocabulary matrix is a large parameter matrix where
each column represents the embedding of a specific token
in the model’s vocabulary. By multiplying the final token
vector with this matrix, the model generates a score for each
possible next token, effectively ranking their likelihood.

2.5 Model Size
The number of parameters directly impacts the model’s ca-
pacity to understand and generate language. As this paper
highlights later, models with around 100 billion parameters
demonstrate significantly improved reasoning capabilities
compared to smaller models. This is because more param-
eters allow for more nuanced representation learning, en-
abling the model to capture more complex linguistic and
reasoning patterns.

However, large model size comes with downsides. While
larger models can capture more intricate relationships, they
also become more challenging to train, interpret, and deploy,
thusmotivating the ongoing goal of developing smaller, more
efficient and interpretable language models.

Figure 1.Arithmetic reasoning was tested using three model
types (LaMDA, GPT, and PALM) and three different model
sizes for each type showing on the x-axis of each graph.
Performance was measured by percent of correct answers
on three different word problem arithmetic tests (GSM8K,
SVAMP, and MAWPS). From [12]

3 Chain of thought
This section provides and overview of a 2022 paper titled
“Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models” by Wei, et al. [12].

3.1 Introducing CoT prompting
Chain of thought (CoT) prompting enhances reasoning in
LLMs by guiding them to generate a structured sequence
of intermediate steps during problem-solving. It achieves
this by including examples of problems and solutions with
these reasoning steps in the prompt before presenting the
model with the actual question. This method is contrasted
with standard prompting which provides the model with
examples of problems and solutions but not the intermediate
reasoning steps.
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It is often posited that LLMs cannot do complex reasoning
since they associate between words using statistical opera-
tions rather than deterministic, symbolic operations. How-
ever, if they can be prompted to break down a problem into
individual steps and these individual steps are simple enough
to be solved consistently using statistical operations (e.g. the
character string “2+2=” is highly associated with “4”), it is
feasible that they could solve complex problems.
The study by Wei et al. provides examples which high-

light the differences between standard prompting and CoT
prompting. In both cases, an example question and its an-
swer are included in the input prompt as a guide for the
model, followed by a real question for the model to answer.
The model’s response demonstrates how it processes the
information provided.
In standard prompting, the input prompt consists of an

example question like: “Roger has 5 tennis balls. He buys 2
more cans of tennis balls, with each can containing 3 tennis
balls. Howmany tennis balls does he have now?” The answer
provided in the prompt is simply: “The answer is 11.” The real
question given to the model is: “The cafeteria had 23 apples.
They used 20 to make lunch and bought 6 more. How many
apples do they have now?” When using standard prompting,
the model’s response is incorrect, stating: “The answer is 27.”
This highlights how the model arrives at an output without
reasoning through the steps of the problem.

In contrast, CoT prompting includes an example question
and a detailed explanation of how to solve it. For instance,
the input prompt begins with: “Roger has 5 tennis balls. He
buys 2 more cans of tennis balls, with each can containing
3 tennis balls. How many tennis balls does he have now?”
The explanation provided in the prompt walks through the
reasoning: “Roger starts with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.” The
real question presented to the model is the same as before:
“The cafeteria had 23 apples. They used 20 to make lunch
and bought 6 more. How many apples do they have now?”
With CoT prompting, the model’s response is correct and
includes step-by-step reasoning: “The cafeteria had 23 apples
originally. They used 20 to make lunch. So they had 23 - 20
= 3. They bought 6 more apples, so they have 3 + 6 = 9. The
answer is 6.”
This comparison shows how CoT prompting guides the

model to reason through problems systematically, leading to
more accurate results.
The Wei et al. study shows that CoT prompting affords

significant improvements in arithmetic, common sense, and
symbolic reasoning.

3.2 Arithmetic Reasoning
The authors tested CoT prompting across a variety of rea-
soning benchmarks, starting with arithmetic tasks. They
evaluated the model using the following arithmetic word
problem benchmarks: GSM8K [3], SVAMP [9] and MAWPS

[6]. These contain question and answer couplets very similar
in form to the following example taken from [3]:

[question:] Natalia sold clips to 48 of her friends
in April, and then she sold half as many clips in
May. Howmany clips did Natalia sell altogether
in April and May?
[answer:] Natalia sold 48/2 = 24 clips in May.
Natalia sold 48+24 = 72 clips altogether in April
and May.

To successfully answer questions in these datasets, models
need to perform basic addition, subtraction, multiplication
and division, often in multiple steps.
The results of the model evaluations using CoT prompt-

ing, which can be seen in Figure 1, capture overall trends
but it should be noted that the authors tested the model on
other datasets too which can be found in their paper [12].
Google’s 540 billion parameter PaLM (Pathways Learning
Model) [7], demonstrated the most significant improvements
in arithmetic reasoning tasks. On the GSM8K dataset, CoT
prompting enabled PaLM 540B to reach the correct answer
on approximately 60% of the questions, whereas standard
prompting resulted in a much lower performance of roughly
20%. In the MAWPS benchmark, CoT allowed PaLM 540B
to solve around 90% of the problems compared to around
75% for standard prompting. It should be noted, however,
that CoT performed very similarly to standard prompting
on smaller models.

3.3 Common Sense Reasoning
The benefits of CoT extended beyond arithmetic reason-
ing. Common sense reasoning, which requires applying real-
world knowledge and logic, also saw improvement. The au-
thors tested CoT prompting on datasets like StrategyQA
[5] and a sports questions dataset [13]. The following is an
example from [5]:

Fact 1: Grey seals have no ear flaps and their
ears canals are filled with wax.
Fact 2: Grey seals hear better underwater when
their ears open like a valve.
Fact 3: Dogs have sensitive ears that can hear
as far as a quarter of a mile away.
Question: Would a dog respond to bell before
Grey seal?
Answer: Yes

Similarly to the tests on arithmetic reasoning, the PaLM’s
accuracy when using CoT prompting tended to significantly
diverge from standard prompting when model size increased.
PaLM 540B, specifically, increased performance from 69.4%
to 75.6% on StrategyQA and 84% to 95.4% on the sports ques-
tions when using CoT prompting. A full table of these results
can be found in [12].
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3.4 Symbolic Reasoning
Symbolic reasoning also showed significant improvement
with CoT prompting. The authors tested this in two ways:
first, by prompting the model to concatenate the last letters
of two or four words (e.g. if given “Amy brown” the model
should output “yn”) and second, by telling to model to say
which way a coin is facing after it is flipped or not flipped by
a two or four times (e.g. if given “A coin is heads up. Phoebe
flips the coin. Osvaldo does not flip the coin. Is the coin still
heads up?” the model should answer “No”).

CoT prompting enabled PaLM to solve nearly all in-domain
problems (these results and other symbolic results can be
found in [12]). In-domain tasks refer to problems that have
the same structure or complexity as the examples the model
has already seen during prompting (e.g. the model is given
the CoT for a two word concatenation problem and then
tested on a two word concatenation). CoT also helped the
model generalize more effectively to out-of-domain tasks,
which involve problems that are more complex or require
additional steps beyond those in the examples (e.g. the model
is given the CoT for a two word concatenation problem and
then tested on four word concatenation problem). This im-
provement in handling out-of-domain tasks demonstrates
that CoT not only enables the model to replicate the logical
structure and substitute the values of the example problem
seen in the prompt, but also enables it to continue to generate
similar logical structures as the new problem requires.

3.5 Testing for Causation
It is difficult to explain the behavior of LLMs given that this
behavior is determined by complex interactions between bil-
lion of parameters. Thus, it cannot be stated with certainty
that the CoT prompting itself actually causes improved rea-
soning. However, by analyzing the reasoning paths of the
model the researchers strongly correlated correct answers
with correct CoTs. Also, by isolating the effects of variables
associated with CoT prompting, the researches have further
correlated the improvements in reasoning with the CoTs
themselves. Further details on these tests for causation can
be found at [12].

3.6 Importance of Model Size
A key finding in the study was the scalability of CoT prompt-
ing with model size. As depicted in Figure 1, smaller models
saw minimal benefit from CoT prompting, as they struggled
to generate coherent chains of thought. However, as model
sizes increased—particularly with models like GPT-3 175B
and PaLM 540B—the advantages of CoT became more pro-
nounced. This was especially apparent in the GSM8K, where
CoT prompting vastly outperformed traditional prompting
on large models.

4 Fine Tuning
This section covers the paper “Specializing Smaller Language
Models towards Multi-Step Reasoning” [4] by Fu et al. which
uses fine tuning, or as the authors call it, specialization, to
improve reasoning in smaller language models.

4.1 Background
CoT prompting has shown significant potential in enhanc-
ing the reasoning capabilities of LLMs by enabling them
to produce structured, step-by-step solutions to problems.
However, CoT prompting has its limitations. Primarily, it re-
quires large model size, such as GPT-3 175B and PaLM 540B.
Smaller models struggle to generate coherent CoTs which
in some cases makes them less likely to reason correctly
than if they had not generated the CoT. Consequently, the
scalability of CoT prompting alone to achieve the complex
reasoning that would be required in real world applications
is doubtful.
Fine tuning offers a solution to the limitations of CoT

prompting, especially for smaller models that lack the scale
required to handle complex reasoning tasks effectively but
are still preferred for their lower monetary and energetic
costs. Fine tuning involves training smaller models on task-
specific data, refining their generic language abilities to spe-
cialize in areas such asmathematical reasoning. This targeted
training enables smaller models to perform complex reason-
ing with greater accuracy, though it comes with trade-offs.
Fine tuning a model often reduces its flexibility across other
kinds of tasks. For example, if a model was fine tuned on a
Python code dataset, it would likely be significantly worse
at generating Shakespearean sonnets. As will be discussed
later, however, fine tuning does not necessarily eliminate all
generalizing abilities of models. The closer a task resembles
the tasks the model was fine tuned on, the more likely the
model is to have specialized abilities for it.

4.2 Methodology
As depicted in Figure 2, the researchers performed two stages
of fine tuning after pretraining the T5 model with general
language abilities. The first was instruction tuning, which in-
volves training the model on detailed prompts or instructions
along with the corresponding responses. By exposing the
model to diverse instruction-response pairs, it learns to tailor
its responses to the instructions. For example, if it receives a
complex instruction, it will respond with a complex solution.
The researchers used T5, a raw LLM, as well as FlanT5, an in-
troduction tuned version of T5 as starting points to conduct
the second stage of fine tuning on (it should be noted that
Figure 2 suggests that this second stage of fine tuning was
performed only on the instruction tuned FlanT5. This is in
fact the best performing method, however, this stage of fine
tuning was also performed on the raw T5 for comparison).



William G. Marsan

Figure 2. This figure from Fu et al. shows the process of
creating a specialized model showing first pretraining, which
gives the model called T5 general language abilities, then
instruction-tuning, which makes the model called FlanT5
more responsive to diverse prompts and finally special-
ization, which gives the model specific reasoning abilities.
From [4]

In this second stage, they used a larger model from Ope-
nAI, GPT-3.5 code-davinci-002 [8], to generate 40 solutions
with CoTs for questions in the GSM8K word problem dataset.
The CoTs that produced correct answers were then used to
fine tune the FlanT5 model through a method called distribu-
tion matching. This is a technique used in machine learning
to help a smaller, student model learn to make predictions
similar to a larger, teacher model. As Fu et al. explains in
the paper, the goal is to have the student model not just
memorize the predictions of the teacher model but learn the
criteria by which the teacher makes predictions so that it
can generalize or extrapolate to cases outside of the training
data.

4.3 Results
Panel A in Figure 3 shows the results of the previously stud-
ied CoT prompting, reinforcing the theory that CoT prompt-
ing elicits improved reasoning but only at a 100B parameter
scale. Panel B shows the results of fine tuning without the
initial stage of instruction tuning which primes models to
be responsive to problems of varying complexity. The lines
with circles show the performance of models which were fine
tuned using answer-only (AO) data - that is, data lacking CoT.
The lines with triangles show the significantly increased per-
formance of models fine tuned on CoT data. Finally, panel
C shows that instruction-tuning combined with CoT fine
tuning yields the greatest improvements in models. The re-
searchers point out that the reasoning improvements yielded

from instruction-tuning and CoT-tuning on 10B parameter
scale models describe a log-linear curve which is only seen
in 100B parameter scale models when using CoT prompting
alone.

5 Reinforcement Learning
This section covers the paper “WizardMath: Empowering
Mathematical Reasoning for Large Language Models via Re-
inforced Evol-Instruct” by Luo et al. [2] which uses reinforce-
ment learning (RL) to create near-state-of-the-art models on
math reasoning. Models trained with this process have the
WizardMath prefix in this paper.

5.1 Background
RL is a general technique in machine learning but in the
context of LLM optimization, it focuses on training LLMs to
make sequential decisions in an environment to maximize
cumulative rewards through trial and error. This process
encourages the LLM to improve its behavior according to
the standard of the person or machine dispensing the reward.
The unique aspect of RL, as opposed to fine tuning, is that
it does not rely on labeled data such as the 40 generated
chains of thought for each question in the previous paper,
but instead learns optimal actions by receiving rewards or
punishments from interactions with this outside person or
model.

5.2 Methodology
Before RL takes place, there are some preliminary steps. The
first, called Math Evol-Instruct, uses GPT-4 [10] to create
different versions of each problem ranging from simpler
to more complex. For each of these new problems, GPT-4
then assigns a lower score if it is clear and complex and a
higher score if it is unclear and simple. This data is then
used to train an instruction reward model (IRM) so that
it can recreate similar rankings for instructions that the
WizardMath encounters during the actual RL phase.

The other preliminary step involves training a process
reward model (PRM) to evaluate the CoTs produced by Wiz-
ardMathmodels. This PRM is trained as follows: first Llama-2
[11] is used to produce answers with CoTs on questions from
the GSM8K. Then these CoTs are evaluated and assigned a
score by GPT-4 and finally, the base Llama-2 model is trained
with this data to assign similar scores to CoTs.

Now all the pieces are in place to begin the RL. The Wiz-
ardMath model (the model we are trying to improve the rea-
soning of) is given questions from the GSM8K and MATH
datasets. It generates responses and the associated CoTs. At
this point, the problem given to the WizardMath model as
well as the CoT response are fed to the IRM and PRM respec-
tively. The IRM assigns varying rewards and punishments
based on the clarity and complexity of the instructions (see



Improving the Reasoning Abilities of Large Language Models

Figure 3. Results from testing the specialized (fine tuned) T5 and Flan5 models on the GSM8K, a math reasoning dataset.
While the results for fine tuned models may not appear exponential, their blue lines can be interpreted as an exponential elbow
beginning earlier on the plot than the orange lines which lie flat or consistently lag behind. From [4]

[2] for details). The PRM assigns varying rewards based on
whether each individual step in the CoT response is correct.

5.3 Results

Model Params GSM8k (%) MATH (%)
ChatGPT-4o Proprietary 96.1 76.6
Claude 3.5 Proprietary 96.4 71.1
GPT-2-XL 1.5B 15.4 6.9
WizardMath-GPT-2 1.5B 58.9 25.4
Mistral-v0.1 7B 42.9 12.9
WizardMath-Mistral 7B 90.7 55.4
Table 1. Comparison of model performances on GSM8k
and MATH benchmarks. Performance is measured as the
percentage of correct answers. Based on [2].

The results presented in Table 1 indicate that the Wizard-
Math versions of various models show a substantial improve-
ment in mathematical reasoning performance on the GSM8k
and MATH benchmarks compared to their base counterparts.
Notably, while these results are not directly comparable to
those in the fine tuning section of the previous paper—since
the base models here are inherently stronger in math—the
performance gains achieved through RL are significant. For
each model size, the WizardMath versions approximately
double or even triple their base scores. This substantial leap
in performance suggests that the RL approach employed
in this study is more effective at enhancing mathematical
reasoning than the fine tuning methods used previously.

A particularly impressive result is the performance of the
7B-parameter WizardMath-Mistral model, which reaches
90.7% on GSM8k and 55.4% on MATH. This score places it
near state-of-the-art performance levels.

6 Conclusion
This paper has explored the progression of reasoning capa-
bilities in LLMs through CoT prompting, CoT fine tuning,

and CoT reinforcement learning. CoT prompting has proven
instrumental in breaking down complex reasoning tasks
into manageable steps, yielding significant improvements
in general reasoning, but only at large model scale. CoT
fine tuning enables smaller models to handle complex math
reasoning tasks effectively, albeit at the cost of generaliza-
tion to other reasoning domains. Finally, CoT reinforcement
learning, exemplified byWizardMath, achieved near-state-of-
the-art performance on math reasoning. Though its results
are not directly comparable to fine tuning due to differing
base models, it shows a much higher ratio of improvement
from its base model compared to fine tuning.

While thesemethods show advancements, reasoning bench-
marks alone may not fully capture the depth of a model’s
reasoning capabilities, as they are often narrowly tailored to
specific task structures, and as Zhang et al. show in their pa-
per titled "A Careful Examination of Large Language Model
Performance on Grade School Arithmetic" [14], could be in-
advertently leaked into training datasets, causing the model,
to some extent, tomemorize answers to questions rather than
develop general reasoning abilities. Future research should
address this limitation by developing benchmarks and evalu-
ation strategies that better reflect the dynamic and nuanced
nature of real world reasoning and ensure no leakage into
training data.
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