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Large Language Models (LLMs)

• Natural language processing technology
• Trained on vast amounts of text to understand patterns  
• This allows them to predict the next most likely word given some text 

• When prompted “Who was the lead singer of Queen?” ChatGPT would likely 
respond, “Feddie Mercury”.

• Problem: They are good at generating linguistically plausible text but 
not mathematically precise reasoning
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Reasoning Struggles

Q: The cafeteria had 23 apples. If 
they used 20 to make lunch and 
bought 6 more, how many apples do 
they have?

A: The answer is 27. 

User prompt Model response

3



Outline 
• LLM architecture 

• Embedding 
• Transformer blocks 
• Next word prediction 

• Chain of Thought Prompting 
• Chain of Thought Fine Tuning
• Conclusion
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Outline 
• LLM architecture 

• Embedding 
• Transformer blocks 
• Next word prediction 

• Chain of Thought Prompting 
• Chain of Thought Fine Tuning 
• Conclusion 
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Reasoning Struggles

Q: The cafeteria had 23 apples. If 
they used 20 to make lunch and 
bought 6 more, how many apples do 
they have?

A: The answer is 27. 

User prompt Model response
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Reasoning Solution – Chain of Thought (CoT)

Q: Roger has 5 tennis balls. He buys 
2 more cans of tennis balls. Each 
can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans 
of 3 tennis balls each is 6 tennis 
balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If 
they used 20 to make lunch and 
bought 6 more, how many apples do 
they have?

A: The cafeteria had 23 apples 
originally. They used 20 to make 
lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 
3 + 6 = 9. The answer is 9.

User prompt with CoT example Model response

18



Why does CoT prompting work?

• Scientific theory: ¯\_(ツ)_/¯

• Plausible hypothesis: System 1 vs system 2 thinking (Daniel Kahneman)
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System 2 question (use system 1): 
The cafeteria had 22 apples. If they 
used 10 to make lunch and bought 4 
more, how many apples do they 
have?
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Why does CoT prompting work?

• Scientific theory: ¯\_(ツ)_/¯

• Plausible hypothesis: System 1 vs system 2 thinking (Daniel Kahneman)
• LLMs usually try to solve system 2 problems with system 1 thinking

• CoT prompting helps models break system 2 problems down into smaller system 1 
problems which they are good at solving. 
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System 2 question (use system 1): 
The cafeteria had 22 apples. If they 
used 10 to make lunch and bought 4 
more, how many apples do they 
have?

System 1 question: 
What year were you born?



Experiments on 
CoT Prompting 
Arithmetic Reasoning 
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Wei, Jason, et al. "Chain-of-thought 

prompting elicits reasoning in large 

language models." Advances in neural 

information processing systems (2022).



Experiments on CoT Prompting
Common Sense Reasoning
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Larger Models → Better Reasoning

• This could be due to the fact that models tend to store low 
resolution linguistic information such as syntax in earlier layers 
and only begin storing high level information like reasoning 
patterns in the later layers. 

• However, large models require vast amounts of data and energy to 
train, both of which are costly.  

Is there a way to improve reasoning in smaller models?
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Outline 
• LLM architecture 

• Embedding 
• Transformer blocks 
• Next word prediction 

• Chain of Thought Prompting 
• Chain of Thought Fine Tuning 
• Conclusion

26



Fine Tuning models on CoT 

• Fine tuning is essentially a continuation of the training process but 
with more specific data.
• Python
• Shakespeare
• CoT reasoning 
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Fu, et al. “Specializing Smaller Language Models 
towards Multi-Step Reasoning.” Proceedings of the 
40th International Conference on Machine Learning 
(2023).



Methodology 

Prompt: Natalia sold clips to 48 of her friends in April, and 
then she sold half as many clips in May. How many clips did 
Natalia sell altogether in April and May? 

28

Desired model output: 
48/2 = 24, 48+24=72. Natalia sold 72 
clips altogether. 

Fu, et al. (2023).
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Math Results 

35
Fu, et al. (2023).



Downsides to CoT Fine Tuning 
In a golf tournament, there were seven golfers: Ana, Eve, Ada, Dan, Rob, Amy, and 
Joe. Dan finished third. Ana finished above Ada. Amy finished last. Dan finished 
below Rob. Eve finished below Ada. Rob finished below Joe.

(A) Ana finished third

(B) Eve finished third

(C) Ada finished third

(D) Dan finished third

(E) Rob finished third

(F) Amy finished third

(G) Joe finished third

36
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Outline 
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Conclusion

• LLMs struggle with complex reasoning due to their architecture 
which only allows them to predict the next word given some input. 

• CoT prompting allows them to break complex problems down into 
smaller chunks which they are better at solving.

• CoT fine tuning unlocks this ability at smaller scales.
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Slides after this are garbage but I’m still 
emotionally attached to them
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Further Optimizations: Reinforcement Learning

• LLM generates CoT solutions and a “Process Reward Model” 
rewards the LLM for steps that are more likely to lead to correct 
answers. 

• Differs from fine tuning in that it does not use labeled data to 
calculate reward/punishment but instead uses an outside source.
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Further Optimization: Reinforcement Learning

• Studies are not directly comparable as researchers begin with 
different base-LLMs

• However, one average fine tuning increases math performance by 
factor of less than 2. Reinforcement learning increased math 
performance on average by a factor of greater than 2 and for some 
models, by a factor of 5. 
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Experiments on 
CoT Prompting 
Symbolic Reasoning 
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