Computer Vision in Basketball

Jack Mahoney

University of Minnesota, Morris

November 12, 2025

Overview

- Introduction
- Introductions To Papers
- Important Components
 - Camera
 - Other
- Equations
- Recap

Introduction

- Sports are a large industry
- Growing
- You are a fan or someone watching
- Fast paced
- Adds challenges
- Some way to help understanding

Figure: 1. Basketball Images

Introduction to Computer Vision

- Computer Vision
 - Extracts Useful Information
 - Processes Images
 - Basketball
 - Arena

Figure: 2. Basketball Images

3D Ball Localization From A Single Calibrated Image

- Equations to figure out the ball position
- Matrices involved in the equations

Deep Sport Radar

- Kaggle
 - Platform
 - Data Scientists
- Deep Sport Radar
- Competition
- Winner
- Data Set

Figure: 3. Logo

Important Components

- Camera
 - Type
 - Components
- Arena
- Coordinate
- Challenge
- Image Quality

Pinhole Camera

Pinhole camera



Figure: 4. Pinhole Camera

Lens Camera

Lens camera

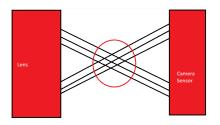


Figure: 5. Lens Camera

Focal Length

Focal length is the distance between the camera lens and optical sensor.

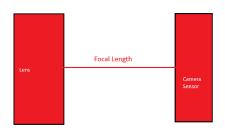


Figure: 5. Focal Length

Optical Center

- Optical Center
 - Lens
 - Camera sensor
 - Middle
 - Rays of light
 - Center of coordinate system

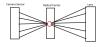


Figure: 6. Optical Center

Skewness

Figure: 7. Skewness Example 1

Figure: 8. Skewness Example 2

Distortion

- Handles curvature
- Different lenses

Distortion

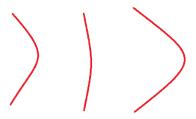


Figure: 9. Distortion

Camera Position

Figure: 10. Camera Locations

Arena 1

Figure: 11. Arena 1

Arena 2

Figure: 12. Arena 2

Image Quality

- Bad resolution
- Noise
- Other Players

Figure: 13. Bad Resolution

Image Quality

- Bad resolution
- Noise
- Other Players

Figure: 14. Noise

Image Quality

- Bad resolution
- Noise
- Other Players

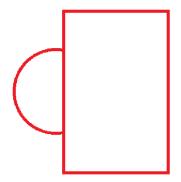


Figure: 15. Other Player

Data Set

- The data set involved details from Arenas
 - Camera Angles
 - Lighting Conditions
 - Court Layouts
 - Crowd
 - Resolution
 - Distance

Coordinate Systems

- Uses numbers (x,y,z)
- Position
- Three
 - Camera
 - Real
 - Homogeneous

Camera Coordinate

- Pixels
- The camera coordinates is what the camera sees

Real World

- Meters
- Inches
- The real world coordinates is what we see

Ray

• The a straight line of light from the camera

Figure: 16. Ray

Homogeneous

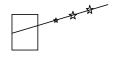


Figure: 17. Homogeneous Coordinates

Challenge in Deep Sport Radar

- Ball 3D localization in calibrated scenes
- Origin is middle of the court
- 3D Localization
 - Process of finding the precise position and orientation of an object
- Calibrated Scene
 - An environment in which the photo coordinates are precisely measured and then calibrated to the real world coordinates

Model

$$b^c = K^{-1} * \mathcal{R} \begin{bmatrix} b_x \\ b_y \\ 1 \end{bmatrix}$$

$$b^o = R^T * \frac{\phi * b^c}{e^c_{+y} - e^c_{-y}} + c^o$$

$$k = \begin{bmatrix} \mathbf{f} * \mu_{\mathbf{x}} & \gamma & u_{\mathbf{x}} \\ 0 & f * \mu_{\mathbf{y}} & u_{\mathbf{y}} \\ 0 & 0 & 1 \end{bmatrix}$$

- f is the focal length
- \bullet μ_{x} is the x scaling factor

$$k = \begin{bmatrix} f * \mu_{\mathsf{X}} & \gamma & u_{\mathsf{X}} \\ 0 & f * \mu_{\mathsf{Y}} & u_{\mathsf{Y}} \\ 0 & 0 & 1 \end{bmatrix}$$

 $\bullet \ \gamma$ is the skewness of the camera

$$k = \begin{bmatrix} f * \mu_{\mathsf{X}} & \gamma & \mathbf{u}_{\mathsf{X}} \\ 0 & f * \mu_{\mathsf{y}} & u_{\mathsf{y}} \\ 0 & 0 & 1 \end{bmatrix}$$

 u_x is the x-coordinate where the optical axis intersect the image sensor

$$k = \begin{bmatrix} f * \mu_{\mathsf{X}} & \gamma & u_{\mathsf{X}} \\ 0 & \mathbf{f} * \mu_{\mathbf{y}} & u_{\mathsf{y}} \\ 0 & 0 & 1 \end{bmatrix}$$

- f is the focal length
- ullet μ_y is the y scaling factor

$$k = \begin{bmatrix} f * \mu_{\mathsf{X}} & \gamma & u_{\mathsf{X}} \\ 0 & f * \mu_{\mathsf{y}} & \mathbf{u_{\mathsf{y}}} \\ 0 & 0 & 1 \end{bmatrix}$$

 u_y is the y-coordinates where the optical axis intersect the image sensor

$$k = \begin{bmatrix} f * \mu_{\mathsf{X}} & \gamma & u_{\mathsf{X}} \\ 0 & f * \mu_{\mathsf{Y}} & u_{\mathsf{Y}} \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

- Preserve the homogeneous coordinates
- Value helps to allow to show (x,y) as (x,y,1)
- Transformation

Ball Center

$$b^c = \mathbf{K}^{-1} * R egin{bmatrix} b_x \ b_y \ 1 \end{bmatrix}$$

 K^{-1} is the inverse of the camera matrix.

Ball Center

$$b^c = K^{-1} * \mathbf{R} \begin{bmatrix} b_x \\ b_y \\ 1 \end{bmatrix}$$

R is a function

Ball Center

$$b^c = K^{-1} * R \begin{bmatrix} \mathbf{b_x} \\ \mathbf{b_y} \\ \mathbf{1} \end{bmatrix}$$

The function takes three agruments to determine the balls center:

- The balls x coordinate represented by b_x
- The balls y coordinate represented by b_y
- The balls depth which is a constant represented by 1

The x and y of a Ball Size with out edges

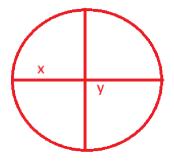


Figure: 18. Normal Ball with no split

Ball Edges

$$\mathbf{e}_{\pm}^{c} = K^{-1} * R \begin{bmatrix} b_{\mathsf{X}} \\ \mathbf{b}_{\mathsf{y}} \pm \frac{\mathsf{d}}{2} \\ 1 \end{bmatrix}$$

The equation to figure out the diameter of the ball is similar to that of the one used to figure out the balls center. The difference is we need to consider the diameter d.

The x and y of a Ball Size with edges

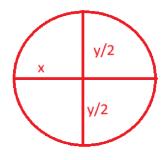


Figure: 19. Normal Ball with split

Ball Position

$$b^o = \mathbf{R}^\mathsf{T} * \frac{\phi * b^c}{e^c_{+y} - e^c_{-y}} + c^o$$

 R^T is the transposition of the function R

Ball Position

$$b^{o} = R^{T} * \frac{\phi * \mathbf{b^{c}}}{\mathbf{e_{+y}^{c}} - \mathbf{e_{-y}^{c}}} + c^{o}$$

- This fraction is calculates how big the ball is
- ullet ϕ is the true ball diameter

Ball Position

$$b^o = R^T * \frac{\phi * b^c}{e^c_{+y} - e^c_{-y}} + \mathbf{c^o}$$

 C^o is the position of the camera in the specific arena you are in

Real World Uses

- Sports betting
- Improves description of the game

Figure: 20. Sports

Recap

- Camera
- Arena
- Coordinate Systems
- Equations
- Matrices
- Real World Applications

Acknowledgments

Thank you to Elena Machkasova and Peter Dolan who were my advisors for this project.

46 / 49

References

References

- 1 Gabriel Van Zandycke, Vladimir Somers, Maxime Istasse, Carlo Del Don, and Davide Zambrano. 2022.

 DeepSportradar-v1: Computer Vision Dataset for Sports Understanding with High Quality Anno- tations. In Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports (MM '22).
- 2 Istasse Maxime and Gabriel. 2023. DeepSportradar/instance-segmentation-challenge. https://github.com/DeepSportradar/instance-segmentation-challenge.

References

3 Van Zandycke, Gabriel, and Christophe De Vleeschouwer. 3D Ball Localization from a Single Calibrated Image. 2023.

Questions