
Methods of Reducing Verbose Queries

Martha Enderby
University of Minnesota Morris

600 East 4th Street
Morris, MN 56267

ender034@morris.umn.edu

ABSTRACT
This paper analyzes three methods of reducing natural -
language search queries in order to get more focused, useful
search results. The first method, dependency parsing, in-
volves using dependency parsing trees to identify key con-
cepts in a query and weight terms accordingly; the second,
query quality predictors, uses several descriptive features of
each possible sub-query to predict the highest-quality sub-
query for a given query; and the third, subset distribution,
uses the average of several high-quality sub-queries.

In this paper, we will present brief outlines of each method,
including any relevant calculations. Then, we will report the
results the method obtained in the paper where it was pre-
sented.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Performance, Theory

Keywords
Verbose Queries, Long Queries, Query Quality, Query Re-
duction

1. INTRODUCTION
Most search engine queries are keyword queries, which

have lengths of between two and six words and are therefore
extremely focused on the query subject [3]. However, as
much as 15% of all search queries are verbose [1]. Verbose
queries are written in natural language rather than terse
little phrases, and thus contain unnecessary or redundant
words.

For instance, “verbose queries” is a short, keyword-focused
query, whereas “describe the different methods one can use

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
University of Minnesota Computer Science Seminar ’11 Morris, Minnesota
USA.

to get better search results from a verbose query” is a ver-
bose query. Most of the words in it are not useful in deciding
whether a document is relevant. Search engines demonstrate
worse performance with verbose queries than with keyword
queries [1], since they give equal weight to each word (ex-
cluding small, common words) in a query.

Therefore, in order to improve search engine performance
on long natural language queries, the queries must be some-
how reduced to their most essential components. According
to Kumaran and Carvalho, A perfect reduction of a verbose
query into a keyword query can improve search performance
(here meaning the relevance of the documents returned by
the query) by 30% [3].

This paper will evaluate three methods of reducing ver-
bose queries: dependency parsing, subset distribution, and
query quality prediction. Unfortunately, literature does not
exist that compares these methods side-by-side in identical
tests. The results presented for each method should there-
fore be taken as independent data. If a method has been
tested against other methods, its specific section will indi-
cate so and provide the compared results.

2. BACKGROUND
Recent research on verbose queries has focused on im-

proving search engine performance with long queries. The
two basic methods for reducing query length are selecting a
small subset of an overall query to replace the original query
and weighting individual words in a query to identify one or
more key words that can be used for a more keyword-focused
query. In either method, the challenge for a potential reduc-
tion algorithm is determining what words in a particular
query are important, and that is where methods for query
reduction differ beyond the subset-or-weighting division.

Verbose queries include “wh-” queries (queries that be-
gin with the question words “who,”“what,”“where,”“why,”
or “when”), but these queries have specific, widely-accepted
techniques developed for answering them, because they tend
to have a more fixed structure than other verbose queries do.
As such, recent research has dealt exclusively with verbose
queries that do not possess the mostly fixed form of “wh-”
queries [2]. None of the methods summarized in this paper
deal with “wh-” queries. Additionally, search engines gener-
ally strip common stop words (such as “the” or “in”) auto-
matically. Stripping out trivial words, therefore, is also not
the focus of current research in verbose queries. There is no
universal list of stop words, but all the methods described in
this paper use the InQuery list of stop words [1], a 418-word
list developed by the University of Massachusetts’ Center



for Intelligent Information Retrieval. For the purposes of
this paper, a “term” is either a single word or a small group
of related words, such as noun phrases like “University of
Minnesota.”

The methods presented in this paper have all been tested
against topics from a handful of collections from Text RE-
trieval Conferences, hereafter referred to as TREC topics.
TREC is a series of workshops focusing on different areas of
information retrieval. The three specific TREC collections
that seem to be somewhat standard in verbose query reduc-
tion experiments are the Robust2004, a 2004 workshop on
conversational analysis; the WT10g, an online dataset com-
piled for testing web-based data retrieval; the Gov2, another
online dataset consisting of .gov pages; and the TREC123,
which contains documents from TREC disks 1 and 2. Ro-
bust2004 contains about five hundred thousand documents,
WT10g contains about 1.7 million documents, Gov2 con-
tains about 25.2 million documents, and TREC123 contain
150 documents, giving a wide range of collection sizes [8,
3]. Note that not all of these collections relate specifically
to the reduction of verbose queries. The specifics of their
content are not important; what matters is that they are
quality-controlled repositories with regularly-arranged data.

A TREC topic consists of a title, which is usually one
to four terms long; a description that is between three and
thirty terms long; and the narrative, which contains the full
text of the topic [3]. Query reduction work usually focuses
on TREC topic descriptions, since they have the most in
common with verbose search queries.

“Training” is machine learning technique used to allow a
program to evolve based on previous data. In order to suc-
cessfully reduce a test query, a method must first be trained
on other data, called training data. The methods presented
in this paper were trained using RankSVM, a learning-to-
rank algorithm that, given two results, ranks one as better
than the other.

3. DEPENDENCY PARSING

Figure 1: In this dependency parsing tree, an arc
represents a dependency between two words. The
label on the arc indicates the type of dependency.
“Accomplishments” and “telescope” are related by
the preposition “of,” “Hubble” is part of the same
noun phrase as “telescope,” “accomplishments” is a
dependent object of the verb “identify,” and “posi-
tive” is an adjective modifying “accomplishments.”
Note that this tree is incomplete for the given sen-
tence: it does not map any dependencies that cannot
be traced back to “accomplishments.”

3.1 Dependency Parsing Trees
One way to weight words in a verbose query is by using a

dependency parsing trees, as shown by Park and Croft [6].
A parse tree is a collection of nodes and arcs that divides
words in a sentence based on their part of speech and relation
to one another. A dependency parsing tree, in particular,
relates words based on what other words they modify, i.e.
an arc from word A to word B means that B modifies A.
The label between two connected words indicates the kind
of connection, as shown in figure 1.

Not every relationship gleaned from a dependency parsing
tree is useful, and to limit the number of syntactic features to
look at, Park and Croft limited each feature to two arcs [6].
They then used those arcs as input features for RankSVM.

3.2 Ranking Terms
After getting the syntactic features of a query from a de-

pendency parsing tree, in order to get labels for training
data, this method weights each term’s relative importance
in a query. The equation Park and Croft use to find a term
t ’s importance is as follows:

E(t) =
1

Nm
·
X
cεCm

(ϕ (c, t)− ϕ (c)) (1)

In equation 1, m is the number of terms in a given query,
Cm is all possible combinations of m terms excluding t, c
is a single combination, Nm is the number of terms in Cm,
ϕ(c) is the search performance (in terms of the relevancy of
retrieved documents) of c, and ϕ(c, t) is the search perfor-
mance of c when combined with t. This equation estimates
the usefulness of term t by summing the impact that it has
on all the terms in Cm [6]. A higher E(t) indicates that a
term connects strongly to the rest of the query and thus is
likely important to the meaning of the query as a whole.
Conversely, a low E(t) indicates that a term does not con-
nect strongly to the rest of the query, or relates to only a few
other words in the query. The low E(t) term is more likely
to be a modifier or secondary idea rather than a primary
one.

3.3 Results
Park and Croft tested their query term ranking algorithm

on topics taken from Robust2004 and WT10g. The average
number of terms per question was 8.7 in the Robust2004 and
6.5 in WT10g [6]. The query ranking algorithm was tested
against a method described by Bendersky and Croft [1]. A
major difference between the two methods is that Bendersky
and Croft’s algorithm identifies a single key concept, while
Park and Croft’s algorithm can yield multiple key concepts.

Results from the tests indicated that Park and Croft’s
query term ranking was more effective for the longer (8.7-
word average) queries of Robust2004, but that Bendersky
and Croft’s method was more effective for the shorter (6.5-
word) queries of WT10g. Bendersky and Croft noted that
Robust2004 contained a higher percentage of queries with
multiple key concepts [1], which likely accounts for why Park
and Croft’s method was more effective on that set of queries.

4. QUERY QUALITY PREDICTORS
Park and Croft’s query reduction method involves weight-

ing each individual term in a query based on how that term



connects to other terms. The method presented in this sec-
tion, by contrast, does away with extraneous search terms
altogether, chopping the original verbose query into sub-
queries. To do this, each word in a query is assigned a
label of “keep” or “do not keep.” Their work uses methods
also used in document retrieval. As such, this query reduc-
tion method is much more dependent on the contents of the
collection from which a query is taken than the methods
summarized in sections 3 and 5.

4.1 Quality Predictors
In order to decide which terms within a query to keep,

Kumaran and Carvalho utilize several different quality pre-
dictors [3]. The quality predictors Kumaran and Carvalho
used are referred to as features, which means that they are
individual measurable heuristic properties of a query. Some
of these features are pre-retrieval, which means they are de-
rived directly from statistics about the query and collection
of documents on which the query is run. Others, such as
query clarity (see section 4.1.3), are post-retrieval, which
means they can only be derived after a query is run. Post-
retrieval features are more expensive to compute than pre-
retrieval features. All of the equations used in sub-sections
4.1.1 to 4.1.8 come from Kumaran and Carvalho [3].

4.1.1 Mutual Information
Mutual information (MI) is a method of measuring the

dependency between two terms. A term refers to either a
single word or a short phrase like “University of Minnesota.”
All the terms in a sub-query are represented as vertices in
a graph, with the MI of two terms as edge weights. MI
is calculated in equation 2. By connecting all the graph’s
vertices in a way that maximizes MI without producing any
loops, we can find the graph’s maximum spanning tree. The
maximum spanning tree is then used as a predictor of the
sub-query’s quality, with more weight indicating a higher-
quality query.

I(x, y) = log10

n(x, y))

n(x) ∗ n(y)
(2)

where n(x,y) is the number of times the terms x and y occur
within a term window of 100 terms across the collection, and
n(x) and n(y) are the frequencies of x and y in the collection.

4.1.2 Sub-Query Length
Sub-query length (SQLen) is the number of terms in a sub-

query. The optimal length of a sub-query has been found to
be between two and six terms.

4.1.3 Query Clarity
Query Clarity (QC) represents the dissimilarity between

the documents returned by a query (also called the query
model) and the collection as a whole. A high query clarity
indicates that the query is narrowly-focused.

QC =
X
wεQ

Pml(w|Q) ∗ log2

Pml(w|Q)

Pc(w)
(3)

where Pml(w|Q) is the conditional probability of the occur-
rence of the word w in the query model, and Pc(w) is the
probability of the occurrence of w in the collection. Query
clarity is a post-retrieval feature.

4.1.4 Simplified Clarity Score
Calculation of QC is expensive. Simplified Clarity Score

(SCS) is a comparable method for determining clarity with-
out having to generate a query model.

SCS =
X
wεQ

Pq(w|Q) ∗ log2

Pq(w|Q)

Pc(w)
(4)

where Pq(w|Q) is the probability of the occurrence of the
word w in the query.

4.1.5 Inverse Document Frequency-Based Features
Inverse Document Frequency (IDF) measures the relative

importance of a term within a collection. The IDF of a word
w is calculated as follows:

IDFw =
log2

N+0.5
Nw

log2(N + 1)
(5)

where N is the number of documents in a collection and Nw
is the document frequency of w.

For each sub-query, Kumaran and Carvalho calculated the
sum, standard deviation, maximum/minimum, maximum,
arithmetic mean, geometric mean, harmonic mean, and co-
efficient variation of the IDFs of that query’s terms to use
as additional query quality predictors.

4.1.6 Query Scope
Query Scope (QS) is a measure of the number of docu-

ments returned by a query relative to the size of the collec-
tion as a whole. If QS is too large, the query is probably
not useful since it retrieves too many documents. QS of 0 is
also not useful, since a query that returns no results is not
a good query for a particular collection.

QS = −log10
NQ
N

(6)

where NQ is the number of documents containing at least
one term from the query.

4.1.7 Similarity Collection/Query-based features
Similarity Collection/Query (SCQ)-based features mea-

sure how similar a query is to the collection as a whole.
Unlike QS, a high SCQ is considered an indication of good
query quality.

SCQw =

„
1 + ln(

n(w)

N
)

«
∗ ln

„
1 +

N

Nw

«
(7)

where n(w) is the frequency of w in the collection.
As with IDF (section 4.1.5), Kumaran and Carvalho cal-

culated several values based on SCQ.

4.1.8 Inverse Collection Term Frequency-based fea-
tures

Inverse Collection Term Frequencey (ICTF)-based features
are similar to IDF-based features (section 4.1.5).

ICTFw = log2
n(w)

T
(8)

where T is the number of term occurrences in the collection.
Again, Kumaran and Carvalho used ICTF to calculate

aggregate statistics similar to IDF and SCQ.



4.1.9 Similarity Original Query
Similarity Original Query (SOQ) measures how much of

the original verbose query’s information a given sub-query
retained. Kumaran and Carvalho calculated SOQ by find-
ing the cosine similarity between the term frequency- IDF
vectors of the original query and the sub-query.

4.2 Results
Each original query Q of length n has O(2n) possible sub-

queries, denoted by the set SQ = {sq1, sq2, ..., sq2n}. Each
sub-query was also represented by a vector of 31 query qual-
ity predictors sqi = [xi1, xi2, ..., xi31].

In addition to selecting only sub-queries with lengths of
between three and six words as per section 4.1.2, Kumaran
and Carvalho also limited the sub-queries they used to those
sub-queries which (a) were among the top 25 sub-queries
ranked by the MI feature (section 4.1.1) for their original
query, and (b) contained at least one of the proper nouns or
temporal expressions contained in the original query.

Kumaran and Carvalho tested their query reduction method
on Robust2004, TREC123, and a combination of the two
collections. Against unreduced queries, they saw a 10% im-
provement in mean average precision (MAP) in TREC123,
a 6.8% improvement in MAP in Robust2004, and a 5.8% im-
provement in MAP in the two collections combined. Recall
that a perfect reduction can improve a query by 30%.

In all three cases, the most important feature (the one
that was most useful in choosing a sub-query) was query
clarity. Other important features were mutual information,
total ICTF, max ICTF, and total IDF. [3].

5. SUBSET DISTRIBUTION
The final method that this paper will be summarizing is

another way to choose sub-queries of a verbose query. Ku-
maran and Carvalho [3] focused on using query reduction to
find the single best search query. Xue et al., by contrast,
looked at the average performance of all sub-queries of a
given query.

5.1 Conditional Random Fields
A conditional random field, or CRF, is a framework for

labeling and segmenting data input such as natural language
text [4]. CRFs are visualized as undirected graphs, with
each vertex representing, in the case of natural language
processing, a word. Edges represent dependencies between
two words.

CRFs are used to generate the conditional probability
P(y|x) where the variables x represent observed knowledge
about the entities one wishes to predict, and the variables
y represent those entities’ attributes. A verbose query Q
can be divided into a sequence of words x = {x1,x2...xn}
where n is the number of words in Q. y = {y1,y2...yn} is a
series of labels where yi takes a value of 1 or 0, which denote
“keep” and “do not keep” xi, respectively. Given x and y, a
sub-query can be generated.

Using a standard CRF, P(y|x) is calculated as follows:

P (y|x) =
exp(

PK
k=1 λkfk(x,y))

Z(x)
(9)

Z(x) =
X
y

exp (

KX
k=1

λkfk(x,y)) (10)

In equations 9 and 10, exp(X) means eX , fk represent
features extracted from the input series x and the label se-
quence y, K is the total number of features, λk is the weight
of feature fk. Z(x) is a normalizer which ensures the condi-
tional probability

P
y P (y|x) = 1.

CRFs are usually trained on test input where the opti-
mal labeling sequence is known. Such an optimal sequence
is, however, generally not available when looking at verbose
query parsing. Therefore, instead of using the “gold stan-
dard” sub-query, the modified version of CRFs utilized by
Sutton et al. looks at the retrieval performance of all pos-
sible sub-queries [7]. This version of CRFs is referred to
as CRF-perf, because it is based on the performance of the
possible sub-queries. A standard CRF will optimize label ac-
curacy, CRF-perf optimizes projected search performance.
CRF-perf is defined as follows:

Pm(y|x) =
exp(

PK
k=1 λkfk(x,y))m(y)

Zm(x)
(11)

Zm(x) =
X
y

exp(

KX
k=1

λkfk(x,y))m(y,M) (12)

where m(y) is the retrieval performance of a sub-query y, m
is a specific performance measure function, such as average
precision, and M is the retrieval method used. Retrieval
methods will be discussed further in section 5.2.2.

5.2 Types of Features
Xue et al. use three types of features to represent different

levels of dependencies within a query [8]. Those types are
as follows:

Independency Features consist of a single word each, which
allows the general function fk(x,y) to be specialized as
fk(xi, yi), since xi is the only word looked at. An exam-
ple of an independency feature is unigram term frequency,
the number of times a single word (or “unigram”)appears,
independent of all other words.

Local Dependency Features illustrate dependencies be-
tween words in a query. The general function fk(x,y) can
be specialized as fk(xixjxk..., yiyjyk). An example of a local
dependency feature is an organization name like “University
of Minnesota,” which represents a single entity even though
it contains more than one word.

Global Dependency Features describe properties of a se-
lected sub-query, which is generated from all query words
and their labels. Since Global Dependency Features use all
the words in a query, fk(x,y) can be used unaltered. An
example of a global dependency feature is sub-query length,
which depends on all the words in a sub-query.

5.3 Retrieval Methods
Recall that CRF-perf describes a general framework for

different retrieval models and performance measures, indi-
cated by m(y,M ) where m is the performance measure func-
tion and M is the retrieval model. Xue et. al demonstrate
four different retrieval models, but these are not the only
types that can be used within the CRF-perf framework [8].
Those methods are the query likelihood model using the
sub-query (SubQL), the query likelihood model using both
the original query and the sub-query (QL+SubQL), the se-
quential dependency model using the sub-query (SubDM),



and the combination of the sequential dependency model on
the original query with the query likelihood model on the
sub-query (DM+SubQL), which will be described in greater
detail in sections 5.3.1 to 5.3.4.

5.3.1 SubQL
The query likelihood model is the probability that a doc-

ument is relevant to a given query. SubQL, the query like-
lihood model using a subquery Qs, can be calculated as fol-
lows:

scoreQL(D,Qs) =
X

tεT (Qs)

log(P (t|D)) (13)

where T (Qs) is a set of query terms of Qs, t is a term in
T (Qs), and D is a document. P (t|D) is the probability of
finding t in D.

5.3.2 SubDM
The sequential dependency model is the likelihood that

two adjacent terms in a query are related [5]. SubDM, the
sequential dependency model using the sub-query, can be
calculated as follows:

scoreDM (D,Qs) = λT
X

tεT (Qs)

log10(P (t|D))

+λO
X

oεO(Qs)

log10(P (o|D))

+λU
X

uεU(Qs)

log10(P (u|D)) (14)

where O(Qs) denotes a set of ordered bigrams (two-word
sequences) extracted from Qs and U(Qs) denotes a set of
unordered bigrams extracted from Qs. λT , λO, and λU are
weight parameters usually set, respectively, at 0.85, 0.1, and
0.05, according to Metzler and Croft [5].

5.3.3 QL+SubQL
QL+SubQL, a combination of the original query Q and a

sub-query, where both parts use the query likelihood model.
It can be calculated as follows:

score(D,Q,Qs) = α ∗ scoreQL(D,Q)

+(1− α) ∗ scoreQL(D,Qs) (15)

where α is a weighting parameter that Xue et. al set as 0.8
[8].

5.4 DM+SubQL
DM+SubQL is another query and sub-query combination,

where the sequential dependency model is used for the orig-
inal query and the query likelihood model is used for the
sub-query. It can be calculated as follows:

score(D,Q,Qs) = αscoreDM (D,Q)

+(1− α)scoreQL(D,Qs) (16)

where α is the same weighting parameter it was in section
5.3.3.

5.5 Results
Xue et al. tested their query reduction method on topics

from Robust2004, WT10g, and Gov2. They only considered
sub-queries with lengths between three and six words. The
baseline methods they tested against included the sequen-
tial dependency model on the original query (DM), Ben-
dersky and Croft’s method (KeyConcept) [1], and Kumaran
and Carvalho’s method (SRank) [3]. SubQL, QL+SubQL,
SubDM, and DM+SubQL were tested first using the sin-
gle top- performing sub-query and the top 10 sub-queries
[8]. The performance measures used were the mean average
precision (MAP), which measures the relevance of returned
documents with an emphasis on ranking relevant documents
higher, and the precision at ten (P@10), which is the frac-
tion of relevant documents among the first ten returned doc-
uments.

SubQL, QL+SubQL, and SubDM all performed a little
better than KeyConcept, with an overall average of 0.52%
improvement across the three collections. DM+SubQL showed
the most significant improvement over the baseline methods
using both the top one and top ten sub-queries. It showed
an average improvement of 7.42% over KeyConcept. Stan-
dard DM was also a strong method, even garnering the best
results on WT10g when using P@10 as the performance mea-
sure. Therefore, we can conclude that combining sub-queries
with the original query yields better performance, and that
DM is the optimal method to use on the original query. On
average, Xue et. al’s optimal methods for each collection
and performance measure performed about 11% better than
Kumaran and Carvalho’s method, which itself showed an
average improvement of about 8% over unreduced verbose
queries [8, 3].

6. CONCLUSION
In this paper, we presented three different methods for

reducing verbose queries: dependency parsing, query qual-
ity predictors, and subset distribution. Dependency parsing
was tested on WT10g and Robust2004; query quality pre-
dictors were tested on Robust2004, TREC123, and a combi-
nation of those two collections; and subset distribution was
tested on WT10, Robust2004, and Gov2.

All three methods improved search performance from unre-
duced queries. Additionally, both dependency parsing and
subset distribution performed better than the Key Concept
method described by Bendersky and Croft [1], and subset
distribution performed better than query quality predictors
method.

Acknowledgments
Special thanks to Elena Machkasova, my advisor for this
paper, and to Elijah Mayfield, who made some invaluable
suggestions.

7. REFERENCES
[1] M. Bendersky and W. B. Croft. Discovering key

concepts in verbose queries. In Proceedings of the 31st
annual international ACM SIGIR conference on
Research and development in information retrieval,
SIGIR ’08, pages 491–498, New York, NY, USA, 2008.
ACM.

[2] S. Huston and W. B. Croft. Evaluating verbose query
processing techniques. In Proceeding of the 33rd



international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages
291–298, New York, NY, USA, 2010. ACM.

[3] G. Kumaran and V. R. Carvalho. Reducing long queries
using query quality predictors. In Proceedings of the
32nd international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’09,
pages 564–571, New York, NY, USA, 2009. ACM.

[4] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings
of the Eighteenth International Conference on Machine
Learning, ICML ’01, pages 282–289, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[5] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the 28th
annual international ACM SIGIR conference on
Research and development in information retrieval,
SIGIR ’05, pages 472–479, New York, NY, USA, 2005.
ACM.

[6] J. H. Park and W. B. Croft. Query term ranking based
on dependency parsing of verbose queries. In Proceeding
of the 33rd international ACM SIGIR conference on
Research and development in information retrieval,
SIGIR ’10, pages 829–830, New York, NY, USA, 2010.
ACM.

[7] C. Sutton and A. Mccallum. Introduction to
Conditional Random Fields for Relational Learning.
MIT Press, 2006.

[8] X. Xue, S. Huston, and W. B. Croft. Improving verbose
queries using subset distribution. In Proceedings of the
19th ACM international conference on Information and
knowledge management, CIKM ’10, pages 1059–1068,
New York, NY, USA, 2010. ACM.


