
Incorporating Agile Methods into the Development of
Large-Scale Systems

Trenton Hafterson
University of Minnesota, Morris

600 East 4th Street
Morris, MN 56267

haft0004@morris.umn.edu

ABSTRACT
Many small-scale developers have shifted from a traditional,
waterfall method for developing software to lighter weight,
agile methods. However, this shift has been difficult for
large-scale projects. In this paper, we introduce some ap-
proaches for scaling agile methodologies to large-scale de-
velopment projects. First, we define the basic framework of
both waterfall and agile methodologies with how they re-
late to large-scale systems. Then we explain the advantages
and disadvantage of large-scale systems using extreme pro-
gramming. We present some solutions to work around such
disadvantages seen in XP, such as hybrid methods involving
both agile and traditional approaches or using a framework
that supports a slower introduction into an agile methodol-
ogy. Lastly, we give an overview of tailoring of methods to
individual systems since each system is unique and there is
no right solution to every situation.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle,
Software configuration management, and Software process
models; D.2.1 [Requirements/Specifications]: Method-
ologies and Tools

General Terms
Management, Design, Documentation

Keywords
Agile, Extreme Programming, Waterfall, Soft-Structured Ag-
ile Framework, Agile Software Solution Framework, Soft-
ware Design

1. INTRODUCTION
Software development is a complex process that can be ac-

complished in many different ways with varying results. Ide-
ally, to be a successful software developer one must be able to

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference Morris, MN.

build a quality project in a reasonable time frame and bud-
get for the client company. There have been many different
approaches engineered for various situations. Some method-
ologies that have been becoming more common in practice
are those known as agile software development. These meth-
ods are showing convincing benefits to small to medium scale
companies and should not be ignored by global companies
developing large-scale systems [5]. This paper presents and
analyzes issues and potential paths to take advantage of scal-
ing agile development processes to work in large-scale sys-
tems.

2. BACKGROUND
Today there are many approaches to software develop-

ment, but in practice few are seen as applicable to large-
scale systems. As most agile methods and frameworks are
commonly used in small-scale to medium-scale systems, it
is unclear what can work for large-scale systems [10]. Be-
fore we describe some of the challenges of using an agile ap-
proach in large-scale systems, we will describe and contrast
a traditional waterfall method and the agile development
philosophy.

2.1 Waterfall Method
The waterfall method is a sequential design process in

which each stage is completed before proceeding to the next
one. An implementation of the process includes five phases:
requirements specification, design, implementation or cod-
ing, testing and debugging, and maintenance [11]. This pro-
cess originates from the manufacturing and construction in-
dustries. An example of a similar phased process would be
constructing a building: customer requirements, blueprints,
construction, moving in, and maintenance. In is not possible
to move into a building before the construction phase. But,
this rigid ordering is not necessary for software development.
Software can be more flexible because it can be broken down
into smaller subsections that may not be dependent on other
sections.

2.2 Agile Development
The more programming methods evolve to suit the envi-

ronments of software development, the less they resemble
the traditional waterfall methods [11]. Agile development is
a way of thinking about development. It is not a method
in itself, but rather a philosophy [8]. This philosophy is fo-
cused on a set of 4 basic values and 12 principles, as stated
in the Agile Manifesto [2].



2.2.1 Agile Manifesto
The Agile Manifesto is a document written by 17 soft-

ware developers in the quest to find a lightweight, effec-
tive development method. The Agile Manifesto’s writers
include representatives from many of what are now known
as agile methods or practices. Using a collective knowledge
of software development and seeing a need to change from
heavyweight methods such as waterfall, they wrote the Agile
Manifesto.

The Agile Manifesto values read as follows [2]:

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

1. Individuals and interactions over pro-
cesses and tools

2. Working software over comprehensive doc-
umentation

3. Customer collaboration over contract ne-
gotiation

4. Responding to change over following a
plan

That is, while there is value in the items on the
right, we value the items on the left more.

Principles behind the Agile Manifesto:
We follow these principles:

• Our highest priority is to satisfy the cus-
tomer through early and continuous deliv-
ery of valuable software.

• Welcome changing requirements, even late
in development. Agile processes harness change
for the customer’s competitive advantage.

• Deliver working software frequently, from a
couple of weeks to a couple of months, with
a preference to the shorter time-scale.

• Business people and developers must work
together daily throughout the project.

• Build projects around motivated individu-
als. Give them the environment and sup-
port they need, and trust them to get the
job done.

• The most efficient and effective method of
conveying information to and within a de-
velopment team is face-to-face conversation.

• Working software is the primary measure of
progress.

• Agile processes promote sustainable devel-
opment. The sponsors, developers, and users
should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence
and good design enhances agility.

• Simplicity–the art of maximizing the amount
of work not done–is essential.

• The best architectures, requirements, and
designs emerge from self-organizing teams.

• At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly.”

This philosophy influenced the creation of many different
agile methods seen today. The most notable one that we
will describe is Extreme Programming (XP).

(a) Waterfall Life cycle

(b) XP Life cycle

Figure 1: This figure compares the waterfall and XP
life cycles [8].

2.2.2 Extreme Programming
Extreme programming is one of the most popular of to-

day’s agile methods. Focusing its values on communication,
simplicity and feedback to improve the speed of development
and quality of code, it eliminates the requirements, design,
and testing phases, and all the extensive documentation as
separate phases, but not entirely [5]. Rather, XP suggests
integrating all of these steps at the same time in short iter-
ations of about one to two weeks (see Figure 1). To do this,
XP suggests that developers keep constant communication
with the client company or customer, thus allowing flexibil-
ity that is impossible in rigid waterfall-like processes. The
customer is considered a part of the team, and works with
the developers creating user stories1, developing tests, and
prioritizing features to point the project in the right direc-
tion [8]. Each iteration consists of a little of each of what
is normally seen in traditional phase-based waterfall meth-
ods (see Figure 1). Each iteration includes a little planning,
analysis, design, coding, and testing, followed by deploy-
ment. Each iteration deployment is a point that the cus-
tomer may choose to release the project for use by the client
company. Another important part of XP is the numerous
practices that bring the agile values together. Some of the
most notable of these practices include pair programming,
and frequent testing and refactoring. For example pair pro-
gramming is where two programmers work together on one
workstation collectively writing and reviewing each other’s
code and guiding each other. Studies have shown this to
result in fast production of simple clean code, that requires
less refactoring later [3].

1A user story is one or more sentences in the everyday or
business language of the end user that captures what the
user wants to achieve.



2.3 Benefits of Being Agile
Heavily structured plan-driven methods such as waterfall:

• do not adapt easily to changing requirements,

• rely heavily on the quality of initial plans and estima-
tions, which are often unreliable, and

• lack continuous customer involvement, which can lead
to misunderstandings and wasted time.

In the design of software systems, features and functions
that seem great to the developers may not always be needed
or understood by the customer, and projects may need changes
at later stages, when the costs of these changes are the high-
est. Agile software development aims to remedy the deficien-
cies of heavyweight methods. With short iterations and reg-
ular customer involvement, project changes can be handled
at any stage [10]. Also, coding standards, pair programming,
and extensive testing seen in most agile methods allow for
development of potentially cleaner code, and cleaner code
requires less refactoring and documentation.

3. CHALLENGES OF LARGE-SCALE XP
In spite of the benefits of being agile, there are challenges

in scaling XP to large-scale systems. In this section, we look
at the challenges that exist for global companies develop-
ing large-scale systems while using XP. As projects grow to
the large-scale development size, the number of challenges
in using XP will grow [5]. One common characteristic of
large-scale software development is that the project is of-
ten distributed over multiple teams, buildings, or countries.
In distributed projects, the need for effective coordination
grows with the project’s complexity. The main difficulties
encountered in a distributed development project can be cat-
egorized as spatial, temporal, and cultural.

3.1 Spatial Challenges
A critical part of XP is open communication within the

development team and with the customer. Both direct com-
munication and the ability to coordinate are limited in the
case of a spatial separation. Members of a team that all
work in one office see, and work with, each other every day.
In the case that a team is separated, these everyday inter-
actions during the XP process are potentially lost. Open
communication builds trust, which can help the coordina-
tion and effectiveness of the agile process. This trust can be
more difficult to establish in a distributed software develop-
ment scenario [5].
To make the most of agility and XP over a distance, using
forms of electronic communication is a requirement. This
can range from instant messaging or e-mail to audio and
video conferencing systems. As all types of electronic com-
munication have their benefits and drawbacks, a team should
not just rely on one. For example, text-based conversation
may lack the expression of emotion from voice, facial ex-
pressions, and hand gestures, while video and audio may
lack the speed and convenience of text-based conversations
over a long distance due to transmission delays.

3.2 Temporal Challenges
In a situation where development teams are located in dif-

ferent time zones, communication efforts can suffer. In the
scenario where the working hours do not overlap, communi-
cation is often completely asynchronous, and even delayed
over many hours. This time difference also exacerbates the
communication challenges between the development team
and the customer. As the customer is a critical part of XP
process, it is important that the customer have input at
each step of production and assure the project is going in
the right direction. The customer is also valuable to the
client company, meaning they may not always be available
in every XP scenario. In the case of a distributed software
development project, it is unreasonable for a customer to be
present at all development site locations. In this case, devel-
opment teams may need to make even further efforts to help
continue open communication amongst themselves and with
the customer. To achieve a high level of communication in
an asynchronous scenario, both the development team and
client company need to be highly committed. One approach
may be to give a team member the role of moderator to help
facilitate communication between sites [5]. This moderator
role can also be applied to the customer; a client company
can elect a surrogate to represent them to make distant inter-
actions more feasible. This surrogate would have extensive
knowledge of the client company’s interests.

3.3 Cultural Challenges
Lastly, there is the possibility of cultural differences be-

tween the teams. The cultural differences may not be di-
rectly related to distributed scenarios, but the lack of in-
person face-to-face conversations and meetings can add to
misunderstandings. These differences can stem from lan-
guage barriers, cultural references, and customs. It is im-
portant to note that even when both teams can communi-
cate in the same language, they may not always speak the
same dialect. When face-to-face, these differences can be
recognized with the use of verbal and physical gestures in
the context of the situation. In a distributed scenario, the
cultural differences can become even more challenging. Au-
dio and video conferencing, when available, have the benefit
of including emotion, but may not always prevent misunder-
standings. This scenario may also have great benefit from
the role of a moderator to help bridge the differences [5].

4. HYBRID AGILE METHODS
Although XP was formed for small to medium scale soft-

ware development projects, it can still be scaled with effort
from both client and developer. Most of the principles from
XP can be applied to distributed scenarios. With the high
level of effort needed from both sides, this may not always be
the most reasonable approach [5]. As some specific aspects
to the XP method may be more feasible than others, it may
be okay to adopt some aspects of XP and find alternative
approaches for others.

In practice, it is a great challenge for many organizations
to take on a complete agile development approach, and an
even greater challenge for a large-scale project [9]. To be
successful in a large-scale agile environment one must con-
sider taking alternative approaches to some XP practices
and other popular agile development methods.

One can consider adopting a more hybrid method that
attempts to use the best of both waterfall and XP-like prac-



tices. As specific agile practices have been shown to be suc-
cessful for large-scale systems, but not all are potentially
suitable, finding a middle ground can be desirable. Prac-
tices such as iterative life cycle, pair-programming, and cus-
tomer involvement can be suitable to large-scale systems.
Large-scale systems may find agile practices such as mini-
mal documentation and code refactoring less feasible [9]. A
large-scale project may need comprehensive documentation
for reasons such as: lack of communication among develop-
ers, personnel turnover, and the use of third-party mainte-
nance organizations. Also the fact that the system itself is
quite large means that having a somewhat stable core that is
not going to be refactored or changed allows multiple teams
to make changes that relate to the core simultaneously.

Also large-scale projects tend to have a larger code base
and lengthy development cycles, making code refactoring
time consuming and costly [9].

4.1 Soft-Structured Agile Framework
One hybrid method is Soundararajan’s Soft-Structured Ag-

ile Framework. This framework consists of two main parts:
the Agile Requirement Generation Model (Agile RGM) and
the Development Process. This particular framework’s main
objective is to accommodate change in both large-scale or
small-scale projects [9]. We will describe the two parts
and then summarize the benefits to the soft-structured agile
framework.

4.1.1 Agile RGM
The Agile RGM is a set of well-defined activities that pro-

vide a more structured approach compared to XP. As shown
in Figure 2, the Agile RGM consists of three phases to help
capture requirements: Education, Feature Development and
Story Development. All of theses phases incorporate agile
principles and practices such as customer involvement, it-
erative life cycle, and minimal documentation. The Agile
RGM is employed at the beginning of a project that will
later follow either an agile or a conventional development
process.

Figure 2: Agile RGM [9].

Education phase.
The education phase is essentially a meeting among the

development company, the client company and potentially
other various customers to help create a better understand-
ing of the project. This is necessary to help build and plan
a set of objectives and goals that are to be achieved in later
phases and in the finished product. This is different from
the usual XP approach, which employs smaller sessions at
the beginning of each iteration.

Feature Development phase.
At this stage, the customer works with the development

team to iteratively identify expected system features. A fea-
ture is a small set of functionality that is valuable to the
customer. In creating a feature, the development team will
give an estimation of how long it will take or if it is possi-
ble. Then after a feature is accepted by both customer and
developers, the customer will prioritizes each feature accord-
ing to its business value to the client company. “Business
value is something that delivers profit to the organization
paying for the software in the form of an Increase in Rev-
enue, an Avoidance of Cost, or an Improvement in Service”
[6]. For example, consider development of a website for an
e-commerce company. The “Online Payment” feature has a
high business value.

Story Development phase.
Using the features created in the previous phase, devel-

opers require additional details before proceeding. In this
phase, features are decomposed into stories. A story is a re-
fined user- or customer- expected feature that will be used in
the development process. If the development team is made
of multiple teams, each team may independently work to-
wards decomposing one or more features into stories. Here,
the feature “Online Payment” is decomposed to “As a user,
I can pay by credit card”.

4.1.2 Development Process
In this part of the soft-structured agile framework, the de-

velopers may take two alternative approaches depending on
the scale of the system (see Figure 3). For small-scale sys-
tems, the development team may follow an iterative struc-
ture like XP, and make each story an iteration. For large-
scale systems, the development team may require a more
structured approach and can choose to follow a more con-
ventional waterfall-like approach.

For large-scale systems, a waterfall-like approach is usu-
ally deployed. First, subsets of stories are transformed into
one or more requirements. For example the story “As a user,
I can pay by credit card” will be given much more detail and
transformed to “the system shall use Advanced Encryption
Standard(AES) to encode all credit card information to be
transmitted over the internet.” The requirements produced
from this stage will each be developed in a waterfall-like ap-
proach similar to the example seen in Figure 1(a). Although
a conventional approach is used here, it still fits within an
agile environment as it is guided by the features and stories
produced from the Agile RGM process. With the require-
ments, this stage will also still be able to adapt to changes
more easily than conventional waterfall methodologies be-
cause requirements are created from stories [9].



Figure 3: Spectrum of Software Development Ap-
proaches [9].

4.2 Benefits of Soft-Structured Agile Frame-
work

The benefits of this framework are that it reflects funda-
mental agile practices and still meets the needs for large-
scale systems. As seen in Figure 3, with the use of the Agile
RGM, this approach fits between agile methods and con-
ventional methods. With this approach, the difficulties seen
in the XP method can be reasonably avoided, but at the
same time agile development practices can be applied. The
framework has been presented at Capital One, Richmond,
Virginia and was well received. The approach reflects many
of the principles and values embraced by that organization.
Further on-site testing and research is still required for a
formal validation of this approach [9].

5. PHASING INTO LARGE-SCALE AGILE
PROCESSES

Another consideration that should not be overlooked is
how to implement a method. Most organizations may find it
inappropriate to make a full transition to an agile approach
in a short period of time. They can consider a method that
allows them to phase into an agile approach. For a large-
scale system this may be more feasible, not only for the
developers, but also for the business value. To adopt new
development processes can be challenging and require time.
It also can be more attractive from a business viewpoint,
because even as being agile has its benefits, a company may
not want to risk time and money on something new and
unknown. An organization can phase into an agile method
by adopting agile processes in a pattern best fit for their
existing resources. This can allow for change and fine-tuning
of each process within an agile method to best work for that
organization. Adopting all aspects of an agile method at
once may be too much change, psychologically or technically,
for organization to handle without the guidance of an outside
expert or mentor who has mastered agile methodologies [7,
8].

5.1 Agile Software Solution Framework
The Agile Software Solution Framework is a set of tools to

help a development team during the transition to adopting
an agile method. A transition using such framework can
take up to a period of 3-5 years [7]. The process can be
broken down into three phases.

The first phase of adoption is focused on applying specific
agile practices. During this phase a development team will
adopt a subset of practices used in an agile method. An ex-

ample would be that a development team chooses to adopt
pair programming, peer review, and code refactoring. As
they begin to use these practices, they will then refine them
as they see fit to best work for their situation. During this
phase, the developers will incrementally introduce new prac-
tices after the previous ones are fine-tuned to the developers.
The final goal of this phase is to work towards achieving ag-
ile development attributes such as: speed, flexibility, and
responsiveness.

The second phase is to introduce the key components that
differentiate an agile method from traditional methods. In
this phase, the development team practices open commu-
nication, not just within the team but also with the cus-
tomer. During this time, the organization values and princi-
ples should resemble the Agile Manifesto. An example would
be that the team now introduce the customer as a part of
each iteration.

The last phase is to continue to fine-tune the agile method
that the organization has adopted. During this phase, the
development team should work towards mastering the agile
method and keeping the agile process. For example at this
stage a team works towards quality production with minimal
resources within a desired time frame.

5.2 Benefits of Agile Software Solution Frame-
work

The benefit of phasing towards a goal of using an agile de-
velopment method is that as it is introduced in parts, each
aspect has time to be fine-tuned to the situation of the de-
velopment team. This may later remove the need to tailor
a method to fit one’s situation. If the 3-5 years suggested is
not too long of duration to take to transition, this method
has great potential. Two case-studies, both in early phases,
each reporting positive feedback and progress with the ap-
proach, demonstrate that Agile Software Solution Frame-
work is plausible [7]. Further research and completion of
the current case-studies is required for a formal validation
of this approach.

6. AGILE METHOD TAILORING
Almost all software development projects are unique, and

the choosing of a method, or variant of a method is depen-
dent to the situation of the project [4]. As a result it is
uncommon that a method would work exactly as it is origi-
nally published.

It is common to tailor a method to a company’s specific
requirements and resources. Creating a new method of your
own is not advised for those inexperienced with agile meth-
ods. In such a case, starting with an existing agile method
and iteratively tailoring it is recommended [8]. As there is
no one way to go about tailoring, practitioners have stated
that most of their tailoring efforts were based on intuition
and personal experience of the managers or developers in-
volved [4]. With the lack of documentation on how to tailor
a method, it is suggested that “unless you understand the
rationale, you cannot make an informed decision about ex-
tending that step, tailoring it, or dropping it” [4].

For example, an organization should try pair program-
ming before they decide to change it or drop it altogether.
A case study of a development team using pair program-
ming tried this practice as defined, but with the wide range
of experience levels of their programmers they altered the
practice into enhanced pair programming. Enhanced pair



programming consists of one senior and two junior program-
mers. The senior member works between the two junior
member’s workstations as a navigator, guiding and review-
ing for both workstations rather than just one like seen in
normal pair programming [7]. Whether one chooses to adopt
a fully agile method like XP or a hybrid, and if they plan
to phase into such method or implement it all at once, they
should consider tailoring it to their situation.

7. CONCLUSIONS
As this field is mainly focused around business and com-

petitive practices, successful implementations and documen-
tation of XP approaches are scarce. There are large-scale
companies such as British Telecom and BMC Software that
have successfully scaled agile processes. BMC Software is
currently running product development teams across six lo-
cations and 11 time zones [1].

With approaches presented and evidence of existing com-
panies, it is possible for a global company developing large-
scale systems to scale to agile development processes. With
the right amount of commitment to a particular process such
as XP, it is possible to achieve success. The possible chal-
lenges of XP in large-scale environments should not deter
one from making the change to becoming an agile develop-
ment company. There are many reasonable alternative agile
approaches other than XP that may scale better to one’s sit-
uation. There are also different ways that one could adopt
such desired methods and ways of making it work for them.
As research continues and as more large-scale software de-
velopment projects adopt agile methods, there should be
more solutions to overcoming issues seen in scaling and bet-
ter documented processes.

Acknowledgments
My thanks to Kristin Lamberty and Elena Machkasova for
helping in all aspects of this paper. Thanks also to Chris
Blahna, Rochelle Redding, and Andrew Hoaglund for proof-
reading and helping to edit this paper.

8. REFERENCES
[1] L. Barnett. Large-scale agile development. Agile

Journal, 2006.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. Manifesto for agile software
development. http://www.agilemanifesto.org/,
2001.

[3] A. Cockburn and L. Williams. The costs and benefits
of pair programming. In In eXtreme Programming and
Flexible Processes in Software Engineering XP2000,
pages 223–247. Addison-Wesley, 2000.

[4] K. Conboy and B. Fitzgerald. Method and developer
characteristics for effective agile method tailoring: A
study of xp expert opinion. ACM Trans. Softw. Eng.
Methodol., 20:2:1–2:30, July 2010.

[5] T. Hildenbrand, M. Geisser, T. Kude, D. Bruch, and
T. Acker. Agile methodologies for distributed
collaborative development of enterprise applications.
In Complex, Intelligent and Software Intensive

Systems, 2008. CISIS 2008. International Conference
on, pages 540 –545, march 2008.

[6] J. Patton. Ambiguous business value harms software
products. IEEE Software, pages 50–51, 2008.

[7] A. Qumer and B. Henderson-Sellers. A framework to
support the evaluation, adoption and improvement of
agile methods in practice. J. Syst. Softw.,
81:1899–1919, November 2008.

[8] J. Shore and S. Warden. The art of agile development.
O’Reilly, first edition, 2007.

[9] S. Soundararajan and J. Arthur. A soft-structured
agile framework for larger scale systems development.
In Engineering of Computer Based Systems, 2009.
ECBS 2009. 16th Annual IEEE International
Conference and Workshop on the, pages 187 –195,
april 2009.

[10] Wikipedia. Agile software development — wikipedia,
the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=

Agile_software_development&oldid=420668857/,
2011. Online; accessed 28-March-2011.

[11] Wikipedia. Waterfall model — wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.
php?title=Waterfall_model&oldid=420124129/,
2011. Online; accessed 28-March-2011.


