
Data Security in the Cloud

Matt Lauer
University of Minnesota, Morris

600 East 4th Street
Morris, MN 56267

laue0095@morris.umn.edu

ABSTRACT
Cloud computing is an emerging trend in the provision of
computing resources. For economical reasons users are out-
sourcing applications and data storage to the cloud, a man-
aged hardware infrastructure providing various services. As
the cloud grows it becomes necessary to secure the data and
applications from unwanted attackers. This paper examines
a combination of traditional methods for virtualization se-
curity and data transfer along with new methods of securing
data and virtual machines. With these techniques, a user’s
cloud applications and data may be secured from unwanted
intrusions.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscel-
laneous; D.4.6 [Security and Protection]: Access Con-
trols

General Terms
Security

Keywords
Cloud Computing, Virtual Machines, Amazon EC2, Data
Security

1. INTRODUCTION
In 1961, computing pioneer John McCarthy predicted that

“computation may someday be organized as a public util-
ity” [3]. Cloud computing brings that prediction one step
closer to reality. Today, with just a credit card, anyone can
obtain access to a vast array of computational resources.

Cloud computing represents a recent paradigm shift for
the provision of computing infrastructure which outsources
computation and storage requirements of applications and
services to a managed infrastructure. The University of Min-
nesota’s recent shift to Gmail and the Google Apps system is

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2011 Morris, MN.

a real-world example of outsourcing applications and data to
the cloud. It is often more economical, easier and faster for
companies and universities to transfer storage and computa-
tion requirements to managed systems with a larger resource
set [3].

However, when private data is stored on public infras-
tructure, many extra steps are necessary to ensure the data
remains private.

In the following sections we will examine modern methods
of virtual machine security and take a look at Amazon’s
Elastic Cloud Compute (EC2) infrastructure. Then we will
look at securing data flow between applications and methods
of enforcing cloud accountability.

1.1 Defining the Cloud
Cloud computing is a very young concept and there is

no consensus on a formal definition at the time of writing.
Most experts agree that cloud computing is a buzz which
encompasses a variety of services [3, 5]. Some definitions
claim immediate scalability and usage optimization are key
ingredients. Others focus on the business model which is
typically a pay-as-you-go service. Others claim data centers
and/or virtualization is the primary basis for cloud comput-
ing. Consequences for ambiguity may turn cloud computing
into a generalized and overused concept of outsourced com-
puting.

The following definition approaches cloud computing from
a broad conceptual level:

[Cloud computing represents] a broad array
of web-based services aimed at allowing users to
obtain a wide range of functional capabilities on
a “pay-as-you-go” basis that previously required
tremendous hardware/software investments and
professional skills to acquire. Cloud computing
is the realization of the earlier ideals of utility
computing without the technical complexities or
complicated deployment worries. [5]

Although most definitions do not use such generalized con-
cepts, these generalizations are often implied as a base for
other definitions. This makes the definition above highly
applicable. As an addendum to the definition above, these
key technical concepts are often associated with (but not re-
quired of) cloud computing: instantaneous and on-demand
resource scalability, parallel and distributed computing, and
virtualization [5].

Distributed Systems
Supercomputers

Clusters

Clouds

Grids

Application
Oriented

Services
Oriented

Figure 1: Representation of clusters and supercom-
puters (raw computing power and storage) in re-
lation to grid and cloud infrastructures. Adapted
from [3].

1.2 Cloud vs Grid
The driving concepts behind cloud computing are not

new. Grid computing was introduced in the mid-90s with
a similar vision of the more recent cloud: reduced costs,
flexible and distributed computing power [5]. Grid comput-
ing still exists today and there is often confusion about the
difference between cloud and grid computing.

Grid computing aims to “enable resource sharing and co-
ordinated problem solving in dynamic, multi-institutional
virtual organizations” [3]. The goal of grid computing is to
combine distributed resources using common protocols to
produce a large resource pool. Technical details are where
cloud and grid computing differ. [3] argues that cloud com-
puting is not a new technology; rather it is the evolution of
grid computing and relies on grid computing as its backbone.
Grid computing provides computational resources and stor-
age while cloud computing, built upon grid technologies, uti-
lizes virtualization and hardware sharing to deliver econom-
ical packages of abstract resources and services. Figure 1
expresses the relationship between grid and cloud comput-
ing alongside other types of distributed systems.

1.3 Uses of Cloud Computing
Various authors have proposed three different tiers of sys-

tems employed by cloud service providers [4, 5]. These tiers
make up the different levels of technologies used in cloud
computing.

1.3.1 Infrastructure as a Service (IaaS)
This level represents the most basic form of cloud service.

Infrastructure providers (e.g., Microsoft, Google, Amazon)
manage a vast set of computational and storage resources.
Depending on the provider, end users may have direct ac-
cess to the hardware resources or access to a set of virtual
resources. Clouds typically utilize virtual resources and grid
applications typically have direct access to hardware. Appli-
cation and services built upon virtual resource sets are not
hardware dependent and can be deployed seamlessly across

different cloud platforms. This service is best represented
by services like Amazon EC2, a virtual machine platform.
Amazon provides hardware infrastructure for users to man-
age virtual machines, software implementation of normal op-
erating systems, which may run any service or application
the user desires.

1.3.2 Platform as a Service (PaaS)
At the next level services are presented to users as a soft-

ware/application platform instead of hardware. Typically
this layer consists of application frameworks that make up
the basis of the SaaS layer described next. The Google App
Engine and Microsoft Azure both offer a large set of pro-
gramming tools at this level. The Google App Engine al-
lows users to develop web applications that run on Google’s
infrastructure. The PaaS layer is encompassed within the
SaaS layer as these programming frameworks are considered
software as well.

1.3.3 Software as a Service (SaaS)
This is the highest level of services provided by cloud plat-

forms. This level provides applications that end users inter-
act with. Examples include Google Docs, Microsoft Office
Live, Google Maps and Facebook [4].

2. VIRTUAL MACHINE SECURITY

2.1 Virtual Machine Monitoring
Cloud computing provides standardized resources by effi-

ciently connecting and sharing large pools of hardware re-
sources. Virtual machines operate on top of these resources
and allow users to customize their environment. This allows
the cloud to be a versatile resource and accommodate many
different user interests.

The economical and performance benefits of cloud com-
puting may be enticing but security is a major concern of
businesses and organizations migrating to the cloud. Typi-
cally users upload code and data to a cloud virtual machine
(VM). In this context, cloud computing offers IaaS; the user
must obtain a VM image and configure it to his needs. The
VM runs in a shared execution environment with other VMs.
Other users may infiltrate the VM if it is not configured
properly. Historically research has focused on securing the
virtual machine itself through firewalls, user access restric-
tions, and other software provisions. While those methods
are not obsolete, they do not provide the necessary level of
security in a cloud environment because of a mismatch in
security requirements and threat models [2]; more on this in
Section 2.2. A more modern approach looks at building a
virtualization-aware security mechanism.

There are two spots where security issues arise during soft-
ware execution. First, users’ code must be isolated to pre-
vent unwanted intrusion. Second, the data being processed
must be secured (more in Section 3). Virtualization is the
common solution to the first issue. In the cloud, a hardware
provider (e.g. Amazon) issues an end user a virtual machine.
Since two parties are involved, the hardware provider also
includes a virtual machine monitor (VMM) tool. Since the
contents of the VM’s operating system (OS) are unknown to
the hardware provider, the VMM allows for detection of the
OS and the monitoring of its operation. It also may attempt
to detect and correct any system anomalies. Unfortunately
this is not a perfect approach. The VMM assumes that the

OS has the original system files intact so it can identify the
OS. Malware that modifies system files could trick the VMM
to wrongly identify the OS.

Monitoring a VM “from the outside” is possible due to the
nature of virtualization. But there are still challenges when
monitoring VMs: they can be paused and restarted (and
cloned) arbitrarily. This makes monitoring during the OS
boot sequence unrealistic. Also, the source code of all oper-
ating systems is not publicly available making identification
by code comparison difficult.

VMM methods typically employ secure introspection to
validate the integrity of the guest OS on a VM. This process
can be viewed as self-observation: the VMM tools monitor
the virtual machine’s memory state to identify the OS. Once
the OS has been identified, security measures may be en-
forced based on common known weaknesses such as software
and firewall limitations. Since secure introspection provides
information about the OS code integrity by validating each
memory fragment, this method also provides a secondary
feature of detecting system intrusions.

2.2 Security Audit of Amazon Elastic Cloud
Compute

Amazon provides IaaS via their Elastic Cloud Compute
(EC2) service. EC2 provides powerful virtual machines for
end users. Previously we mentioned that cloud computing
suffers from new security holes in unexpected ways. In this
section [1] explores the vulnerability of a multi-tier Amazon
EC2 configuration.

2.2.1 Background
Amazon’s EC2 allows users to configure and deploy vir-

tual machines on Amazon servers. VMs are initialized from
predefined images, which Amazon calls Amazon Machine
Images (AMIs). Once they have been initialized they are
referred to as VM instances. These instances are connected
directly to the internet and can interact with each other.
Amazon provides security groups that act as a firewall be-
tween the VM and the Internet, blocking undesired traffic.
Each VM instance is a member of a security group that the
user defines. It restricts inbound traffic using a set of user
defined rules. Outbound traffic is not limited. Rules can
allow traffic based on port, protocol (TCP), or source (IP
address). TCP, or Transmission Control Protocol, is the
core communication protocol behind the Internet Protocol
(IP) and provides a communication layer for web applica-
tions and services. IP addresses are a unique numeric label
assigned to each device on a network in the form x.x.x.x
where x is a number between 0 and 255. Each time two
computers establish a communication link, a port number
associated with it in the range 1 - 65535. The port number
depends on the application.

Members of the same security group can communicate if
explicitly allowed to do so [1]. VMs and security groups are
managed by a web-interface. Since the security groups are
user-defined, there are frequent security concerns with the
configuration. Security groups provide isolation and robust-
ness to the overall system. However, they also leave the door
open for potential vulnerabilities in a multi-tier system.

[1] uses reachability graphs to determine vulnerable areas
of VM instances, see Figure 2. For example, if a VM is a
member of the web security group the graph would consist
of a source IP node, the associated security group web, and

0.0.0.0/0 1.2.3.4/24

443/tcp80/tcp

web

db

app

8080/tcp

3306/tcp

default

AMI1

AMI2

AMI3

22/tcp

Figure 2: Relationship of Amazon Security Groups
and AMIs. 0.0.0.0/0 represents any IP address as
a source and 1.2.3.4/24 represents a computer con-
nected to the same network as the web, application,
and database servers (typically the internal corpo-
rate network). Adapted from [1].

the virtual machine that is accessible through the security
group. Consider a widely used, multi-tier configuration of
web servers, application servers, and database servers: the
web servers are reachable on TCP port 80 (http) or TCP
port 443 (https) from any source. The application servers
are reachable on port 8080 but only accept requests from
the web servers. The database servers are reachable on port
3306 but only accept requests from the application servers.
We will also assume that all servers are internally accessible
via SSH on TCP port 22 through the default security group.
This multi-tiered architecture is highly scalable and robust
and provides speed and security for web applications.

2.2.2 Vulnerability of Cloud Multi-Tier Service
Figure 3 presents a attack graph created in two steps [1].

The nodes in the graph represent a server and the edges
(arrows) are directional communication links. The first step
is to establish the relationship between AMIs and security
groups. Amazon offers a command line API tool for this
and much of this information is readily available in the web-
based control panel as well. This creates the edges on the
graph. The second step is to weight the edge vulnerability
by running a program, Nessus, which is a popular network
vulnerability scanner. With the AMI information and the
security group it is a member of, Nessus is able to scan the
AMI and evaluate its weaknesses. The range of low, medium,
high has been extrapolated from the results to simplify the
graph. In Figure 3 the edges are weighted based upon port
weaknesses Nessus has discovered.

To prevent unwanted intrusions into web services three
remedies are proposed: split up security groups, close unnec-
essary ports, and extract common ports. All three methods

0.0.0.0/0

1.2.3.4/24

AMI1

AMI2 AMI3

0.0.0.0/0
443/tcp
medium

80/tcp
low

22/tcp
low

22/tcp
low

8080/tcp
medium

3306/tcp
medium

22/tcp
high

Figure 3: A typical multi-tiered web application
environment. In the current configuration, an at-
tacker in the corporate network (1.2.3.4/24) could
compromise the application server (AMI2) via SSH.
From there he also has access to the database server
(AMI3). Adapted from [1].

may be implemented together or individually. For example,
isolating each AMI and putting it in its own security group
would provide the highest level of security. However it may
hinder future connection attempts because a needed port
is closed. Closing unused ports in the security group is a
simple and effective tactic.

Since an AMI can be a member of multiple security groups,
extracting common ports among AMIs into their own group
then adding AMIs to that group may be beneficial. This
is similar to refactoring code but instead of code it is the
accessibility of AMIs that is being refactored via Amazon
security groups.

3. DATA CENTRIC SECURITY
A majority of work dedicated to cloud security focuses on

the security of the underlying virtual machine and/or op-
erating system encapsulating the services and applications.
In this section the focus is on securing data transfer as it
flows between cloud applications and services. As cloud ap-
plications become more decentralized and interdependent,
as expressed with the multi-tier web application, potentially
dishonest infrastructure and content providers (e.g. Ama-
zon employees) have access to vast amounts of private user
data.

The remedy is to secure the transfer of the data itself.
Queries and data processing must be secured and partici-
pating parties should be authenticated. In [7] a framework
is presented, Declarative Secure Distributed Systems (DS2),
which aims to give developers tools to secure communication
links. The DS2 framework allows developers to create appli-
cations and services that verify the source and authenticity
of the information it sends and receives. It provides secure
network protocols and security policies using Secure Net-
work Datalog (SeNDlog) [6]. SeNDlog is a language based on
Datalog, a query and rule language for deductive databases,
which utilizes declarative networking techniques to main-
tain state across a network. Using these techniques, the
authors of [7] propose using authentication via digital sig-

Parent Worker

Generate
Digital Signature

New Worker

Validate
Digital Signature

Computer A

Computer B

Figure 4: Representation of authentication between
MapReduce workers. Parent workers generate a sig-
nature and create new workers. The new worker au-
thenticate its workload by validating the signature
was sent by a legitimate worker.

natures which allow the receiver to verify the source of the
request. Digital signatures are cryptographic schemes used
to verify the authenticity of messages.

3.1 Where Data Security Matters
Consider online marketplaces such as Amazon, eBay, and

Yahoo!. These services operate as online storefronts for mer-
chants across the globe. The services collect product and
inventory information from sellers and present that informa-
tion to potential buyers in a unified storefront. Cloud com-
puting offers economic incentives for both merchants and
the marketplace portal applications to move to the cloud.
The data exchange between merchants (product inventory
and information) and the portal applications happens effi-
ciently in the cloud. Cloud computing offers services for
exchanging information between virtual nodes belonging to
the same user but does not ensure secure query execution
between different cloud users. The DS2 framework provides
an authentication layer for query execution between cloud
users. This ensures that merchants cannot tamper with each
others’ product inventory or hijack payments.

Another motivating example is data privatization in social
networks. Most existing social network services (such as
Facebook and LinkedIn) store user information and content
on local databases. Due to the nature of frequently changing
privacy policies [7] there may be desire to build a cloud-
based social network that stores user content in the cloud
instead of on social network servers. DS2 provides a secure
authentication layer to allow the social network to access
remote user data.

3.2 Secure Data Processing
[7] demonstrates a potential use of the DS2 framework

with an authenticated implementation of a MapReduce al-
gorithm which counts the words in a set of webpages. Typ-
ically a MapReduce algorithm consists of two steps: map
and reduce. During the map step, a master node splits up
the workload and hands sections to worker nodes. These
workers may exist on parallel resources. The subworkers
may also split their data and create another subset of work-
ers. The process of splitting up the work may happen many

times. Once workers can no longer split data up, they pro-
cess their workload. Then the MapReduce algorithm enters
the reduce phase where the results of the finished workers
are collected, combined and returned to the parent worker
and eventually the master worker.

In typical MapReduce environments, workers may be cre-
ated on unauthenticated resources. Since this implementa-
tion is cloud-based, new workers may be initialized in differ-
ent locations (depending on what resources are available to
the algorithm). Digital signatures are used in the following
implementation to verify the authenticity of the workload.
The reduce workers verify that a valid digital signature has
been included by legitimate map worker when they process
the data. Figure 4 represents a worker creating a new worker
in a different location. The parent worker sends a digital sig-
nature to the child worker. If the child validates the digital
signature, it may proceed with its workload.

3.2.1 Authenticated WordCount Results
The MapReduce WordCount algorithm demonstration was

tested with three different authentication types: i) no au-
thentication ii) RSA-1024 iii) SHA-1 HMAC.

Both RSA-1024 and SHA-1 HMAC are common meth-
ods of data encryption. RSA is a widely used algorithm
for public-key encryption. It encrypts the entire workload
before passing it to a new worker. The new worker must
decrypt and validate the workload before processing. RSA-
1024 provides digital signatures as well.

SHA-1 is a Secure Hash Algorithm developed by National
Security Agency. It is a common cryptographic hash func-
tion that may encode or decode data (if the key is accessi-
ble to both sides). RSA-1024 encrypts the entire workload,
while SHA-1 HMAC attaches a a hash to the message (which
is visible) to verify its authenticity and integrity.

As shown in Figure 5, the word count iteration with no
authentication finished in 350 seconds, RSA-1024 finished in
620 seconds and HMAC finished in 410 seconds. The time
increase is overhead due to processing the signature gen-
eration and verification. Since RSA-1024 encrypts/decrypts
the entire message and SHA-1 HMAC only attaches a digital
signature, the 210 second discrepancy in encryption types is
based mostly on processing overhead. The authors of the al-
gorithm hypothesize that the authentication method could
be further optimized to reduce the overhead in signature
generation and verification.

3.3 Distributed Provenance
Provenance refers to the derivation history of a data prod-

uct, including all the data sources, intermediate data, and
the procedures that were applied to produce the data prod-
uct [3]. This information is useful for debugging and er-
ror detection. The ability to backtrace applications on a
network-level may yield the source of malicious activity or
the cause of a bug.

In an environment where cloud applications are highly
integrated and distributed, it is important for services to re-
tain a log for accountability. If a merchant is trusted at time
T and then commits a deceitful action at time X then all
actions occurring between time T and X should be reevalu-
ated and implications of those actions on other users should
be reversed. DS2 provides a capture mechanism for identi-
fying the source of a communication, the derived data and
parties affected [7].

mentation of MapReduce written in SeNDlog and executed
via DS2:

At MW:
m1 map(ID,Content) :- file(MW,ID,Content).
m2 emits(MW,Word,Num,Offset)@RW :-

word(Word,Num,Offset),
reduceWorker(RID,RW), RID=f_SHA1(Word).

At RW:
r1 reduceTuple(Word,a_LIST<Num>) :-

MW says emits(MW,Word,Num,Offset).
r2 reduce(Word,List) :- reduceTuple(Word,List),

Master says rBegin(RW).

In the program shown above, rules m1 and m2 are within
the context of a map worker MW, and rules r1 and r2 are in
the context of a reduce worker RW.

Map Operation. Rule m1 takes as input a file predicate
and passes the ID and the Content of the file to the instances
of the user-defined Map functions.

Upon receiving an (ID, Content) pair, each Map instance
splits the content of the document into separate words, and
generates a (word,1) pair (stored in word tuples) for each
word, denoting that the occurrence count of the word should
be increased by one. The word tuples, tagged with the Offset

of each word in the document, are then sent back to MW as
the result of the map function.

Rule m2 takes as input word tuples and distributes them (in
the form of emits tuples) to reduce workers. To enable au-
thentication, a signature is included within each emits tuple
using the says primitive.

Reduce Operation. Reduce workers receive and authen-
ticate (e.g., via digital signatures) emits tuples from map
workers. The tuples are then grouped by the key field Word

(in rule r1). The a_LIST aggregate operator maintains the
occurrences of each word in a list structure.

After the map workers complete their job, a master node
sends a rBegin tuple to each reduce worker, signaling the
start of the reduce job. reduce tuples are sent to the user-
defined Reduce instances, each of which contains a word and
the list of its occurrences. Based on these lists, the Reduce

instances generate and emit the final results – the total oc-
currence counts of words.

Authentication. The above program enforces authentica-
tion using group signatures: reduce workers process an emits

tuple as long as it is signed by any legitimate map worker.
Alternatively, authentication can occur at finer granular-
ity. For instance, a reduce worker may be configured to
only accept tuples from cloud user merchant123 by changing
the clause “MW says emits” in rule r1 to “merchant123 says

emits”.

5.2 Preliminary Evaluation
We developed a prototype of WordCount using the Rapid-

Net [32] declarative networking system. Our preliminary
evaluation is intended (i) to experimentally validate DS2’s
ability to implement secure cloud applications using the MapRe-
duce paradigm, and (ii) to study the overhead incurred by
adding authentication features to MapReduce. As a work-
load, we use a two-phase version of our WordCount program.
In the Filtering Phase, the master node distributes 6,400
randomly selected webpages from the Stanford WebBase
project [2] to map workers. Map workers filter out all HTML

!""

#""

$""

%""

&""

!
!"
#
$
%
&
'%
()
!*
+
"
,
-.

'()*+,

-.)!/"0#

12)3

"

/""

0""

!""

#""

$""

%""

&""

" 4" /%" 0#" !0" #"" #4" $%" %#"

/
!
0"
1
2
%
!
!"
#
$
%
&
'%
()
!*
+
"
,
-.

3'4!!56#,-!%!*-.

'()*+,

-.)!/"0#

12)3

Figure 1: Per-node bandwidth (KBps) utilization

tags and partition the results to reduce workers. Reduce
workers then distribute the webpage fragments to the map
workers of the Counting Phase. The Counting Phase uses
the techniques described above to determine the occurrence
counts of words in the webpages.

We perform the experiments within a local cluster of 16
quad-core machines. We deploy 16 map workers and 16 re-
duce workers for the Filtering Phase and 32 map workers
and 128 reduce workers for the Counting Phase. Each phys-
ical machine runs a total of 12 MapReduce worker instances.
To avoid packet-drops due to congestion, we rate-limit the
number of packets sent per second.

To evaluate the overhead incurred by performing authenti-
cations, we constructed three versions of WordCount: NoAuth,
RSA-1024 and HMAC. In NoAuth, MapReduce workers
transmit tuples without the sender’s signature; in RSA-1024
and HMAC, the communication between different map and
reduce workers are authenticated using 1024-bit RSA signa-
tures and SHA-1 HMACs, respectively.

Figure 1 shows the per-node bandwidth usage over time.
All three versions of WordCount incur spikes in their band-
width utilization in the first 30 seconds. The spikes are
mainly attributed to the cross-node communication during
the Filtering Phase. The MapReduce operation at this stage
is computationally inexpensive but network intensive, as the
tuples transmitted in this phase consist of relatively large
chunks of documents (as compared to word tuples transmit-
ted in the Counting Phase).

We observe that NoAuth finishes the computation in 350
seconds, whereas HMAC and RSA-1024 incur an additional
17.4% (60s) and 78.3% (270s) overhead in query completion
latency, respectively. The increase in query completion time
is due primarily to the computation incurred by signature
generation and verification. The respective aggregated com-
munication overheads of HMAC and RSA-1024 are 18.4%
(7.5MB) and 53.3% (21.8MB) higher than NoAuth. How-
ever, due to the use of network throttles in our evaluation,
the per-node bandwidth utilization for the three versions are
similar.

Note that while our example focuses on authentication,
prior work [28, 42] demonstrate that the says construct
is itself customizable, not only via different authentication
schemes, but also encryption schemes for confidentiality and
anonymity. This suggests that one can further extend our
example here to implement MapReduce customized with
other secure communication properties. We plan to explore
this as part of our future work.

Figure 5: Per-node bandwidth (KBps) utiliza-
tion. Completeness of algorithm is determined when
bandwidth reaches 0 KBps as there is no further
communication between nodes [7].

In the context of the cloud, provenance information is
highly distributed. Distributed provenance data can be con-
structed and maintained over a distributed network auto-
matically. Distributed provenance information may be stored
as a directed graph representing the information workflow.
It can also be stored in relational database tables. With
this information, an automatic rewrite function can restore
previous states. It is also possible to query the distributed
provenance data and restore previous states given certain
conditions [7]. To provide another layer of security, the dis-
tributed provenance data is often encrypted, and using self-
detection methods mean that unauthorized tampering with
the data is eventually noticed.

4. CONCLUSION
The use of cloud computing is growing everyday. The

performance and economical gains when services and appli-
cations are outsourced to cloud infrastructure may be sig-
nificant. When sensitive data leaves private systems and
networks, more layers of security must be added. Virtual
machines must be accessible by only a small amount of peo-
ple, firewalls must be configured correctly, and applications
must encrypt the data transfer. None of these are necessar-
ily new concepts. But due to the expanding and evolving
environment for cloud applications and services, extra secu-
rity measures must be taken to ensure private data remains
private.

5. ACKNOWLEDGMENTS
Thanks to Nic McPhee and Elena Machkasova for guid-

ance and support throughout the development of this pa-
per.

6. REFERENCES
[1] S. Bleikertz, M. Schunter, C. W. Probst, D. Pendarakis,

and K. Eriksson. Security audits of multi-tier virtual
infrastructures in public infrastructure clouds. In
Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, CCSW ’10, pages 93–102,
New York, NY, USA, 2010. ACM.

[2] M. Christodorescu, R. Sailer, D. L. Schales,
D. Sgandurra, and D. Zamboni. Cloud security is not

(just) virtualization security: a short paper. In
Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, pages 97–102, New
York, NY, USA, 2009. ACM.

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud
computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008.
GCE ’08, pages 1 –10, 2008.

[4] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm.
What’s inside the cloud? an architectural map of the
cloud landscape. In Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud
Computing, CLOUD ’09, pages 23–31, Washington,
DC, USA, 2009. IEEE Computer Society.

[5] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39:50–55, December 2008.

[6] W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified
declarative platform for secure netwoked information
systems. In Data Engineering, 2009. ICDE ’09. IEEE
25th International Conference on, 29 2009.

[7] W. Zhou, M. Sherr, W. R. Marczak, Z. Zhang, T. Tao,
B. T. Loo, and I. Lee. Towards a data-centric view of
cloud security. In Proceedings of the second
international workshop on Cloud data management,
CloudDB ’10, pages 25–32, New York, NY, USA, 2010.
ACM.

