
A Comparison of Generics in Major Imperative
Programming Languages

Joe Einertson
University of Minnesota Morris
eine0017@morris.umn.edu

ABSTRACT
This paper discusses syntax and implementation of gener-
ics in three major programming languages: Java, C++ and
C#. Additionally, it discusses the adoption of generics and
evaluates claims about the efficacy of generics in improving
code.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.3.3
[Programming Languages]: Language Constructs and
Features—abstract data types, constraints, polymorphism

General Terms
Design, Languages, Reliability, Standardization

Keywords
Java, C++, C#, Java, generic programming, generics, type
erasure, templates

1. INTRODUCTION
The three programming languages discussed within this

paper are Java, C++ and C#. All three are object-oriented
languages.

C++ is a compiled language. In compiled languages,
source code, the human-readable representation of a pro-
gram, is translated directly into machine instructions. This
process is called compilation.

Java and C# are not directly compiled languages. Source
code in these languages is first translated into a representa-
tion called bytecode, which is neither human-readable nor
directly executable1 [1]. Bytecode is then interpreted and
executed by a virtual machine (VM).

Generic types, commonly referred to as generics, are a
way of defining data structures that may be used with a

1Microsoft refers to the C# analog of bytecode as interme-
diate language (IL)

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, Spring 2012 Morris, MN.

single data type. For example, a list which allows any object
to be inserted is not generic. However, one which allows
a programmer to specify the type of objects that may be
inserted is generic.

2. FUNDAMENTALS OF GENERICS
Generic, or parametric, types is a term that refers to types

which support formal parameters, or a symbol that denotes
a type. An instance of a generic class replaces the formal
parameter with an actual parameter, or concrete type. This
allows developers to define structures which may hold any
data type, but only one type per instance. For example, a
generic list may contain numbers, characters, or any other
type (but not all at once), without a different implementa-
tion required for each.

2.1 Advantages of Generics
The use of generics has several advantages in software de-

velopment. First, due to the flexibility of generics, code may
easily be reused and adapted to many different situations.
Second, generics improve the safety of a program by rigidly
defining and enforcing the types of data an object may con-
tain or perform operations on [15]. Third, generic code is
generally easier to read and understand than its non-generic
equivalent. Consider the following Java code snippet which
does not make use of generics:

ArrayList list = new ArrayList();

list.add(1);

Object element = list.get(0);

if (!(element instanceof Integer)) {

throw new InvalidTypeException("Expected an

Integer, but received a different type.");

}

Integer integerElement = (Integer) element;

In the above code, the ArrayList is not genericized; it
allows any object to be added to the list. When an element
in the list is retrieved using the get() method, we must first
verify that it is of the expected type, Integer. If not, an
error is thrown and execution ends. Once we have verified
the element’s type, we must typecast it to the correct type,
Integer. Only then may we safely perform operations on the
element. This results in duplication of type verification code
throughout a software project [15].

The same code may be rewritten to utilize Java generics,
simplifying the code and making it more type-safe. If we
use generics to specify that our list is a list of Integers, the



Java VM will enforce this. Only Integers may be added to
the list, and thus only Integers can be retrieved.

ArrayList<Integer> list

= new ArrayList<Integer>();

list.add(1);

Integer element = list.get(0);

This is much more concise: five lines of code were elim-
inated. We begin by initializing a List, as before, but this
time we add a type parameter <Integer>. This parameter
specifies the type of element that may be added, and we
can be sure the retrieved element is of the intended type.
Any attempt to add a non-Integer item will automatically
result in an error. This restriction that the list only contain
integers is called parametrization: we say that the list was
parametrized over Integers.

Although we used Java for all examples in this section, the
issues discussed are not language-specific. Generics provide
the same benefits in C# and C++ as in Java.

2.2 Generics in C# and C++
Generics in C# have a very similar syntax to generics in

Java. Consider the following code sample:

List<int> IntList = new List<int>();

IntList.Add(1);

int element = IntList[0];

As before, we begin by initializing a List object. To
parametrize our list over integers, we again add a type pa-
rameter <int> to our list declaration. This ensures that we
may only add integers to and retrieve integers from our list;
any attempt to insert another type will result in an error.

C++ also supports generics, although its syntax varies
slightly from that of Java and C#. Consider the following
C++ code sample, which is equivalent to the previous C#
example:

list<int> intlist;

intlist.push_front(1);

int element = intlist.front();

We again begin by declaring our list, but this time we do
not need the new keyword used in Java and C#. We can
then add an integer to our list, and as before we can safely
retrieve it with the guarantee that it is indeed an integer.

Due to C++’s implicit type conversions, operations with
many basic types are not fully type-safe [10]. For example,
adding a floating-point number such as 1.7 to our list is ac-
ceptable. Other less obvious conversions are also completely
valid: adding the boolean true or the character ’a’ both
compile and run without error. However, because they were
converted into integers at the time they were added, we can
be sure any item retrieved from the list will be an integer.

Unlike Java and C#, C++ offers support for the type-
def structure. Typedef is essentially an aliasing command,
enabling complicated generic objects to be referred to by
another name [11]. Consider the following nested generic
declaration in Java:

ArrayList<Node<Integer, String>> nodes

= new ArrayList<Node<Integer, String>>();

The above code creates an ArrayList containing Nodes,
each of which contain an Integer and a String. The dec-
laration is cumbersome and repetitive, and Java does not
provide a mechanism to simplify the code. Using a C++
typedef, however, we can define a similar structure under
the name nodes_t:

typedef list<node<int, string>> nodes_t;

nodes_t nodes;

Using typedef, the lengthy generic declaration was re-
duced to the easily-readable nodes_t. Because typedef’s
aliasing treats our custom type as a full-featured type, we
can create a list of nodes simply by declaring a variable of
type nodes_t and giving it a name (such as nodes).

3. ADVANCED GENERIC FEATURES
So far we have discussed the basics of generics in Java,

C++ and C#, as well as some basic differences. Aside from
a few differences in syntax and language features unrelated
to generics, all three languages have been largely similar.
Now we will examine some of the more advanced features of
generics, many of which vary wildly between languages.

3.1 Boxing and Unboxing
In Java, there is a distinction between primitive types,

such as int, float or boolean, and object types, such as Ar-
rayList, Integer or Node. By convention, primitive types are
spelled lower-case, and object types spelled with capital first
letters.

In Java, the only types which may be used as parameters
to a generic object are object types. Attempting to declare
a List<int> is invalid because the type int is a primitive
type. This begs the question: how does one place ints into
a generic object?

The answer is via boxing and unboxing. All primitive types
have an equivalent object type which acts as a wrapper for
the primitive type. For example, the primitive type int has
an equivalent object type Integer. Primitive types may be
stored in their object type, as in the following code:

int x = 3;

Integer y = new Integer(x);

int z = y.intValue();

The above code creates an instance of the object type
Integer to hold the value of the primitive type int. This
process is called boxing. The reverse process, retrieving a
primitive type from its object type, is called unboxing. This
is achieved through methods in the object type, as demon-
strated on the last line of the above example.

Given that primitive types are known to be more efficient
and easier to work with, most raw data is held in primi-
tive types. Boxing primitive types for use in generic classes,
however, is tedious and redundant. For this reason, Java
performs auto-boxing and auto-unboxing.

When attempting to insert a primitive type into a generic
object with an equivalent object type parameter, the Java
compiler will perform the boxing operation automatically.
Similarly, when attempting to retrieve a primitive type from
a generic object, the Java compiler will automatically per-
form the unboxing operation.



Although C# also performs auto-boxing and auto-unbox-
ing, it is less obvious. Object methods may be performed
on primitive types (called value types in C#) without er-
ror, and value types may be declared as type parameters
of generic classes [12]. This is in part due to the fact that
C# generates specific, optimized implementations of generic
classes for value types [6]. C++ avoids the issue altogether
in that there is no practical distinction between primitive
and object types, at least as related to generics.

3.2 Type Constraints
Up until now, all our generics examples have allowed any

type parameter to be used (with the exception of primitive
types in Java). This is not always desirable. For example,
one may want to limit the type parameter in a generic class
to objects that can be compared to each other, or objects
upon which arithmetic may be performed. Consider the
following pseudo-Java example:

class PriorityList<T> {

T getMaxPriority() { ... }

T getMinPriority() { ... }

}

The above example defines a class PriorityList which takes
any type T and stores objects in some order. The user can
then use the methods getMaxPriority and getMinPriority

to determine the items in the list with the highest and lowest
priorities. This raises an interesting question: what if the
type T cannot be compared, or can be compared multiple
ways? How does one compare two Files and determine which
has a higher priority? Are Strings ordered by length or
alphabetically?

To prevent these issues, Java and C# both provide some
method of defining constraints on generic type parameters.
Constraints allow one to limit type parameters to objects
that support certain methods or implement certain inter-
faces. To modify the PriorityList to accept only comparable
objects, we can declare a type constraint allowing only ob-
jects which implement an interface Comparable to be added:

interface Comparable<T> {

int compareTo(T other);

}

class PriorityList<T extends Comparable<T>>

The constraint added enforces that any type T with which
we create a List must implement an interface Comparable,
and in particular, T must be comparable to other objects
of type T. Because every object implementing Comparable
must implement its method compareTo, we can be sure that
we have a consistent way to compare and order objects in
our PriorityList.

Note that although Comparable<T> is an interface, we
use the keyword extends in our generic declaration. The
Java compiler will not accept the keyword implements in a
generic declaration.

C# uses a similar syntax to define constraints, but it is
more flexible than Java’s. As in Java, C# allows constraints
to specify a required interface it must implement. In addi-
tion, it allows constraints limiting type parameters to object
types (reference types in C#), primitive types (value types),
or objects with a default constructor:

class PriorityList<T> where T: Comparable<T>

class Foo<T> where T: struct

class Bar<T> where T: class

class Baz<T> where T: new()

In the above example, the first declaration requires type T to
implement the interface Comparable<T> as before. The next
two lines limit T to value types and reference types, respec-
tively. The final line requires T to have a default (empty)
constructor. Constraints may be combined, and multiple
type parameters may all have their own constraints, allow-
ing declarations such as the following:

class Foo<T, U>

where T: class, Comparable<T>

where U: class, new(), FileInterface

The above class requires that type T be a reference type
implementing the Comparable<T> interface. It also requires
type U to be a reference type with a default constructor
implementing some interface FileInterface.

C++ does not provide support for type constraints in
generic types as a language feature [9]. However, type con-
straints can be emulated and the same effect achieved by
the use of function pointers and exploiting C++’s static na-
ture. Bjarne Stroustrup, designer of C++, advocates for
the use of these tricks in place of constraints [16], but their
implementation is complicated and beyond the scope of this
paper.

3.3 Type Inference in Java 7
Java 7, released in October 2011, introduced type infer-

ence for generic types to reduce redundant type declarations
[14]. Consider the nested generic declaration first discussed
in section 2.2:

ArrayList<Node<Integer, String>> nodes

= new ArrayList<Node<Integer, String>>();

Prior to Java 7, there was no way to shorten that decla-
ration. With type inference, however, the generic type pa-
rameters may be dropped from the new declaration, giving
the following code:

ArrayList<Node<Integer, String>> nodes

= new ArrayList<>();

The Java 7 compiler will infer the type parameters for the
ArrayList by copying the type parameters on the left-hand
side of the assignment operator.

The purpose of generic type inference is broadly similar
to the purpose of typedefs in C++: to reduce duplication in
code. With type inference, the type parameters to a generic
class are only required once per instantiation, as opposed to
twice without type inference.

4. METHODS OF IMPLEMENTATION
We have now seen how generics benefit code quality and

type safety in Java, C# and C++. Although the end result
is very similar in all three languages, how each language
implements generics internally varies considerably.

4.1 Instantiation in C++
C++ uses instantiation to implement generics. Instan-

tiation means that for each parametrization of an object,



a separate non-generic class is created at compilation time.
For example, in a program that utilizes both a list<int>

and a list<char>, the C++ compiler creates two classes,
one for ints and one for chars, under the covers [15].

Instantiation is beneficial in the case of C++ because its
primary goal is efficiency. All types are known at link-
ing time, and that includes generics. By creating fully-
functioning copies of classes, all overhead related to generics
is avoided. Although instantiation can result in some dupli-
cation in the compiled executable, this duplication is avoided
in the source code, and the efficiency central to C++’s phi-
losophy is preserved.

As we will see in section 5, in real life software projects,
most generic classes are parametrized over relatively few
types. This means even though C++ creates a separate
class for each parametrization, in practice very little dupli-
cation actually occurs.

4.2 Type Erasure in Java
Java does not utilize instantiation in its implementation

of generics. Instead, it uses a process called type erasure.
Java generics are a relatively recent addition to the lan-

guage, having been added in Java 1.5, in 2004 [11]. To
maintain compatability with pre-1.5 VMs which did not sup-
port generics, the decision was made to implement gener-
ics in such a way that generic code could be run on legacy
VMs. This requires an implementation that does not require
adding new features to the bytecode. The implementation
chosen was type erasure [5].

In type erasure, the type parameters of generic classes are
erased at compile time. In their place, all generic references
are replaced with references to the Object class. All objects
in Java descend from the Object class, so theoretically, any
object could be placed into the erased implementation [1].
To prevent this, all generic references are enforced at compi-
lation time. Additionally, any variables which receive their
value from a method which returns a generic type are given
typecasts, as in the following example:

String s = stringList.get(0);

String s = (String) stringList.get(0);

The first line of the above code is what a developer would
write. At compilation time, the bytecode representation
would be replaced with the second line. This combination of
type erasure and compiler enforcement create a link between
the type parameters of generic classes and the non-generic
bytecode.

At compilation time, generic classes are erased to their
simplest form in the bytecode representation. This means
all type parameters are removed. For example, the method
void add(T element), which accepts any element of type T,
is translated to void add(Object element) at compilation
time. Nested generic declarations are also erased. The dec-
laration List<Map<Integer, String>> is erased to List at
compilation time, and any references to a specific item from
the list would be erased to Map.

In some instances, specifically when a generic class nar-
rows the bound of another generic class, type erasure is not
sufficient to enforce the declared type. In these instances,
bridge methods are automatically created [5]. Bridge meth-
ods are methods with the specific type parameters required
by the code that feed calls to the bridge method into the
wider bounded method.

Now the add method accepts any Object, but performs
typecasts within the method body to ensure objects added
are truly Strings [5]. Any attempt to add an object which
can not be typecast to String, such as Integer, will result in
a ClassCastException being thrown [15].

The downside to type erasure is that the VM cannot deter-
mine the type of a generic class at runtime; its type has been
erased. This also leads to some non-obvious compiler errors.
Consider the following code snippet from a Java class:

int foo(List<String> list) {

/* Do something with Strings */

}

int foo(List<Integer> list) {

/* Do something different with Integers */

}

The above code will fail to compile because the type pa-
rameters of both Lists will be erased. This results in two
methods with the same signature, int foo(List) [13]. If
the return type or method name of either were changed, it
would compile. To accomplish the intended effect of creat-
ing a method which will work for both Strings and Integers,
however, one must instead create a method int foo(List),
and then test the contents of the list for their types. Given
that generics are supposed to eliminate such tedious con-
cerns, type erasure in this case backfires, rendering generics
useless for the given application.

Type erasure in Java also prevents arrays of generic ob-
jects from being created. For example, creating an array
List<String>[] would be erased to List[] at compilation
time. Because arrays are low-level data structures with very
little overhead, the VM has no way of enforcing that a given
List in the array is in fact a List<String> [6].

4.3 Reification in C#
In contrast to both instantiation and type erasure, C# im-

plements generics in such a way that eliminates duplication
without resorting to the removal of generic parameters. Al-
though this required the introduction of new instructions in
the C# bytecode, thus breaking backwards compatibility,
it results in a more flexible generics implementation [12].
The implementation used is called reification. Reification is
a general term referring to a process by which an abstract
concept such as generics can be accessed and referred to
concretely [3].

Reification in C# results in several features not available
in Java, mostly as related to reflection. In computer science,
reflection refers to a computer program able to access and
modify type information at run time. For example, in C#, a
program may determine whether an object is generic, and if
so, what its actual type parameters are [12]. A C# program
may even modify existing generic parameters, or create new
generic types and methods from existing ones. Additionally,
arrays of generics may be created in C#. None of this is
possible in Java because all references to generic types are
fully erased by runtime.

5. GENERICS ADOPTION
Generics were introduced to Java in 2004 [15], and to C#

in 2005 [2]. In excess of seven years have passed since their
introduction, begging the question: did generics make a dif-
ference in program length, complexity and type safety?



5.1 Java: A Case Study
Given that Java is widely used and studied, we will focus

on the adoption of Java generics. Many claims have been
made about the effects of generics, including the following:

• Generics reduce code duplication [7]

• Generics reduce or eliminate runtime type errors [15]

• Generics encourage and enable standardization and
consistency [7]

• Generics lower programmers’ cognitive load [15]

Are these claims substantiated by empirical studies? Al-
though it appears very few studies have studied the adop-
tion and efficacy of generic programming, the data seems
encouraging [15].

5.2 Generics in Standard Libraries
First, we will briefly examine the effect of generics adop-

tion in standard Java libraries. A study conducted in 2005
observed a code duplication rate of 68% in the non-generic
Java Buffer library. By converting the existing code to use
generics where possible, 40% of the duplicate code was re-
moved [4]. Similarly, a separate 2005 study showed that by
refactoring several Java programs, 91% of compiler warnings
were eliminated, as well as nearly half the casts [8].

These studies seem to support the claim that generics re-
duce code duplication and errors. Studies focusing primarily
on standard libraries, however, fail to evaluate the usage and
effectiveness of software projects ”in the wild.” This begs the
question: how can one truly measure the adoption rate of a
new language feature in new software projects? One answer
is open source projects.

5.3 Generics in Open Source Projects
Open source software (OSS) projects have several advan-

tages in evaluating generics adoption. First, due to the
transparency of the OSS process, code is freely available for
study. Second, most OSS projects use some form of version
control, allowing one to track changes to a code base over
time. Third, since most OSS projects have no central leader-
ship or upper management structure, decisions about code
style are made primarily by the programmers themselves.
This allows studies of OSS projects to investigate the ef-
fectiveness of generics with the elimination of some outside
variables.

In 2011, Parnin et al conducted an in-depth study of 20
major Java OSS projects and their adoption of generics, to-
talling over 500 million lines of code [15]. Their analysis of
the data provides insight into whether projects choose to use
generics and why.

Eight of the twenty projects analyzed utilized more pa-
rametrized types than raw (non-generic) types. The remain-
ing twelve all had more raw types, including five which had
no generic types at all [15]. It is obvious from this data that
generics adoption is not universal, ranging from 0% adop-
tion to 100% adoption. Interestingly, the size of projects
seems not to affect the use of generics, implying other forces
besides the size of the code base play into generics conver-
sion.

Additionally, generics adoption was far from universal by
individual developers as well. Only 14% of developers, and

27% of the most active developers, created or modified ge-
neric types [15]. This suggests that although active devel-
opers with more involvement tended towards generics adop-
tion, it was not a priority for them.

Some patterns also emerged in common instantiations of
generic types. In every project, List<String> was the most
common instantiation. About 25% of instantiations were of
the type List<String> or Map<String, String>.

Interestingly, most generic instantiations were parame-
trized over relatively few types. One-third of generic types
were parametrized over a single type, and 80% over fewer
than five types. This is especially interesting to note given
that C++ creates a new representation of a class for each in-
stantiation. Although C++’s method technically results in
duplication once compiled, the amount of duplication may
be rather modest in practice. It is unclear whether these
statistics hold true in C++ as well as Java.

6. EVALUATING CLAIMS
We previously listed four main claims put forth by pro-

ponents of generics, and we will now evaluate these claims
based on the data shown above.

6.1 Code Duplication
The first claim we listed is that using generics reduces code

duplication. This is a related, although distinct, issue from
C++’s duplication of machine code. To measure potential
code duplication, Parnin et al devised a formula to calculate
the total number of clones of each class required if generics
were not used.

Before the introduction of generics, in situations where
type safety was essential, programmers would often create
specific classes tailored to a single type, such as IntegerList
or StringIntPair. These are often referred to as clones.
Had these same conventions been followed on every instan-
tiation of the top ten genericized classes, over 4000 clones
would have been required, an average of over 400 per class
[15]. Of the remaining genericized classes, only 5.8 clones per
class would have been required, still a non-trivial amount of
duplication.

Obviously, generics did not supplant clones in every in-
stance, or even a majority of instances, in the software pro-
jects. Regardless, given the inherent lack of type safety of
non-generic classes, even a small fraction of clones migrating
to generics represents a significant reduction in code dupli-
cation. Parnin et al estimate that in the top 27 genericized
classes alone, over 107,000 lines of duplicate code were elimi-
nated by the introduction of generics, indicating that gener-
ics do indeed reduce code duplication [15].

6.2 Errors
The second claim listed is that generics reduce runtime

type errors. As generics are enforced at compilation time, it
stands to reason that they would increase compilation errors
at the expense of runtime errors.

Although it is difficult to directly analyze the incidence of
errors in any software project, Parnin et al devised a formula
which estimates errors as a function of duplicated lines and
the number of revisions to those lines. In their analysis of
the top 27 genericized classes, they estimate 400 errors were
eliminated, based on an estimation of .01 errors per commit,
and .0074 errors per line of code derived from a previous
survey [15].



6.3 Standardization and Cognitive Load
The last two claims are that generics increase standard-

ization and decrease cognitive load. These claims are more
subjective than the previous two, but we can still evaluate
them to some degree.

First, we evaluate the claim that generics increase stan-
dardization. There is no way to empirically measure stan-
dardization within a software project, but arguably the very
idea of generics enables standardization. The philosophy
behind generics is to allow data structures to hold a sin-
gle type without requiring a separate implementation for
each type. Therefore, by eliminating clones and other du-
plicate code, generics enforce standardization by unifying
implementations of the same concept for different type pa-
rameters.

Second, we evaluate the claim that generics decrease pro-
grammers’ cognitive load. As before, there is no way to em-
pirically measure cognitive load, but we can infer something
about cognitive load from the complexity of code. Generic
code is designed to be simpler than non-generic code, and
many claim it eliminates many instances of typecasts, a com-
mon source of errors and increased cognitive load. Parnin
et al found little evidence of a correlation between generics
adoption and a decrease in typecasts, however [15]. In fact,
in at least one project, they found that generics adoption re-
sulted in an increase in typecasts. Additionally, in only one
software project was the correlation statistically significant.
This does not necessarily mean generic code has no effect on
cognitive load, but it does weaken the claim significantly.

7. CONCLUSION
Having examined the syntax and implementation of gener-

ics in three major languages, it is obvious that no single lan-
guage or implementation is perfect, and indeed that each has
weaknesses and strengths. However, all three do allow type
parametrization, simplify code and increase type safety.

Java’s use of type erasure results in some restrictions on
the flexibility of generics, although whether these restric-
tions are issues in practice is debatable. C++ sidesteps
these issues by using instantiation, but lacks native sup-
port for type constraints, eliminating some of the beneficial
effects of generics. C# suffers from neither of these issues
because it made a clean break with its past and introduced
new bytecode commands, as well as expanding on Java’s
type constraint system. The disadvantage of this approach
is that it breaks backwards compatibility.

It is clear from our discussion and evaluation of claims
regarding the efficacy of generics that adding genericity to
a language is beneficial. We can say with relative certainty
that generics reduce code duplication. Additionally, given
that errors are a function of program size, reducing the
amount of code in a project is likely to reduce its number of
errors.

Generics implicitly increase standardization, but there are
very few ways to empirically measure this. Despite some
circumstantial evidence, we found no conclusive evidence as
to whether standardization affected cognitive load in any
significant way.

To conclude, although generics should not be considered
a panacea, they do have the ability to increase type safety
and reduce errors in a program. Additionally, they generally
simplify code while reducing duplication, both important

measures of code quality. We conclude that generics are a
beneficial addition to a language, and that even a generic
system with some flaws is better than no generic system at
all.

8. ACKNOWLEDGEMENTS
I would like to thank my faculty advisor Elena Machkasova

for her tireless proofreading and revising, and my external
reviewer Matthew Justin for his keen eye for even the small-
est mistakes.

9. REFERENCES
[1] Java (programming language) - Wikipedia.

http://en.wikipedia.org/w/index.php?title=Java_
%28programming_language%29, March 2011.

[2] .NET Framework - Wikipedia. http://en.wikipedia.org/
w/index.php?title=.NET_Framework_version_history,
March 2011.

[3] Reification (computer science) - Wikipedia.
http://en.wikipedia.org/w/index.php?title=
Reification_%28computer_science%29, March 2011.

[4] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. An
empirical study on limits of clone unification using generics.
In Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE
’05), pages 109–114, 2005.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: adding genericity to
the java programming language. SIGPLAN Not.,
33:183–200, October 1998.

[6] S. T. Devendra Gahlot, S. S. Sarangdevot. Run time
polymorphism against virtual function in object oriented
programming. In International Journal of Computer
Science and Information Technologies, pages 569–571,
2011.

[7] A. Donovan, A. Kiežun, M. S. Tschantz, and M. D. Ernst.
Converting Java programs to use generic libraries.
SIGPLAN Not., 39(10):15–34, Oct. 2004.

[8] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller.
Efficiently refactoring Java applications to use generic
libraries. In Proceedings of the 19th European conference
on Object-Oriented Programming, ECOOP’05, pages
71–96, Berlin, Heidelberg, 2005. Springer-Verlag.

[9] R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock.
An extended comparative study of language support for
generic programming, 2005.

[10] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and
J. Willcock. A comparative study of language support for
generic programming. SIGPLAN Not., 38:115–134, October
2003.

[11] D. Ghosh. Generics in Java and C++: a comparative
model. SIGPLAN Not., 39:40–47, May 2004.

[12] A. Kennedy and S. Don. Design and implementation of
generics for the .NET Common Language Runtime.
SIGPLAN Not., 36:1–12, May 2001.

[13] M. Naftalin and P. Wadler. Java Generics and Collections.
O’Reilly Media, 2007.

[14] Oracle. Type inference for generic instance creation.
http://docs.oracle.com/javase/7/docs/technotes/
guides/language/
type-inference-generic-instance-creation.html, 2011.

[15] C. Parnin, C. Bird, and E. Murphy-Hill. Java generics
adoption: how new features are introduced, championed, or
ignored. In Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR ’11, pages 3–12, New
York, NY, USA, 2011. ACM.

[16] B. Stroustrup. C++ style and technique FAQ.
http://www2.research.att.com/~bs/bs_faq2.html.


