
A Comparison of Generics in Major Imperative
Programming Languages

Joe Einertson

University of Minnesota, Morris

April 28, 2012



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Background
Introduction to Generic Types
Outline

Languages Used

C++

Started as “C with Classes”

Compiled

Efficiency was important design goal

Java and C]

Syntax similar to C

Interpreted

Compile to bytecode (Java) or intermediate language (C] )

Bytecode interpreted by a virtual machine

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Background
Introduction to Generic Types
Outline

Generic Types

Generic types, commonly known as generics, are a form of
parametric polymorphism

Define data structure generically

Use data structure in type-dependent way

Example (Generic data structures)

class List<T> { ... }

List<String> strList = ...

List<Car> carList = ...

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Background
Introduction to Generic Types
Outline

Generic Types

Generic types support formal parameters

Formal parameters are symbols which denote a type

Instances replace formal parameters with actual parameters

Only one type per instance

Single, consistent implementation

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Background
Introduction to Generic Types
Outline

Formal and Actual Parameters

In the following code, T is a formal parameter, and String and Car
are actual parameters.

Example

class List<T> { ... }

List<String> strList = ...

List<Car> carList = ...

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Background
Introduction to Generic Types
Outline

Outline

Introduction

Fundamentals of Generics

Advantages of Generics
Generics in Java, C++ and C]

Advanced Generic Features

Implementation of Generics

Generics Adoption

Evaluating Claims About Generics

Conclusion and References

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Advantages of Generics
Generics in Java
Generics in C]
Generics in C++

Basic Advantages

Generics have many advantages to programmers

Code reuse

Code not bound to a single type

Increase in type safety

Easier to read and understand

Lower cognitive load

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Advantages of Generics
Generics in Java
Generics in C]
Generics in C++

Non-Generic Code

Non-generic code is long and convoluted

Example (Non-generic list of integers)

ArrayList list = new ArrayList();

... // We will retrieve our element in a bit

list.add(3);

Object element = list.get(0);

if (!(element instanceof Integer)) {

throw new InvalidTypeException("Expected an

Integer, but received a different type.");

}

Integer integerElement = (Integer) element;

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Advantages of Generics
Generics in Java
Generics in C]
Generics in C++

Generic Java Code

Same functionality utilizing generics

Example (Generic list of integers)

ArrayList<Integer> list = new ArrayList<Integer>();

list.add(3);

... // We will retrieve our element in a bit

Integer element = list.get(0);

Five lines of code eliminated

ArrayList is parametrized over Integers

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Advantages of Generics
Generics in Java
Generics in C]
Generics in C++

Basic C] Generics

C] syntax is very similar to Java

Example (Generic list of integers)

List<int> intList = new List<int>();

intList.Add(3);

int element = intList[0];

C] List equivalent to Java ArrayList

C] collections use array access syntax

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Advantages of Generics
Generics in Java
Generics in C]
Generics in C++

Basic C++ Generics

C++ generic classes are called templates

Example (Generic list of integers)

list<int> intlist;

intlist.push_front(3);

int element = intlist.front();

Uses list class from Standard Template Library

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

Primitive and Object Types

Java distinguishes between primitive types and object types

Primitive types are low-level types, e.g., int, float, boolean

Object types are everything else, e.g., String, ArrayList,
Integer

What is the difference between int and Integer?

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

Boxing and Unboxing

Java only allows object types as generic parameters

How can primitive types, e.g. ints, be placed in generic
objects?

Java provides wrapper object types for primitive types

Example (Boxing and Unboxing)

int x = 3;

Integer y = new Integer(x);

int z = y.intValue();

Auto-boxing and auto-unboxing is performed by the compiler

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

Boxing and Unboxing

C] also performs auto-boxing and auto-unboxing, but it is hidden
by syntax

Object methods may be called on primitive types

Primitive types may be type parameters of generic classes

C] generates specific implementations of generic classes for
each primitive type

C++ allows any type to be used in a generic object

There is no practical distinction between primitive and object
types, as related to generics

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

Why Are Type Constraints Needed?

Example (Generic PriorityList definition)

class PriorityList<T> {

T getMaxPriority() { ... }

T getMinPriority() { ... }

}

What if type T cannot be compared?
What if it can be compared multiple ways?

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

Java Type Constraints

Example (Generic Comparable interface)

interface Comparable<T> {

int compareTo(T other);

}

With type constraints, we can rewrite PriorityList to require
objects of type T to be Comparable

Example (PriorityQueue enforcing Comparable)

class PriorityList<T extends Comparable<T>> { ... }

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

C] Type Constraints

C] type constraints are very similar to Java, but with extra
constraints

Example (C] Constraints)

class PriorityList<T> where T: Comparable<T>

class Bar<T, U>

where T: struct

where U: class, Comparable<T>

struct requires primitive type

class requires object type

new() requires default constructor

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Boxing and Unboxing
Type Constraints

C++ Type Constraints

C++ does not provide type constraints as a language feature

Constraints can be emulated through tricks using function
pointers

Bjarne Stroustrup, designer of C++, advocates for these tricks

Function pointers are ugly and beyond the scope of this talk

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Instantiation in C++
Type Erasure in Java
Reification in C]

Instantiation in C++

C++ implements generics via instantiation

Separate class generated for each distinct instantiation

Results in duplication of machine code, but not source code

Duplication is minimal in practice

Chosen for efficiency

Example

Two instantiations of a class list, one for ints and one for chars,
will result in the compiler producing two separate classes: one
exclusive to ints and one exclusive to chars.

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Instantiation in C++
Type Erasure in Java
Reification in C]

Type Erasure in Java

Java introduced generics in Java 1.5, but wanted to maintain
backwards compatibility

No changes to bytecode

Allow developers to program generically

Type erasure was chosen as method of implementation

At compilation time, type parameters are erased, leaving only
the class name

Example

List<String> erases to List
List<Map<String, Integer>> erases to List

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Instantiation in C++
Type Erasure in Java
Reification in C]

Reification in C]

Microsoft was OK with breaking backwards compatibility

C] bytecode rewritten, adding generics

More flexible implementation

Allows C] to perform reflection on generic type parameters

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Claims About Generics

Many claims have been made about the effects of generics

Reduce code duplication

Reduce or eliminate runtime type errors

Encourage and enable standardization and consistency

Lower programmers’ cognitive load

Are these claims substantiated by empirical studies?

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Generics in Standard Libraries

Study conducted in 2005 rewrote Java Buffer library utilizing
generics

Pre-generics, 68% of code was duplicated somewhere else

By adding generics, 40% of duplicate code was removed

Separate 2005 study refactored parts of major Java libraries,
adding generics

91% of compiler warnings eliminated

Nearly half the type casts removed

This shows potential benefits – if generics are used. So, are they?

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Why Open Source Projects?

Open source software (OSS) projects have several advantages in
evaluating generics adoption

Code is freely available

Nearly all OSS projects use version control

Lack of central leadership means decisions about code are
primarily made by the people writing the code

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Analyzing Generics Adoption in Java OSS Projects

In 2011, Parnin et al conducted an in-depth study of generics
adoption

Analyzed top 20 most used Java OSS projects

Nearly 550 million lines of code

Millions of separate commits

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Patterns in OSS Projects

Some patterns emerge in Parnin’s analysis

8/20 projects contained more parametrized (generic) type
declarations than raw (non-generic) type declarations

5 projects did not use any generic declarations at all

Adoption rate seems unrelated to size of the code base

Only 14% of developers created or modified generic code

This number rises to 27% for the most active developers

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Patterns in OSS Projects

Patterns also emerge in specific instantiations

List<String> was most common instantiation in every project

25% of instantiations were of the type List<String> or
Map<String, String>

One-third of generic types were parametrized over a single
type

80% were parametrized over fewer than 5 types

These patterns are interesting to note given C++’s use of
instantiation

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Claim 1: Reduced Code Duplication

To measure potential duplication, Parnin et al devised a formula to
calculate potential number of clones

Specific classes tailored to a single type, e.g. IntegerList, are
referred to as clones

Top ten genericized classes would have resulted in 4000 clones

Of the remaining classes, 5.8 clones per class

Generics did not supplant clones in every instance, or even a
majority of instances

Generics eliminated 107,000 lines of duplicated code from top
27 classes alone

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Claim 2: Reduced Runtime Type Errors

It is difficult to measure the incidence of errors in any software
project

Parnin et al devised a formula to estimate errors as a function
of duplicated lines and the number of revisions to those lines

They cited a previous study indicating .01 errors per commit
and .0074 errors per line of code

Using these estimates, around 400 errors may have been
eliminated

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Claim 3: Standardization and Consistency

Very difficult to empirically measure standardization in a project

Generics inherently standardize syntax

Generics unify implementations of the same concept for
different type parameters

Non-generic code can be written many ways, with varying
degrees of correctness

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Java: A Case Study
Generics in Standard Libraries
Generics in Open Source Projects
Evaluating Claims About Generics

Claim 4: Lower Cognitive Load

Cognitive load can be inferred from code complexity

Generic code is simpler to read and intentions are clear

Developers no longer have to think about whether an item in
a collection is the correct type as long as their generic
declaration is correct

Parnin et al found no correlation between generics adoption
and a decrease in typecasts

In one project, they found an increase in typecasts

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Conclusions
Acknowledgements
References

Conclusions

It is obvious that no single language of implementation is perfect.
That said, they all have benefits:

Type parametrization

Code simplification

Increased type safety

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Conclusions
Acknowledgements
References

Conclusions

We can say with relative certainty that generics

Reduce code duplication

Reduce runtime type errors

We also believe that generics

Increase standardization

Decrease cognitive load, although to what degree is unclear

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Conclusions
Acknowledgements
References

Conclusions

To conclude,

Generics are not a panacea

Generics do increase type safety and reduce errors

Generics simplify code and reduce duplication

Therefore, we believe generics are a beneficial addition to a
language, and that even a generic system with some flaws is better
than no generic system at all.

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Conclusions
Acknowledgements
References

Acknowledgements

I would like to thank my faculty advisor Elena Machkasova for her
tireless proofreading and revising. Additionally, I would like to
thank my external reviewer Matthew Justin for his keen eye for
even the smallest mistakes.

Joe Einertson Generics



Introduction and Background
Fundamentals of Generics

Advanced Generic Features
Implementations

Generics Adoption and Effectiveness
Conclusions and References

Conclusions
Acknowledgements
References

References

1 C. Parnin, C. Bird, and E. Murphy-Hill. Java generics
adoption: how new features are introduced, championed, or
ignored. 2011.

2 R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock.
A comparative study of language support for generic
programming. 2003.

3 D. Ghosh. Generics in Java and C++: a comparative model.
2004.

4 A. Kennedy and S. Don. Design and implementation of
generics for the .NET Common Language Runtime. 2001.

Joe Einertson Generics


	Introduction and Background
	Background
	Introduction to Generic Types
	Outline

	Fundamentals of Generics
	Advantages of Generics
	Generics in Java
	Generics in C.20ex 
	Generics in C.20ex++

	Advanced Generic Features
	Boxing and Unboxing
	Type Constraints

	Implementations
	Instantiation in C.20ex++
	Type Erasure in Java
	Reification in C.20ex 

	Generics Adoption and Effectiveness
	Java: A Case Study
	Generics in Standard Libraries
	Generics in Open Source Projects
	Evaluating Claims About Generics

	Conclusions and References
	Conclusions
	Acknowledgements
	References


