Evolving Game-Playing Agents Through Coevolution

Lucas Ellgren
Division of Science and Mathematics
University of Minnesota Morris
Morris, MN 56267
ellgro01@umn.edu

ABSTRACT

The classical approach to creating a game-playing agent is
to use search algorithms to find a solution in a space of
possible moves, to develop special rules for playing called
heuristics, or to use a combination of the two. We explore
an alternate approach that uses evolutionary computation to
evolve agents that play games at a human-competitive level.
Evolutionary algorithms are capable of producing competent
game-playing individuals through the process of evolution,
instead of being designed entirely by humans. The evolu-
tionary algorithms explored in this paper use coevolution,
a method of evolution where agents are evaluated through
their interactions with their peers. Agents must win games
against other agents in order to survive and pass on their
genes. We explore two recent papers in which researchers
use coevolutionary algorithms to evolve agents for the games
of FreeCell and Othello. We compare the effectiveness of
the evolved agents against traditional, human-designed algo-
rithms as well as some expert-level human players. Through
this process, we demonstrate how coevolution can be used as
a powerful and effective tool for solving complex problems.

Categories and Subject Descriptors

1.2.1 [Applications and Expert Systems|: Games; 1.2.6
[Learning]: Knowledge acquisition

General Terms

Algorithms, Performance, Design

Keywords

evolutionary computation, evolutionary algorithms, coevo-
lution, games, FreeCell, Othello

1. INTRODUCTION

The ability to play games has long been used as a bench-
mark in artificial intelligence. Early work in the field of arti-
ficial intelligence created systems that could play the game of

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

UMM CSci Senior Seminar Conference, April 2012 Morris, MN.

tic-tac-toe and checkers at a near-perfect level. One historic
milestone in the field was the victory of IBM’s Deep Blue
over the world chess champion Garry Kasparov in 1997 [3].
Typically, systems like these make use of search algorithms
that attempt to find the best move in a space of all possi-
ble moves while also incorporating data from thousands of
games played by experts. More recently, work has been done
to evolve game-playing agents without the aid of archived
knowledge or specially tuned search strategies. This is done
through the use of evolutionary computation, a field of arti-
ficial intelligence which uses the basic principles of biological
evolution to evolve solutions to problems.

Programs that use the ideas of evolutionary computation
are called evolutionary algorithms (EAs). Traditionally, evo-
lutionary algorithms solve problems that have an objective
way to evaluate their solution. For example, an agent can
be objectively evaluated on how well it predicts the physics
of a bouncing ball. However, game players can only be eval-
uated subjectively, through comparison with other players.
To accommodate for this, the evolutionary algorithms ex-
plored in this paper use coevolution, wherein the evolving
agents play games against each other in order to evaluate
their effectiveness. Such algorithms are called coevolution-
ary algorithms (CEAs). CEAs have been successfully used
to create agents that play at human-competitive levels, and
are usually more effective at evolving such agents than tradi-
tional evolutionary algorithms [9]. In one study, researchers
were able to evolve an agent that played checkers at a grand-
master level, without the use of archived knowledge on the
subject [8]. This alone demonstrates how useful coevolution
can be when creating game-playing agents.

In Section 2 we will first give some background on search-
based algorithms, artificial neural networks and evolutionary
algorithms. We will then describe how coevolutionary algo-
rithms work in detail in Section 3. Next, we will explore
two recent research papers in which coevolution is used to
evolve solvers for the games of FreeCell and Othello in Sec-
tions 4 and 5. Finally, we will draw conclusions about the
effectiveness of CEAs for solving games, and consider some
possible avenues for future work in the field in Section 6.

2. BACKGROUND

Before delving into the specifics of coevolutionary algo-
rithms, we will first explain how game-playing agents work
and the processes involved in evolutionary algorithms. Search
based algorithms are explained in Section 2.1, and artificial
neural networks are explained in Section 2.2. We describe
EAs in depth in Section 2.3.

starting
game state

after
first {
move

after
opponent’s

HOQQQQQ

Figure 1: An example game-tree for a two-

player game.

2.1 Search-Based Algorithms

As previously mentioned, a traditional way to create a
game-playing agent is to use a search algorithm to locate
the best moves within a space of all possible moves. To
start with, the current state of the game and all subsequent
possible moves are represented as a tree, called the game-
tree. Each node in the tree corresponds to a game state, and
every edge to another node further down the tree represents
a legal move to another state. A diagram of an example
game-tree is shown in Figure 1. Search algorithms are able
to explore the possible nodes within the tree in an attempt
to find the move that will most likely end in a win. How this
happens differs from game to game. For example, with the
game of checkers it is usually best to select the move that
has the most possible victory states further down the tree.

There are several search algorithms that have been used
to solve games. Breadth-first search (BFS) and depth-first
search (DFS) are well-known search algorithms that can be
useful for very simple games. Breadth-first search works by
searching all of the possible moves at one level of a tree
before moving on to the next. Depth-first search will ex-
plore one path to the end of the tree before returning to the
beginning and starting again. While these algorithms are
easy to implement, they are not very useful for complicated
games. An example of a search algorithm used to solve com-
plex two-player games is depth-first iterative deepening [11].
Depth-first iterative deepening works by doing depth-first
searches iteratively deeper into the tree. It starts by doing
DFS to the first level, then restarting and doing DFS to
the second level, and so on until it reaches the estimated
goal depth. Each time the algorithm starts searching from
the root node, so it has a high probability to use a different
route every iteration through the tree. Therefore, it will usu-
ally explore a large number of nodes without using as much
memory as BFS. Depth-first iterative deepening is used to
solve FreeCell in the paper by Elyasaf et al. as described in
Section 4.2.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a computational
model used to simulate the way real-life neurons work [5].
They are commonly used in the field of artificial intelligence,
and can be used to create game-playing agents. They are
constructed from groups of artificial neurons connected to-

grid of input values
table of weights

index | weight
0 0.5
1 1.0
2 -0.25

index 105 | 075 —M
value ; value

Figure 2: A diagram of an n-tuple neuron. Values
from the input grid are used to calculate an index
into a table of weights, which is the output value
returned.

gether. In a mathematical sense, these neurons can be rep-
resented as nodes in a directed graph. Artificial neural net-
works process information as it flows from neuron to neuron.
The input neurons receive data, which is passed on to the
neurons they are connected to. These neurons process the
information in some manner, and then pass it along to the
other neurons it is connected to. Eventually, the processed
data reaches the output neurons where it is collected and
used as the output value for the ANN.

ANNs are useful for artificial intelligence because their
structure allows them to change and learn. Most ANNSs typ-
ically use weights to affect the computation of their neurons.
These are variables that are applied to the data within the
neurons in some manner. For example, consider an ANN
which takes a set of real numbers as input. The weights
could be represented as coefficients which are multiplied with
the input numbers. By changing the values of the weight co-
efficients, the output value of the ANN will change.

N-tuple neural networks are a type of ANN originally de-
signed for optical character recognition [2]. They work by
taking input from a grid of squares, and so they are ideal for
use in board games. They are specifically used by Manning
in his paper, as discussed in Section 5. Each n-tuple neural
network is a collection of n-tuple neurons, otherwise known
as just n-tuples. Each n-tuple contains a table of values ref-
ereed to as its weight values. When an n-tuple is given input
from a grid of data, the values of the cells are used to com-
pute an index into the table of weights. The value returned
by the table acts as the output for the n-tuple. The process
involved with an n-tuple neuron is shown in Figure 2. The
n-tuple neural network collects the return values of all of its
n-tuples to decide what to do next. By changing the weight
values for specific inputs, it is possible to change how the
network reacts to different situations.

2.3 Evolutionary Algorithms

Evolutionary algorithms, as explained in Section 1, use the
fundamental concepts of biological evolution to evolve solu-
tions to problems. EAs represent potential solutions to the
problem they are trying to solve as individuals. Individuals
are evaluated based on how good their solution to the given
problem is. They are then given a numerical score called
their fitness, which can be used to easily rank the individ-

ual with others in the population. Individuals with a better
fitness score have a greater chance of mating with other in-
dividuals to pass down the components of their solution to
the next generation.

The components that make up an individual’s solution
can be thought of as genes. Like genes in real world, an
individual’s genes undergo crossover and mutation as they
are passed down to the next generation. Crossover takes the
genes of two individuals and combines them to create a new
genome. This can happen in many ways, and differs from
implementation to implementation, but it always involves
taking random pieces from both of the parents’ genes. Mu-
tation will take the resulting genome from a crossover oper-
ation and change it in a small way. This change is always
random, which allows for some unexpected solutions to come
about. Both crossover and mutation allow for new, unseen
solutions to be explored by the EA.

Before an individual can even pass on its genes, it must
first be selected for reproduction, and receive a partner. The
process of selecting individuals which will mate is commonly
referred to as selection, and it can take many forms, just
like crossover and mutation. Unless the selection process is
completely random, individuals with a greater fitness score
are given a better chance to be selected. One example of a
selection process is tournament selection, in which a random
group of individual will compare their fitnesses with each
other tournament-style in order to determine who has the
best fitness score. The individuals with the top fitness score
pair up and produce offspring, while the lower ones do not.
This means that the good solutions will pass down their
genes while the not-so-good solutions die off. Through this
cycle, the EA continues to find better and better solutions
as it progresses.

3. COEVOLUTION

For some problems, traditional evolutionary algorithms
are not very effective. If a problem does not have an objec-
tive way of evaluating potential solutions, then it is usually
more effective to use a coevolutionary algorithm instead. A
coevolutionary algorithm will assign fitness values to indi-
viduals based on the interactions between them, instead of
using an objective scale. For example, a game-playing in-
dividual that wins 5 out of 5 games against its opponents
would be assigned a higher fitness value than an individual
who only won 3 out of 5 games. Fitness functions like these
are called subjective, since they are merely comparisons be-
tween individuals. With this method, individuals with a
high fitness may not actually be good on an objective scale.
For each generation in an EA using coevolution, the pro-
gram will let the best individuals pass on their genes. Like
traditional EAs, this will allow the population to steadily
improve over time.

EAs attempting to evolve game-playing agents can ben-
efit greatly from the use of coevolution. Games typically
have a very large set of possible moves, and no objective
way to rank the individuals that play them. Instead, game-
playing individuals can be assigned fitness by ranking them
against each other. This has been proven to be effective in
the past [13].

3.1 Using Coevolution

As previously mentioned, an individual in a CEA is eval-
uated based on its interactions with other individuals and
given a fitness value. An individual must interact with sev-

eral other individuals in order to be evaluated. CEAs can
have a single population of individuals, or multiple popu-
lations. With a single population, individuals interact with
those in the same population. When there are multiple pop-
ulations, individuals will only interact with those from a dif-
ferent population. In a multiple-population CEA, individu-
als within a population do not compete, which can allow for
better cooperation between individuals.

Evaluation of individuals can occur in many different ways.
In All vs. Best Evaluation, the individuals interact with the
best individuals from the previous generation [6]. This can
work in both single and multiple-population CEAs. For ex-
ample, in a multiple-population CEA, the individuals of one
population will be evaluated against the best previous in-
dividuals of the other population. Tournament Evaluation
is another approach, in which individuals are evaluated in
pairs within a tournament. The individuals who make it to
the top brackets are given a better fitness than those in the
lower brackets. This approach does not work for multiple
populations since individuals would not be guaranteed to
only interact with members from the other population.

3.2 Potential Issues with Coevolution

CEAs have several unique problems, which may limit or
reduce their effectiveness. One such problem is called dis-
engagement, which can occur when a CEA can not find a
discernible difference between all or most of the individu-
als in its population. For example, if all the individuals did
equally well in their interactions with each other, it would be
impossible to rank them from best to worst. When this oc-
curs, the population may stop making evolutionary progress.
There are techniques for reducing disengagement in CEAs,
as seen in Cartlidge and Bullock’s paper [4]. Another prob-
lem is cycling, which occurs when a population oscillates
within a set of solutions that have already been seen and
does not make progress to a new solution. The chance of
this happening depends on the problem being solved, but
can frequently happen when attempting to solve games, as
seen in Section 5.

4. SOLVING FREECELL

In this section, we will explore how Achiya Elyasaf et al.
use coevolutionary algorithms to evolve game-playing agents
for the card game FreeCell [7]. We start by explaining the
game of FreeCell and its rules, and then describe the details
of the CEA used by Elyasaf’s team, called GA-FreeCell.
The last subsection will describe the results found by the
researchers, and compare them with human players.

4.1 The Game of FreeCell

FreeCell is a single-player card game similar to the game
of Solitaire. The game is played with a standard deck of
52 playing cards which are arranged into eight piles called
cascades. The object of the game is to arrange the cards
into four piles called foundations. Cards must be placed
in foundations in ascending order, and each pile can only
contain cards from one of the four suits. There are also
four FreeCells, in which any card can be placed and later
moved to a different pile. Figure 3 shows the starting layout
for a game of FreeCell. Cards can be moved on to others
in cascade piles as long as they are in descending order and
have alternating colors. For example, a black 9 can be placed
on top of a red 10, but not on top of a black 10 or a red
8. The basic strategy involves organizing cards within the

Name Description

HSDH
NumberWellPlaced

Heineman’s staged deepening heuristic (Explained in-depth in his paper [10])
Number of well-placed cards in cascade piles

NumCardsNotAtFoundations Number of cards not at foundation piles

Average value of top cards in cascades minus average value of top cards in foundation piles
Highest possible card value minus lowest card value in foundation piles

FreeCells Number of free FreeCells and cascades
DifferenceFromTop

LowestHomeCard

HighestHomeCard Highest card value in foundation piles

DifferenceHome Highest card value in foundation piles minus lowest one
SumOfBottomCards

Highest possible card value multiplied by number of suites, minus sum of cascades’ bottom card

Table 1: The basic heuristics used by GA-FreeCell.

7 FreeCell Game #11982 [_ o]]
Game Help Cands Left: 52

Figure 3: A screenshot of the FreeCell game in-
cluded with the Windows 95 operating system.

cascades as much as possible by making use of the FreeCells
and placing cards into the foundation piles.

FreeCell has existed as a card game for a long time, but
it became most popular when it was released as a game
along with the Windows 95 operating system. This version
of FreeCell came with 32,000 different FreeCell deals, all of
which are guaranteed to be solvable except for one (game
11982). These FreeCell deals will be referred to as the Mi-
crosoft 32K. After its release, it quickly gained popularity
as a single-player card game. It is also a difficult problem
to solve in general. FreeCell has been proven to be within
the NP-hard set of problems, which means that it can’t be
solved in polynomial time with a traditional, deterministic
computer. This makes it nearly impossible to solve with
conventional game-tree searching algorithms.

4.2 GA-FreeCell

Elyasaf et al. tried using a few different searching al-
gorithms before they moved on to evolutionary algorithms.
They first attempted to solve the game using depth-first
iterative deepening, a search technique described in Sec-
tion 2.1. This proved unsuccessful; the algorithm failed to
solve any of the deals in the Microsoft 32K. They then de-
veloped another version of the iterative deepening algorithm
which used a novel heursitic from an algorithm developed
by George Heineman [10]. The Heineman heursitic allowed
the iterative deepening search algorithm to more accurately
guess how far the current game state is from the winning
state, which helped guide the search process. However, the
iterative deepening algorithm combined with the Heineman

heuristic (called IDA*) failed to meet the expectations of the
researchers. They then decided to implement Heineman’s
staged deepening search algorithm (HSD) in full, for the
purposes of comparison. IDA* and the HSD algorithm were
tested on the Microsoft 32K along with the CEA developed
by the researchers. The results are discussed in Section 4.3.

Instead of relying on just one heuristic from Heineman’s
HSD algorithm, the researchers decided to evolve their own
through the use of coevolutionary algorithms. They rep-
resented their individuals as heuristics that would guide a
staged deepening search algorithm. Specifically, the indi-
viduals were a collection of basic heuristic algorithms that
combine input from the game state mathematically to form
an estimate of the distance to the winning state of the game.
The list of heuristics used and a description of their output
values is shown in Table 1. The basic heuristics output an
integer which is then normalized to a floating point number
between 0 and 1. The value is then multiplied by the weight
coefficient specified by the genome. The weights applied to
the heuristics influence how much effect the heuristic has on
the search algorithm’s decisions. The total heuristic value
of an individual is the sum of all of the values of the basic
heuristics after being multiplied by their weight coefficients.
In mathematical notation, this is: H = Z?zl w;ih; where h;
is the value from the ith heuristic and w; is its correspond-
ing weight coefficient. This is the value used to guide the
search algorithm towards the winning game state.

To evolve the heuristics for their search algorithm, they
used a coevolutionary algorithm that uses Hillis-Style co-
evolution. In Hillis-Style coevolution, the population of so-
lutions evolves along with a population of problems. The
fitness of the solutions depends on how well they solve the
problems, and the fitness of the problems depends on how
well they avoid being solved by the solutions. This means
that both populations, the problem and the solutions, are
in constant competition with each other, and the fitness of
one population is inversely proportional to the fitness of the
other. This allows the populations to evolve steadily and
reduces the likelihood of disengagement. The problem of
cycling, however, is still present.

The population of problems was made up of individu-
als that represented sets of FreeCell deals. Each individual
had a set of six FreeCell deals from the Microsoft 32K. The
evolved heuristics (representing the solutions) are evaluated
against all six deals in order to decide their fitness. As the
population evolves, the sets of FreeCell deals find the deals
that are harder to solve, while the heuristics get better at
solving them.

For their runs of the coevolutionary algorithm, the re-
searchers had two populations containing between 40 to 60
individuals which ran for 300 to 400 generations. The indi-

%

Figure 4: The starting position for the game of Oth-
ello, with the next potential moves for the black
player shown in gray.

viduals had a 20% chance of reproduction, a 70% chance of
crossover, and a 10% chance of mutation. Mutation hap-
pened similar to bitwise mutation, meaning that weights
were randomly replaced by a randomly generated value be-
tween 0 and 1. The crossover operator used was one-point
crossover. This operator works as follows: First the opera-
tor divides each parent’s set of values at a randomly selected
point. Then, the first part of the one parent and the second
part of the other parent are combined to make a new set of
values.

4.3 GA-FreeCell Results

The results reported by the researchers were very impres-
sive. In comparison with HSD, GA-FreeCell reduced the
amount of search by 87%, the time to find a solution by
93%, and the number of moves required to find a solution
by 41%. GA-FreeCell solved 98% of the Microsoft 32K, beat-
ing HSD’s previous record of 96%. These results are sum-
marized in Table 2. These results show a vast improvement
over traditional hand-crafted search heuristics, and make a
convincing argument for the usefulness of coevolution.

S. SOLVING OTHELLO

In his paper, Manning employs coevolution to evolve n-
tuple neural networks for the game of Othello [12]. We first
explain the game of Othello in Section 5.1. We then explain
the ideas of Resource Limited Nash Memory used in this
CEA in Section 5.2. The CEA itself is explained next in
Section 5.3. Finally, we explore the results of Manning’s
work in Section 5.4.

5.1 The Game of Othello

The game of Othello, also known as Reversi, is a two-
player game played on a 8 x 8 grid. The game starts with
two pieces of each color, white and black, arranged in the
center of the grid in alternating order. Figure 4 shows an
example of an Othello game board in its starting position.

Algorithm Average Time to Solve Deals Solved

HSD 709 seconds
GA-FreeCell 150 seconds

30,859
31,475

Table 2: A comparison between HSD and GA-
FreeCell in terms of effectiveness and average time
required to solve a deal.

The players take turns placing pieces on the grid and cap-
turing their opponent’s pieces. The objective is to end the
game with the most pieces of your color on the board. A
player can only place their pieces on a square that makes a
straight line with one of their own pieces with one or more
of their opponent’s pieces “sandwiched” in between. Once
the piece is played, all of the opponent’s pieces in between
get switched to the opposite color. This can happen hor-
izontally, vertically or diagonally. This is demonstrated in
Figure 4; the gray pieces indicate legal positions for the black
player’s next move.

While deceptively simple to play, Othello is an exceedingly
complex game to master. It is estimated that there are at
most 10%® legal positions for Othello games, with a game-tree
size of approximately 10°® nodes [1]. To this day, Othello
has not been solved by any algorithm.

5.2 Resource Limited Nash Memory

Resource limited Nash memory is the main idea behind
Manning’s paper and his CEA. This concept allows the al-
gorithm to avoid cycling by maintaining a constant equilib-
rium of strategies in the population of game-playing agents.
This method is based on the idea of Nash equilibrium, which
comes from game theory. A Nash equilibrium involves hav-
ing a set of players, all with different strategies, pitted against
each other in a way where their strategies make an even
playing field for all. In this equilibrium, all players are en-
couraged to keep their strategies constant, since they allow
for the highest payoff if everyone else does the same. The set
of strategies in the equilibrium is called the support set. A
Nash equilibrium will continue until another viable strategy
surfaces which beats all of the strategies in the support set.
Then the Nash equilibrium is reformed by incorporating this
new strategy into the support set.

Since the support set of strategies will keep an accurate
record of all strategies seen so far, it can be applied to CEAs
in order to reduce cycling. By pitting game-playing agents
against those in the support set, the CEA will avoid redis-
covering strategies that have already been seen in the past,
and allow the CEA to focus on finding better strategies over-
all. The details of how Nash memory is incorporated into
the CEA are examined in the next section.

5.3 Coevolutionary Algorithm

The Coevolutionary algorithm used by Manning uses n-
tuple neural networks as its game-playing agents, as ex-
plained in Section 2.2. When it is an agent’s turn to make
a move, it considers all possible valid moves that it can per-
form at the current game state. Each potential move is
represented as a game state and used as input for the net-
work. The network actually consists of 12 6-tuples, which
take input from different, 6-cell sections of the board. The
6-tuples use the location of pieces on their section of the
game board to look up an index into their table of weight
values. The weight values have a range from -1 to +1, and
correspond to how good the 6-tuple believes the move to be.
The return values of all the 6-tuples are collected and used
to decide the next move. The N-tuple neural network will
always select the move with the highest total return value.

For the coevolutionary algorithm, Manning used a pop-
ulation of 100 individuals, with randomly generated weight
values. The n-tuple neural networks are evaluated by play-
ing 40 games against random peers and then each member
of the support set. If the individual does not do well against

09
08 :
07 \T

06 I\
05
0.4 <
03 = _
02 — . 1 =
0.1 - L . T

T T v

0 10000 20000 30000

Score of gen-30000 EMS

Generation number of opponent EMS

Figure 5: Mean fitness score of the EMS from gen-
eration 30,0000 against previous generations. The
EMS scores best against opponents from the dis-
tant past. Error bars show one standard deviation
of the sample.

its peers, it will not play against the support set and will be
replaced by a new individual for the next generation. If an
individual does well against its peers and the support set,
it will be selected to become part of the new support set to
maintain the Nash equilibrium. New individuals are created
through a process of crossover and mutation similar to most
CEAs. Crossover occurs by selecting 6 random 6-tuples from
each parent, and mutation happens by randomly changing
a weight value in a table with a 0.01% chance. For each
generation, the support set and all individuals selected for
reproduction survive while the rest are replaced.

5.4 Results for Solving Othello

Manning performed five experimental runs with his CEA.
Each run lasted 30,000 generations, with the best individu-
als from each generation being periodically saved for com-
parison purposes. The best individuals were composed of a
combination of the individuals in the support set, and called
the equilibrium mized strategy (EMS) for that generation.
Manning found a steady increase in the competence of the
EMS individuals. The EMS from generation 30,000 was able
to beat the EMS from generation 400 92% of the time, and
had a mean score that was 0.84 better. These results are
summarized in Figure 5.

For the sake of comparison, Manning also performed a
control experiment using a version of the CEA without Nash
memory. These included five runs that lasted 10,000 gener-
ations for both the CEA with Nash memory and the control
version. As a result, the EMS from the version with Nash
memory scored 0.33 higher on average than the EMS from
the control. These individuals also had a win rate of 66.5%
over those in the control group. These results show how
big of an impact Nash memory had in producing competent
game-playing agents, and proves that the issue of cycling
can be counteracted within a CEA.

6. CONCLUSIONS

We have now finished examining two papers which make
use of coevolutionary algorithms to evolve highly competent
game-playing agents. With proper use, CEAs can evolve
agents that play complicated games without relying on hu-
man experience, which stands as an impressive example of
how artificial intelligences can be constructed. CEAs could

be applied to other aspects of artificial intelligence as well as
solving games. It could be possible to evolve algorithms for
a multitude of tasks, such as spatial navigation, computer
vision or controlling robotic limbs. Many of these tasks need
to be evaluated in a subjective way, which means that CEAs
would be vastly more effective than traditional EAs. In the
future, we hope to see coevolutionary algorithms used to ex-
pand the limits of what artificial intelligence can accomplish.

7. ACKNOWLEDGMENTS

I thank Elena Machkasova for her support in proofread-
ing and lectures on writing. Nic McPhee, for his advice on
writing, help with selecting sources and feedback on drafts.
Ellery Crane, for additional proofreading and suggestions. I
also thank my fellow students of my Computer Science Se-
nior Seminar course for their assistance with proofreading
and moral support.

8. REFERENCES

[1] V. L. Allis. Searching for Solutions in Games and Artificial
Intelligence. PhD thesis, University of Limburg, 1994.

[2] W. W. Bledsoe and I. Browning. Pattern recognition and
reading by machine. In Papers presented at the December
1-8, 1959, eastern joint IRE-AIEE-ACM computer
conference, IRE-AIEE-ACM ’59 (Eastern), pages 225-232,
New York, NY, USA, 1959. ACM.

[3] M. Campbell, A. H. Jr., and F. hsiung Hsu. Deep Blue.
Artificial Intelligence, 134:57 — 83, 2002.

[4] J. Cartlidge and S. Bullock. Combating coevolutionary
disengagement by reducing parasite virulence. Fvol.
Comput., 12(2):193-222, jun 2004.

(5] J. E. Dayhoff and J. M. DeLeo. Artificial neural networks:
Opening the black box. Cancer, 91:1615-1635, 2001.

[6] E. D. de Jong, K. O. Stanley, and R. P. Wiegand.
Introductory tutorial on coevolution. In Proceedings of the
2007 GECCO conference companion on Genetic and
evolutionary computation, GECCO ’07, pages 31333157,
New York, NY, USA, 2007. ACM.

[7] A. Elyasaf, A. Hauptman, and M. Sipper. GA-FreeCell:
evolving solvers for the game of FreeCell. In Proceedings of
the 13th annual conference on Genetic and evolutionary
computation, GECCO ’11, pages 1931-1938, New York,
NY, USA, 2011. ACM.

[8] D. B. Fogel. Evolving a checkers player without relying on
human experience. Intelligence, 11:20-27, June 2000.

[9] N. Franken and A. P. Engelbrecht. Evolving intelligent
game-playing agents. In Proceedings of the 2003 annual
research conference of the South African Institute for
Computer Scientists and Information Technologists,
SAICSIT ’03, pages 102-110, , Republic of South Africa,
2003. South African Institute for Computer Scientists and
Information Technologists.

[10] G. T. Heineman. Algorithm to solve FreeCell solitaire
games. http://broadcast.oreilly.com/2009/01/
january-column-graph-algorithm.html, Janurary 2009.

[11] R. E. Korf. Depth-first Iterative-Deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97-109,
1985.

[12] E. P. Manning. Coevolution in a large search space using
resource-limited Nash memory. In Proceedings of the 12th
annual conference on Genetic and evolutionary
computation, GECCO ’10, pages 999-1006, New York, NY,
USA, 2010. ACM.

[13] M. Shi. An empirical comparison of evolution and
coevolution for designing artificial neural network game
players. In Proceedings of the 10th annual conference on
Genetic and evolutionary computation, GECCO ’08, pages
379-386, New York, NY, USA, 2008. ACM.

