
Evolving Game-Playing Agents
Through Coevolution

Lucas Ellgren
Advisor: Nic McPhee

Division of Science and Mathematics
University of Minnesota, Morris

April 28, 2012

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 1 / 27

Introduction

Motivation

Push the boundaries of artificial intelligence

Coevolution is a relatively unexplored way to create
intelligent agents

Can be adapted to other kinds of problems

Scientific curiosity

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 2 / 27

Introduction

Outline

1 Traditional Game-playing Agents

2 Evolutionary Algorithms

3 Coevolution

4 Solving FreeCell

5 Solving Othello

6 Conclusions

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 3 / 27

Introduction

Traditional Game-Playing Agents

Playing games used as a benchmark in
artificial intelligence

Early work - solving tic-tac-toe and checkers

IBM’s Deep Blue - beats world champion
chess player [1]

Current work - Othello, Go, many others

Two kinds of agents:

Search-based agents
Artificial neural networks

Image by James the photographer
http://bit.ly/I0L6PM

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 4 / 27

Background

Search-Based Agents

Game-tree: tree structure
representing all possible moves

Search algorithms look for win/loss
states in tree

Choose the move with the highest
chance of success

Depth-first search and breadth-first
search used for simple games

Depth-first iterative deepening is a
more recent example

s tarting
g am e s tate

{

{

afte r
firs t

m ov e

afte r
op p one nt’s

m ov e

An example of a game-tree for a two-player game

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 5 / 27

Background

Depth-first Iterative Deepening

Does depth-first search iteratively
into tree [5]

Continues until reaching estimated
goal depth

Always starts from root node

Searches lots of nodes, but uses less
memory

Successfully used to solve
checkers [2]

s tarting
g am e s tate

{

{

afte r
firs t

m ov e

afte r
op p one nt’s

m ov e

An example of a game-tree for a two-player game

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 6 / 27

Background

Artificial Neural Networks

Based on the way real-life neurons work

Composed of many connected neurons

As information flows through network it
gets processed

Input neurons receive data, pass it
along to connected neurons
Weight values are applied when data
is passed
Hidden neurons process data further
Final data collected in output neurons
Final results are outputted

Computation can be changed by
modifying weight values

output

hidden

input
w1

w2

w3

w4

w5

w6

w7

w8

w9

Image by Cburnett
http://bit.ly/IbWk8y

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 7 / 27

Background

N-tuple Neural Networks

Originally designed for optical
character recognition

Each n-tuple neuron:

Takes input from a grid of values
Contains a table of weights
Uses input to compute index value
into table of weights
Item returned through table is
used as output

Output of all neurons in network are
used to compute final result

index
value

grid of input values

0

2

1

1

2

0

0

2

1

1

2

0

105

0

2

1

1

2

0
.
.
.
.
.

.

.

.

.

.

table of weights

output
value

index
0
1
2

weight
0.5
1.0

-0.25

0.75105

How a 6-tuple neuron processes data from a grid.

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 8 / 27

Background

Evolutionary Algorithms (EAs)

Use basic principles of biological evolution to evolve solutions
to problems

Represent potential solutions to a problem as individuals

Individuals are given a fitness value depending on how well they
solve the given problem

A higher fitness value means a better chance to reproduce and
pass on solution

Good solutions survive while bad solutions do not

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 9 / 27

Background

Evolutionary Processes

EAs create new individuals through:
1 Selection - two parents chosen based

on fitness values
2 Crossover - components from both

parents are combined into a
new individual

3 Mutation - a tiny part of the
individual is randomly changed

Crossover and mutation allow new
solutions to be found

The process of crossover and mutation illustrated

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 10 / 27

Coevolution

Why Use Coevolution?

Traditional EAs only work with problems that can be
evaluated objectively

They are not as effective for subjectively evaluated problems

Most game-playing agents must be evaluated subjectively

Coevolutionary algorithms (CEAs) - EAs that use coevolution

Fitness is evaluated through interactions between individuals

CEAs have been used successfully to evolve game-playing
agents [3]

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 11 / 27

Coevolution

Coevolutionary Algorithms

Reproduction of individuals works the same

Single population - interaction occurs within one big population

Multiple population - individuals only interact with those from
another population

All vs. Best Evaluation - individuals are evaluated against best
from previous generation

Tournament Evaluation - individuals evaluated through
tournament brackets

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 12 / 27

Solving FreeCell

Solving FreeCell

Study by Achiya Elyasaf and collegues to solve FreeCell [4]

GA-FreeCell - coevolutionary algorithm used to evolve agents that
play FreeCell

Expands on past work done with search-based algorithms

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 13 / 27

Solving FreeCell

The Game of FreeCell

A single-player Solitaire-like game

All 52 cards arranged into 8 piles
called cascades

Object: arrange cards into four
foundation piles

Four FreeCells where any card may be
placed temporarily The FreeCell game included with Windows 95

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 14 / 27

Solving FreeCell

The Game of FreeCell

Cascade cards must be placed in
descending order with alternating colors

Basic strategy involves organizing
cascades as much as possible

Proven to be NP-Hard

Made popular through Windows 95

Microsoft 32k - set of 32,000 solvable
deals included

The FreeCell game included with Windows 95

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 15 / 27

Solving FreeCell

Before GA-FreeCell

Initially used depth-first iterative deepening

Could not solve any problems in Microsoft 32k

Used heuristic developed by George Heineman to estimate
goal distance

Peformed better, but not good enough

Implemented Heineman’s Staged Deepening Algorithm (HSD)
completely (for comparison)

Created GA-FreeCell to evolve new search heuristics

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 16 / 27

Solving FreeCell

GA-FreeCell Individuals

Individuals are sets of heuristics that guide a staged deepening search

Heuristics use input from game state

Outputs are normalized to between 0 - 1

Then multiplied by corresponding weight value

Values are summed to provide total heuristic value

Name Description
HSDH Heineman’s staged deepening heuristic (Explained in-depth in his paper)
NumberWellPlaced Number of well-placed cards in cascade piles
NumCardsNotAtFoundations Number of cards not at foundation piles
FreeCells Number of free FreeCells and cascades
DifferenceFromTop Average value of top cards in cascades minus average value of top cards in foundation piles
LowestHomeCard Highest possible card value minus lowest card value in foundation piles
HighestHomeCard Highest card value in foundation piles
DifferenceHome Highest card value in foundation piles minus lowest one
SumOfBottomCards Highest possible card value multiplied by number of suits, minus sum of cascades’ bottom card

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 17 / 27

Solving FreeCell

Coevolutionary Algorithm

Used Hillis-style coevolution

Population of solutions evolves
alongside population of problems

Problems represented by sets of six
FreeCell deals

Fitness of problems inversely
proportional to fitness of solutions

As the CEA continues progressing:

Problems find more difficult deals
Heuristics get better at solving
them

A representation of two populations in
Hillis-style coevolution

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 18 / 27

Solving FreeCell

Experimental Setup

Two populations containing 40-60 individuals each

Runs lasted 300-400 generations

20% chance of reproduction

70% chance of crossover

10% chance of mutation

Mutation operator replaced weights with random value
between 0 - 1

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 19 / 27

Solving FreeCell

GA-FreeCell Results

Reduced amount of search by 87%

Time to find solution reduced by 93%

Number of moves needed reduced by 41%

GA-FreeCell solved 98% of Microsoft 32k

Algorithm Average Time to Solve Deals Solved
HSD 709 seconds 30,859
GA-FreeCell 150 seconds 31,475

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 20 / 27

Solving Othello

Solving Othello

Study by Edward Manning to solve Othello (aka Reversi) [6]

Uses coevolutionary algorithm to evolve agents that play Othello

Makes use of artificial neural networks

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 21 / 27

Solving Othello

The Game of Othello

Two-player, played on an 8 × 8 grid

Starts with two pieces of each color in
center of grid

Pieces must be placed across from
another of the same color, with one or
more opponent pieces “sandwiched”
in-between

These pieces are then captured and
turn to the opposite color

Object: have most pieces in your color
in the end

Starting positions for the game of Othello.
Potential next moves for the black player are

shown in gray.

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 22 / 27

Solving Othello

Othello Individuals

Individuals are n-tuple neural networks

A collection of 12 6-tuple neurons

Neurons take input from different locations on game board

Values in weight tables correspond to the perceived effectiveness of
different moves

Output from neurons are used by network to decide best move

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 23 / 27

Solving Othello

Coevolutionary Algorithm

Single population, uses a modified form of all vs. best evaluation

Support set - maintained set of the best individuals seen so far

Individuals play games against 40 random peers and members of
support set

Individuals that do poorly against peers get replaced

Crossover and mutation happen similar to most CEAs

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 24 / 27

Solving Othello

Experimental Setup and Results

Performed 5 runs with 30,000
generations each

Each generation had an equilibrium
mixed strategy (EMS) - combination of
best individuals into one

There was a steady increase in
competency of the EMS in
later generations

30,000 generation EMS would win
against 400 generation EMS 92% of
the time.

Comparison of fitness score between 30,000
generation EMS against previous generations.

Error bars show standard deviation of the sample.

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 25 / 27

Conclusion

Conclusions

CEAs evolve highly competent game-playing agents

Don’t need to rely on human experience

Could potentially be applied to other problems

Spatial navigation
Computer vision
Controlling robots

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 26 / 27

Conclusion

References

[1] M. Campbell, A. H. Jr., and F. hsiung Hsu.
Deep Blue.
Artificial Intelligence, 134:57 – 83, 2002.

[2] D. B. Fogel.
Evolving a checkers player without relying on human experience.
Intelligence, 11:20–27, June 2000.

[3] N. Franken and A. P. Engelbrecht.
Evolving intelligent game-playing agents.
In Proceedings of the 2003 annual research conference of the South African Institute for Computer Scientists and
Information Technologists, SAICSIT ’03, pages 102–110, , Republic of South Africa, 2003. South African Institute for
Computer Scientists and Information Technologists.

[4] A. Hauptman, A. Elyasaf, M. Sipper, and A. Karmon.
Gp-rush: using genetic programming to evolve solvers for the rush hour puzzle.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO ’09, pages 955–962, New
York, NY, USA, 2009. ACM.

[5] R. E. Korf.
Depth-first Iterative-Deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97–109, 1985.

[6] E. P. Manning.
Coevolution in a large search space using resource-limited Nash memory.
In Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO ’10, pages 999–1006, New
York, NY, USA, 2010. ACM.

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 27 / 27

	Introduction
	Background
	Coevolution
	Solving FreeCell
	Solving Othello
	Conclusion

