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Introduction

Motivation

Push the boundaries of artificial intelligence

Coevolution is a relatively unexplored way to create
intelligent agents

Can be adapted to other kinds of problems

Scientific curiosity
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Introduction

Traditional Game-Playing Agents

Playing games used as a benchmark in
artificial intelligence

Early work - solving tic-tac-toe and checkers

IBM’s Deep Blue - beats world champion
chess player [1]

Current work - Othello, Go, many others

Two kinds of agents:

Search-based agents
Artificial neural networks

Image by James the photographer
http://bit.ly/I0L6PM

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 4 / 27



Background

Search-Based Agents

Game-tree: tree structure
representing all possible moves

Search algorithms look for win/loss
states in tree

Choose the move with the highest
chance of success

Depth-first search and breadth-first
search used for simple games

Depth-first iterative deepening is a
more recent example
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An example of a game-tree for a two-player game
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Background

Depth-first Iterative Deepening

Does depth-first search iteratively
into tree [5]

Continues until reaching estimated
goal depth

Always starts from root node

Searches lots of nodes, but uses less
memory

Successfully used to solve
checkers [2]
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An example of a game-tree for a two-player game
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Background

Artificial Neural Networks

Based on the way real-life neurons work

Composed of many connected neurons

As information flows through network it
gets processed

Input neurons receive data, pass it
along to connected neurons
Weight values are applied when data
is passed
Hidden neurons process data further
Final data collected in output neurons
Final results are outputted

Computation can be changed by
modifying weight values
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Image by Cburnett
http://bit.ly/IbWk8y
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Background

N-tuple Neural Networks

Originally designed for optical
character recognition

Each n-tuple neuron:

Takes input from a grid of values
Contains a table of weights
Uses input to compute index value
into table of weights
Item returned through table is
used as output

Output of all neurons in network are
used to compute final result
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How a 6-tuple neuron processes data from a grid.
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Background

Evolutionary Algorithms (EAs)

Use basic principles of biological evolution to evolve solutions
to problems

Represent potential solutions to a problem as individuals

Individuals are given a fitness value depending on how well they
solve the given problem

A higher fitness value means a better chance to reproduce and
pass on solution

Good solutions survive while bad solutions do not
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Background

Evolutionary Processes

EAs create new individuals through:
1 Selection - two parents chosen based

on fitness values
2 Crossover - components from both

parents are combined into a
new individual

3 Mutation - a tiny part of the
individual is randomly changed

Crossover and mutation allow new
solutions to be found

The process of crossover and mutation illustrated
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Coevolution

Why Use Coevolution?

Traditional EAs only work with problems that can be
evaluated objectively

They are not as effective for subjectively evaluated problems

Most game-playing agents must be evaluated subjectively

Coevolutionary algorithms (CEAs) - EAs that use coevolution

Fitness is evaluated through interactions between individuals

CEAs have been used successfully to evolve game-playing
agents [3]
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Coevolution

Coevolutionary Algorithms

Reproduction of individuals works the same

Single population - interaction occurs within one big population

Multiple population - individuals only interact with those from
another population

All vs. Best Evaluation - individuals are evaluated against best
from previous generation

Tournament Evaluation - individuals evaluated through
tournament brackets
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Solving FreeCell

Solving FreeCell

Study by Achiya Elyasaf and collegues to solve FreeCell [4]

GA-FreeCell - coevolutionary algorithm used to evolve agents that
play FreeCell

Expands on past work done with search-based algorithms
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Solving FreeCell

The Game of FreeCell

A single-player Solitaire-like game

All 52 cards arranged into 8 piles
called cascades

Object: arrange cards into four
foundation piles

Four FreeCells where any card may be
placed temporarily The FreeCell game included with Windows 95
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Solving FreeCell

The Game of FreeCell

Cascade cards must be placed in
descending order with alternating colors

Basic strategy involves organizing
cascades as much as possible

Proven to be NP-Hard

Made popular through Windows 95

Microsoft 32k - set of 32,000 solvable
deals included

The FreeCell game included with Windows 95
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Solving FreeCell

Before GA-FreeCell

Initially used depth-first iterative deepening

Could not solve any problems in Microsoft 32k

Used heuristic developed by George Heineman to estimate
goal distance

Peformed better, but not good enough

Implemented Heineman’s Staged Deepening Algorithm (HSD)
completely (for comparison)

Created GA-FreeCell to evolve new search heuristics
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Solving FreeCell

GA-FreeCell Individuals

Individuals are sets of heuristics that guide a staged deepening search

Heuristics use input from game state

Outputs are normalized to between 0 - 1

Then multiplied by corresponding weight value

Values are summed to provide total heuristic value

Name Description
HSDH Heineman’s staged deepening heuristic (Explained in-depth in his paper)
NumberWellPlaced Number of well-placed cards in cascade piles
NumCardsNotAtFoundations Number of cards not at foundation piles
FreeCells Number of free FreeCells and cascades
DifferenceFromTop Average value of top cards in cascades minus average value of top cards in foundation piles
LowestHomeCard Highest possible card value minus lowest card value in foundation piles
HighestHomeCard Highest card value in foundation piles
DifferenceHome Highest card value in foundation piles minus lowest one
SumOfBottomCards Highest possible card value multiplied by number of suits, minus sum of cascades’ bottom card
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Solving FreeCell

Coevolutionary Algorithm

Used Hillis-style coevolution

Population of solutions evolves
alongside population of problems

Problems represented by sets of six
FreeCell deals

Fitness of problems inversely
proportional to fitness of solutions

As the CEA continues progressing:

Problems find more difficult deals
Heuristics get better at solving
them

A representation of two populations in
Hillis-style coevolution
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Solving FreeCell

Experimental Setup

Two populations containing 40-60 individuals each

Runs lasted 300-400 generations

20% chance of reproduction

70% chance of crossover

10% chance of mutation

Mutation operator replaced weights with random value
between 0 - 1
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Solving FreeCell

GA-FreeCell Results

Reduced amount of search by 87%

Time to find solution reduced by 93%

Number of moves needed reduced by 41%

GA-FreeCell solved 98% of Microsoft 32k

Algorithm Average Time to Solve Deals Solved
HSD 709 seconds 30,859
GA-FreeCell 150 seconds 31,475
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Solving Othello

Solving Othello

Study by Edward Manning to solve Othello (aka Reversi) [6]

Uses coevolutionary algorithm to evolve agents that play Othello

Makes use of artificial neural networks
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Solving Othello

The Game of Othello

Two-player, played on an 8 × 8 grid

Starts with two pieces of each color in
center of grid

Pieces must be placed across from
another of the same color, with one or
more opponent pieces “sandwiched”
in-between

These pieces are then captured and
turn to the opposite color

Object: have most pieces in your color
in the end

Starting positions for the game of Othello.
Potential next moves for the black player are

shown in gray.

L. Ellgren (University of Minnesota, Morris) Game-Playing Agents April 28, 2012 22 / 27



Solving Othello

Othello Individuals

Individuals are n-tuple neural networks

A collection of 12 6-tuple neurons

Neurons take input from different locations on game board

Values in weight tables correspond to the perceived effectiveness of
different moves

Output from neurons are used by network to decide best move
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Solving Othello

Coevolutionary Algorithm

Single population, uses a modified form of all vs. best evaluation

Support set - maintained set of the best individuals seen so far

Individuals play games against 40 random peers and members of
support set

Individuals that do poorly against peers get replaced

Crossover and mutation happen similar to most CEAs
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Solving Othello

Experimental Setup and Results

Performed 5 runs with 30,000
generations each

Each generation had an equilibrium
mixed strategy (EMS) - combination of
best individuals into one

There was a steady increase in
competency of the EMS in
later generations

30,000 generation EMS would win
against 400 generation EMS 92% of
the time.

Comparison of fitness score between 30,000
generation EMS against previous generations.

Error bars show standard deviation of the sample.
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Conclusion

Conclusions

CEAs evolve highly competent game-playing agents

Don’t need to rely on human experience

Could potentially be applied to other problems

Spatial navigation
Computer vision
Controlling robots
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Conclusion
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