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ABSTRACT
This paper gives an overview of data center design and tech-
nical considerations, scheduling, and machine learning. We
discuss how machine learning may be used to improve data
center energy efficiency. We present ways to maintain relia-
bility measured by Service-Level Agreements while keeping
energy costs as low as possible, both by directly reducing
CPU power draw and indirectly by reducing waste heat-
ing (HVAC) costs are low. We also discuss power usage
improvements through application of machine learning to
server-scale task scheduling, including additional benefits of
data centers using virtualization technology.

Categories and Subject Descriptors
C.C.4 [Performance of Systems]: Performance attributes

General Terms
Algorithms, Economics, Management, Performance

Keywords
Data Center, Energy Efficiency, Scheduling, Machine Learn-
ing, Power Consumption

1. INTRODUCTION
The amount of data collected and generated on a global

scale is on the order of millions of terabytes per day. With
such large volumes of information to store and process into
meaningful output, data centers must be as efficient as pos-
sible. It is estimated that total data center energy con-
sumption as a percentage of total US energy consumption
will have doubled between 2007 and 2012 [3]. In this paper
we will describe how data centers can use machine learning
techniques to help lower energy costs while still maintaining
high levels of service.

In the context of this paper, a data center is any facil-
ity dedicated to computer systems. A data center may be
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as small as a single dedicated server room within a larger
facility, or as a large as an entire stand-alone complex. It
is generally assumed that a data center is a finely tuned
controlled environment, meaning it is kept within precise
thresholds for temperature, humidity, and other factors. Ef-
ficiency is a very broad term that in this context means
either computational efficiency or energy efficiency. Com-
putational efficiency refers to how well a data center can
process large quantities of data and how reliably it can do
so. Energy efficiency refers to how well a data center and
its supporting infrastructure can keep energy costs and CO2

emissions low [3]. Both types of efficiency are very impor-
tant for any organization to maintain, though we shall focus
on how to achieve better energy efficiency without compro-
mising computational efficiency.

Infrastructure costs for data centers are very high, on the
order of tens to hundreds of millions of dollars. The cur-
rent maximum rate in the U.S. for the year of 2011 was
about $0.16 per kilowatt hour. [2]. Total data center energy
consumption for the United States alone was approximately
7 gigawatts in 2010 [7]. While $0.16 per kw/hour may not
seem substantial, total electrical costs for data centers in the
U.S. alone was on the order of hundreds of millions of dollars
in 2010. With such high costs, any savings are more than
welcome for an organization of any size operating a data cen-
ter, and large organizations stand to benefit the most from
a reduction in energy consumption.

With machine learning techniques, it is possible to im-
prove energy efficiency in data centers by improving how
computational workload is distributed across multiple servers.
This is done by improving scheduling, which is carried out
by a supervising program (a scheduler) that determines how
to distribute a large number of tasks to a large number of
servers [1].

The following section will cover background information,
giving a basic overview of both data centers and machine
learning. Section 3 concerns itself with the details of schedul-
ing and how it functions in regards to user satisfaction. Sec-
tion 4 covers how to improve scheduling through the uti-
lization of machine learning. Section 5 concludes the paper,
giving a brief review of all material covered.

2. BACKGROUND
There are two important topics to cover before examining

how to improve data center efficiency with machine learning:
information related to data centers, and information related
to machine learning.



2.1 Data Centers
Data centers are buildings or sections of buildings that are

dedicated to housing large quantities of computing hardware
for performing large-scale computational tasks. They are
normally self-contained environments and are operational
continuously. As a result, data centers require large amounts
of power on a continual basis [9]. One key piece of technology
used in data centers is the Power Distribution Unit (PDU).
PDUs distribute power as necessary to devices, and may
also transform larger capacity power feeds into lower capac-
ity power feeds if necessary [4]. An example of this would be
a PDU connected to an external power line supplying power
to many small servers. Data center topologies are how PDUs
are structured to provide power to computational hardware.
There are many different topologies available, a few of which
are illustrated in Figure 1. It is likewise important to choose
a topology that can easily accomodate growth if necessary,
while still affording modularity and redundancy. Different
topologies offer a broad spectrum of redundancy and com-
plexity, where some topologies ensure greater reliability at
the expense of higher setup and operating costs.

Redundancy is a key concern, so many data centers have
redundant PDUs and pathways to connect servers to power
and to other systems. This is done to prevent the center from
failing if one or more of its components ceases to function
properly. In the case of total external power failure, diesel
generators, uninterruptible power supplies, or battery banks
may be used to maintain system integrity [8]. These systems
may be used to sustain power until a connection to an ex-
ternal power source can be restored, or to provide a buffer
to save data and shut down the center gracefully. How-
ever, it is important to note that there must be a balance in
ensuring reliability and keeping costs low: more infrastruc-
ture costs more upfront and requires more energy incurring
further costs. In fact, many data centers are quite energy-
inefficient, and their infrastructure is often overly complex
and unnecessarily expensive [7]. Any data center must find
a solution that works as a middle ground between reliability
and cost according to their needs.

Many servers in a single location also produce a large
amount of waste heat, which must be managed as well. This
issue can be refered to as Heating, Ventilation, and Air Con-
ditioning (HVAC) and is the second immediate concern re-
garding a data center. Any large amount of computational
hardware creates a large amount of waste heat, which can
be both a fire hazard and reduce efficiency. Forced air sys-
tems are commonplace, as they are energy efficient and more
effective at distributing cooling effects [10].

Finally, it is important that a data center have a reason-
able overall layout, taking both power and HVAC concerns
into account. From an architectural standpoint, it is impor-
tant that data centers be laid out in a way that promotes
good airflow and infrastructure is easily maintained. Thus,
by reducing the number of machines running at a given time,
we may reduce energy costs both by reducing the direct
power usage of computing hardware and by reducing the
amount of energy required by support architecture such as
cooling mechanisms.

A metric known as a service-level agreement (SLA) is used
to gauge how effectively a data center operates. There are
many different types of SLAs, each with different criteria.
Typical SLAs are agreements on application resource con-
sumption such as quotas on bandwidth, disk, and CPU us-

Figure 2: Supervised Machine Learning Schema [1].

age [1]. They may also include performance guarantees on
things such as response time, throughput, and time dead-
lines. SLAs are not necessarily fulfilled by better perfor-
mance, but simply when performance is good enough for
an end-user. A simple commonly-known metric that may
be part of an SLA is uptime, which is the amount of time
that a computer is functioning at an acceptible level. Up-
time may be represented as a percentage for a fixed time
period, or may be represented in days-since-last-downtime.
Schedulers therefore must meet SLA requirements to ensure
smooth operation of a data center.

2.2 Machine Learning
Machine Learning is a broad field of computer science that

studies how to train computers to learn desirable behaviors.
It is a branch of artificial intelligence concerned with ma-
chines learning to perform tasks, and with machines becom-
ing better at performing said task with more experience [12].

Supervised machine learning is a technique may be used
to create intelligent decision-making algorithms. It requires
some prepared data, where both the input and desired out-
put are known and well-defined, so that the program can
be trained on said data and its performance level evaluated.
A model is then built and its characteristics tweaked during
an iterative improvement process. This process is usually re-
peated for many iterations, and the end result is a program
that is very good at predicting the training output data from
the training input data. This hopefully then translates to
similarly good performance on unknown input data.

Figure 2 demonstrates this concept. As shown, a program
is trained on known data that is referred to as the training
dataset, and the resulting program creates a model that it
uses to make conclusions from unknown data that has not
been specially prepared, i.e. the same data used in training
the algorithm. The model is normally tweaked and upgraded
to keep results as accurate as possible over time, though the
model is normally immutable once it is exposed to unknown
data to prevent outliers from having an adverse effect on
future results.

In the simulation to follow in section 4.1, the specific so-
lution we shall use implements decision trees and these will
be explained in that section.

The end goal of machine learning is to build a model that
can make educated guesses like a human being could, except
in an automated fashion. The model itself is not intelligent,
and once produced by the learning algorithm does not nor-
mally improve or change over time on its own.

3. SCHEDULING
There are two well-known methods for conserving power



Figure 1: Example of power distribution topologies [7]. Grey boxes are banks of servers; Power Distribution
Units are labelled as PDUs, and the black lines are electrical lines. “Conventional” is an alternative name for
“Wrapped.”

and reducing emissions in a data center: workload consoli-
dation and turning off servers when they are not required to
perform computational tasks [1]. Workload consolidation is
a complex task that involves shifting work to servers so that
they are as close to 100% utilization as possible at any given
time. This task is performed by schedulers, and a more ef-
ficient scheduling program directly translates to energy sav-
ings and lower heat output. Turning off spare servers seems
a very simple task, but is inseparably tied to workload con-
solidation. Good consolidation means some servers may sit
idle and be eligible for temporary off-lining. Poor consolida-
tion means that many servers may be online and functioning
at low levels of utilization. Both tasks of workload consolida-
tion and off-lining idle servers are managed by a scheduling
program.

A typical graph of Wattage consumed by a server in terms
of CPU utilization is given in Figure 3, showing the differ-
ence in benefit between an idle server, one at maximum uti-
lization, and one that is completely offline. As shown, it is
highly desirable to offline CPUs instead of merely reducing
their load to 0% so they are idling.

In a perfect setting, a scheduler has three things that al-
low it to function perfectly: as much time as it needs for its
own computations, all possible information it may require
to make decisions, and hardware that is capable of respond-
ing instantaneously. In a real-world setting, none of these
three things are available. As a result, a technique for pre-
dicting outcomes and filling in gaps in missing information
is highly desirable. Such a system would be able to function
in less-than-optimal circumstances as are often encountered
in reality as compared to theory.

For the purposes of this discussion, we will also assume
that onlining and offlining host machines takes a negligible

Figure 3: Example of wattage as a function of CPU
load [1].

amount of time. In reality, this time frame could range from
a few seconds to a few minutes, and should certainly be
taken into consideration as well.

A scheduling program’s most basic job description is to
“move job j from its current host to host h” such that there
will be greater workload consolidation and thus maximize
expected benefit [1]. There are two important factors to
keep track of when jobs are moved: how much performance
impact there is in transitioning the job to a new host which
we will represent as R, and the difference in energy consump-
tion as a result of workload consolidation which we will rep-
resent as C. Normally, there is some significant performance
loss when transitioning jobs between hosts due to hardware
limitations. Generally, R and C for any given host cannot
be known prior to performing the job transition, so it is nec-
essary to have some method to predict what the estimated



values, R̂ and Ĉ, will be.
The variable Rh indicates the health status of the jobs

running on some host machine h. This variable ranges from
0, which indicates completely unacceptable performance, to
100, which indicates optimum performance from an end-user
perspective. This does not mean that a value of 100 indicates
optimum performance, it simply means that from a user’s
perspective, all jobs are finished well within a desired time
frame. The health status of an individual job is denoted Rj .
Rh, then, is the aggregate of values Rj for all allocated jobs
on host h.

In formulaic terms, a finished job j, a task completed by
a data center’s computing hardware, is represented by the
following tuple:

j = 〈UserTj , SLAFactorj ,StartTj ,EndTj〉

Here, UserTj is the user estimation of the time to com-
plete the task j, SLAFactorj is the threshold of failure above
UserTj that the user is willing to accept according to the
Service-Level Agreement, and StartTj and EndTj are the
start and end times of the task j.

The health status Rj can be calculated by means of the
following formula:

Rj = f(UserTj , SLAFactorj ,StartTj ,EndTj)

The function f is something that is negotiated to suit
a particular data center’s needs. This function indicates
the penalty for not satisfying the user’s requirements, and
gauges how well the job j was completed independently of
which particular host the job was completed on. Two ex-
amples of such forumlae follow, where fhard is a very strict
function that has binary results, and fsoft which has a uni-
form distribution from 0 to 100 based upon performance:

fhard =

{
100 if EndTj − StartTj ≤ UserTj ∗ SLAFj

0 otherwise

fsoft = max(100,
UserTj

EndTj − StartTj
∗ SLAFj ∗ 100)

We will proceed under the assumption that we are using
the softer version of f, as it is more lenient and will have more
precise results as to what is acceptable and unacceptable
performance. We will also assume we have a total of H
hosts in our theoretical data center.

We focus on how a server performs overall rather than
how well it performs individual tasks, hence Rh is a better
metric to use instead of tracking individual tasks.

Ch indicates the power consumption for a given machine
h, and can be measured directly during testing. It correlates
strongly with CPU utilization, though not necessarily in a
linear fashion. As previously stated, offline is a far cheaper
state in terms of energy to be in than the idling state. The
global function for a scheduler to optimize is therefore:

R =

Jobsh∑
j

Rj/(NumJobsh) and C =

H∑
h=1

Ch

where we wish to maximize the first function and minimize
the second [1]. It is a reasonable decision to optimize for the
maximization of R so long as we do not also increase C. This
means we favor maintaining the given SLA as a priority over
minimizing power consumption, as is a standard practice to
date.

Our scheduler, then, being able to move jobs as they are
in-progress from host to host, is a Dynamic Backfilling (DB)
scheduler. The backfilling part of DB refers to the overall
goal of this particular scheduling technique to fill as many
hosts to as full as possible. This theoretically frees as many
hosts as possible, allowing empty ones to be turned off to
conserve power. However, Backfilling on its own does not
allow for jobs to be moved if they are currently in-progress.
Once a Backfilling scheduler assigns a job to a host, that job
remains on said host until it is completed. This is what a Dy-
namic Backfilling solution improves upon: a Dynamic Back-
filling scheduler can and does move jobs that are in-progress
between different hosts, improving workload consolidation in
real-time as jobs arrive and finish. To differentiate this from
standard Dynamic Backfilling, we will refer to this approach
as Machine Learning Dynamic Backfilling (MLDB).

4. MACHINE LEARNING IN SCHEDULING

4.1 Machine Learning Details
The algorithm that builds the model for predicting values

of R and C as explained in section 3 will combined linear
regression and an algorithm called M5P, which builds a de-
cision tree where there is a possibility of linear regression
at each node [1]. Linear regression may be used to predict
values of R effectively, but as shown in Figure 3, the rela-
tionship between CPU usage of a host and that host’s power
consumption is nonlinear. This is where M5P is useful as it
can model nonlinear relationships.

Linear regression is a statistical modelling tool that as-
sumes a linear relationship between the inputs and outputs.
Linear regression may be used for the prediction of unknown
output values where all input values are known [11]. The
M5P implementation uses decision trees to model for non-
linearity. Decision trees are tree-based data structures that
classify data based on conditionals related to independent
inputs. Checks are made at each node, flowing down the
tree until a classification is made at a leaf. An example
M5P decision tree can be seen in Figure 4. In this diagram,
the first conditional check is whether a host’s CPU usage is
above or below 40%. This check divides the training data
into two groups which need not be equal in size, using statis-
tical tools with the goal of maximizing the linearity within
each group. Then, we split these two groups again into four
groups based upon whether the host machine has more or
less than a certain number of jobs. This split does not have
to be on the same number of jobs for each branch of the tree.
This processing of classifying and splitting data continues
until there is strong linearity within the individual groups
of data at the tree’s leaves. It is also possible for this model
to be unbalanced, where one branch needs many more splits
than another branch before it is reduced to strong linearity.
Where a traditional decision tree has simple classifications
at the leaves, M5P instead builds linear regression models
at the leaves [5]. This allows us to use linear regression on
data sets that have some nonlinearity, such as the relation-
ship between CPU usage and power consumption.

4.2 Simulation Outline
Now that we have covered how scheduling and work dis-

tribution functions, we can incorporate elements of machine
learning to build an intelligent program that can cope with
non-optimal situations by comparing partial situations to



CPU

lf

≤45% >45%

andand

JobsJobs

>40 >65≤65≤40

Then Then Then Then

Num
Jobs

CPU
Usage

100

80

60

40

20

0
100%50%0%

Y (output)
25% 75%

Class 1 Class 2 Class 3 Class 4

Class 1

Class 2

Class 3

Class 4

Figure 4: An example M5P tree with associated lin-
ear regression subsets.

previous experiences. To evaluate how well the machine
learning approach works, we shall compare it to several other
techniques. Random is as its name implies - it randomly
allocates jobs to hosts, so long as a particular host can ac-
commodate it. This is an unintelligent method of scheduling,
and serves to give us a baseline by which to compare intelli-
gent schedulers. Round Robin tasks to each available host,
ensuring that each host is utilized, but usually to a low de-
gree as tasks are not consolidated. Backfilling is a technique
that attempts to fill each individual host as much as possi-
ble, meaning some machines may be eligible for offlining to
conserve power. Dynamic Backfilling works as previously
described at the end of section 3: it is essentially Backfill-
ing but also gives the scheduler the ability to move tasks
that are currently in-progress to other hosts, recalculating
and reconsolidating as tasks enter and exit the system. Dy-
namic Backfilling has one failing, however: it does not func-
tion well when there is incomplete or imprecise information
about the tasks in the system. This is where the Machine
Learning Dynamic Backfilling (MLDB) technique we have
previously discussed comes in, as it can make intelligent es-
timates about tasks if information is missing.

The simulation consisted of 400 hosts running on three
different workloads. First, the Grid workload is one week’s
worth of data from October 2007 from the Grid5000 data
center [1]. SLAs have been added to this workload by Berral
et al, as it did not originally include them.

The second workload is an aggregate of services based on
the load of Ask.com, corresponding to three different profiles.
The first is a from 00:00 to 23:59 with a typical daytime
usage increase and a low usage level during the night. The
second workload displays the same behavior but has a larger
increase in service usage in the afternoon. The third makes
use of an entire week’s workload to take the weekend activity
decrease into account.

Figure 5: Pseudocode for move selection [1].

The final workload will consist of a heterogenous mix of
both the Grid and Service workloads.

The key decision our scheduler must make is how to move
jobs such that it may offline as many unnecessary hosts as
possible. Pseudocode may be found for this in Figure 5.
Our scheduler looks for hosts with few active tasks, and
then checks to see what it estimates the performance impact
and energy efficiency impact of moving those tasks would
be. The “predict” functions in the pseudocode are direct
uses of our machine learning solution. The input data is
taken as input to our M5P decision tree, which can give us
a meaningful answer about whether it would be beneficial to
move jobs. If it finds a good match in keeping with the rules
of decreasing C without decreasing R significantly, it moves
the jobs to a different host. We wish to move jobs so that
we offline as many machines as possible, thus decreasing
total power consumption, so long as we do not negatively
impact computational performance. This fulfills the task of
workload consolidation.

4.3 Results
Totalled results can be found in Table 1. Overall, Dy-

namic Backfilling without a machine learning component
still meets SLAs to a better degree than the other four tech-
niques tested. Compared to each of the other scheduling
techniques, it is clear that Machine Learning Dynamic Back-
filling is more costly on the Grid workload. However, in the
other two cases, MLDB maintained both a very high degree
of SLA satisfaction and resulted in less kilowatts consumed
by a significant degree. In the heterogenous workload sim-
ulation, no method achieved 100% SLA satisfaction, with
MLDB coming in about 1% short. However, its overall
power consumption was about 10% better than the next-
best method, which is a significant improvement. It is clear
from the results that the MLDB technique loses compared
to standard Dynamic Backfilling for the grid workloads, and
thus is most useful on service or heterogeneous workloads.
Dynamic Backfilling is superior to MLDB on grid workloads
possibly due to MLDB being more responsive to new tasks
being added at uncertain intervals in service workloads [1].

5. CONCLUSIONS
As demonstrated, the use of machine learning can be very

useful in improving the efficiency of a data center in terms



Working Nodes (avg) Running nodes (avg) CPU usage (hours) Power (kW) SLA (%)

Grid Workload

Round Robin 16.11 41.37 5954.91 1696.66 85.99
Random 16.51 40.76 6017.85 1671.16 88.38
Backfilling 10.18 27.10 6022.34 1141.65 100.00
Dynamic Backfilling 9.91 26.46 6104.33 1118.86 100.00
Machine Learning DB 15.04 37.92 6022.27 1574.78 99.69

Service Workload

Round Robin 290.99 400.00 78419.97 19761.54 100.00
Random 218.46 400.00 75336.88 19784.38 100.00
Backfilling 108.79 352.88 59792.09 16257.26 100.00
Dynamic Backfilling 108.79 352.88 59748.10 16229.22 100.00
Machine Learning DB 99.61 270.50 61379.38 13673.71 100.00

Heterogeneous Workload

Round Robin 260.66 400.00 84432.96 19713.72 94.20
Random 224.08 400.00 82137.27 19763.63 88.53
Backfilling 110.85 330.19 65894.46 16304.38 99.50
Dynamic Backfilling 111.03 329.07 66020.58 16214.49 99.59
Machine Learning DB 124.20 307.89 68554.01 15110.33 98.63

Table 1: Simulation results, taken from [1].

of power usage. These improvements have implications for
both improving data center capacity and reducing data cen-
ter costs, both of which are highly desirable benefits. Energy
efficiency can be greatly improved with a variety of tech-
niques as demonstrated, while still maintaining data center
service availability, reliability, and performance.
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