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Introduction to Emotion Detection

Opposite reactions: Super Bowl 2012

Winning Team

“This is amazing, best time ever. Words cannot explain. I’m so
excited, so happy I can’t even talk now.”

Losing Team

“I’m heartbroken. I’ve always been a Pats fan and I always will be,
but there are no words to express how I am feeling.”
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Overview

Background

Parts of the emotion detection process

An overview of one study

Conclusions and future work
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Subjectivity and Sentiment Analysis

Subjectivity

Subjective sentence

The flower could not fold up its petals; it dropped sorrowfully.

Objective sentence

The Earth revolves around the Sun.

Sentiment Analysis

Positive versus negative
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Emotional Lexicon

Emotion Detection

Emotion detection field

New and growing

Not standardized methods

Common parts of emotion detection process

Annotation

Emotional Lexicon
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Annotation

Annotation Definition

Annotation is the process of manually labeling a text.

Many variations

Emotion labeled databases

Used to check accuracy

Multi-person process
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Inter-Annotator Agreement

Example

Meredith: [The evil wolf ate]fear [the girl]happiness .
Steve: The [evil wolf]fear ate the girl.

Observed agreement (Ao):

Ao = 1
I

∑
iεI argi = 2

6 = 0.33

Expected agreement (Ae):

Addresses the probability of assigning random labels
Ae = 1

I 2

∑
kεK nc1knc2k = 8+0

36 = 0.22

Kappa value (k):

k = Ao−Ae

1−Ae
= 0.33−0.22

1−0.22 = 0.11
0.78 = 0.14
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Emotional Lexicon

Emotional Lexicon Definition

An emotional lexicon is a list of emotions and words that express
each emotion.

Many examples

Different forms of emotional classification

Categorical
Distinct emotional labels
Represented as words

Dimensional
General emotional states
Represents as positions
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Vector Space Model
Non-Negative Matrix Factorization
Categorical Classification Result
Valence-Arousal-Dominance
Results

Vector Space Model

Categorical classification

Matrix of co-occurrence
frequency vectors

Rows are terms and
columns are documents

Vectors are calculated
tf-idf score
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tf-idf Score Example

Dataset

10,000,000 documents

Badger appears in 1,000

A document of 100 words

Badger appears 3 times

Term frequency (tf)

Document level

Percentage of words are badger

tf = 3
100 = 0.03
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Example Cont.

Inverse document frequency (idf)

Dataset level

Is the word common or rare?

idf = log10
10,000,000

1,000 = 4

tf-idf score

tf-idf = 0.03 ∗ 4 = 0.12

Weighs importance

Prevents bias
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Reduction Methods

Matrix includes

Relevant data
Zeros and unimportant data

Extraction of the dataset

Dimension reduction methods

Latent Sentiment Analysis
Probabilistic Latent Sentiment Analysis
Non-Negative Matrix Factorization
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Non-Negative Matrix Factorization

X ≈ TD

X = original matrix

T = matrix of term vectors

D = matrix of document vectors
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Frobenius Norm

Minimize the Frobenius norm:

||A|| =

√√√√ n∑
x=1

m∑
y=1

a2
x ,y

Key

A = X - TD

x = row (terms)

y = column (documents)

n = total number of terms

m = total number of vectors

ax ,y = position in the matrix

Kaitlyn Mulcrone Detecting Emotion in Text



Introduction and Background
Emotion Detection

An Emotion Detection Case Study
Conclusion and Future Work

Vector Space Model
Non-Negative Matrix Factorization
Categorical Classification Result
Valence-Arousal-Dominance
Results

Categorical Classification Result

Assign emotion

Emotional synset

Vocabulary list of emotion and its synonyms

Cosine similarity

Emotion vector
Input text vector
Number between 0 and 1
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Valence-Arousal-Dominance

Dimensional classification with three dimensions

Valence, arousal, dominance

Represented as a number between 0 and 10.

w = (valence, arousal, dominance)

neutral = (5, 5, 5)

VAD Values

Sentence

Emotion
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VAD Example

Sentence Example

The flower dropped sorrowfully.

Words

Flower = (6.64, 4.00, 4.98)

Dropped = (4.09, 4.70, 4.00)

Sorrowfully = (3.15, 4.56, 4.00)

Sentence = (5.20, 4.42, 4.32)
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VAD Example cont.

Emotions

Anger = (2.55, 6.60, 5.05)

Fear = (3.20, 5.92, 3.60)

Joy = (7.40, 5.73, 6.20)

Sadness = (3.15, 4.56, 4.00)

Difference between sentence and emotion

Sentence - Anger = 5.56

Sentence - Fear = 4.22

Sentence - Joy = 5.39

Sentence - Sadness = 2.51

The sentence is labeled Sadness.
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Results

Standard measures to present results:

Precision = sentences correctly labeled by algorithm
all sentences retrieved by algorithm

Recall = sentences correctly labeled by algorithm
all sentences supposedly correct

f-score = 2 ∗ Precision * Recall
Precision + Recall
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Example

Sadness Sentences in a Fairy Tales Dataset

264 labeled sadness

NMF labeled 305 sadness

216 of them were correctly labeled

Precision = 216
305 = 0.70

Recall = 216
264 = 0.82

f-score = 2 ∗ 0.70 * 0.82
0.70 + 0.82 = 0.75
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Overall Results

Methods SemEval (Headlines) ISEAR (Personal) Fairy Tales (Stories)

Prec. Rec. F1 Prec. Rec F1 Prec. Rec F1

Base 0.07 0.25 0.11 0.10 0.25 0.14 0.10 0.25 0.14

LSA 0.36 0.34 0.34 0.48 0.28 0.22 0.66 0.64 0.63

PLSA 0.18 0.28 0.21 0.26 0.31 0.27 0.28 0.30 0.28

NMF 0.52 0.50 0.50 0.46 0.25 0.16 0.74 0.73 0.73
VAD 0.46 0.42 0.38 0.52 0.41 0.37 0.53 0.40 0.41

Table: Four methods and a baseline algorithm tested on three datasets

NMF did the best, but not over all three datasets

Highest scores were in the fairy tales dataset
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Conclusion

Conclusions

Working methods out there

Dataset specific

Future work

Standardization

Creating an algorithm for a general dataset
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