
Artificial Intelligence and Novelty

Casey Summers Robinson
University of Minnesota, Morris

caseyr@gmail.com

ABSTRACT
Artificial Intelligence (AI) is a field concerned with develop-
ing programs capable of performing functions that typically
require human intelligence. A large portion of research done
in this field concerns developing programs capable of dealing
with novel or previously unseen scenarios, and considering
new factors as they are encountered. Some of the biggest
challenges in this area are related to the fact that computer
programs are incapable of judging what is a “reasonable” ac-
tion to take without some kind of instruction from a human.
We will explore two recently developed models for AI, each
of which is capable of handling novel stimuli. One is a re-
cent attempt at implementing a system capable of solving a
wide variety of problems. The other is intended for the field
of network security, where it is expected to handle threats
without first being taught to recognize them.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge, con-
cept acquisition, induction

Keywords
Artificial Intelligence, Genetic Algorithms, Artificial Immune
Systems

1. INTRODUCTION
Artificial Intelligence (AI) is a field concerned with devel-

oping programs capable of performing tasks that typically
require human intelligence. Humans are excellent general-
purpose problem solvers – given an opportunity to interact
with a system about which little is known, and the ability
to see the effects that certain actions have upon it, we are
capable of generating reasonable inferences about its com-
position and function.

In contrast to the problem-solving ability of humans, un-
expected or novel data are not usually handled gracefully
by computer programs. Most programs are not capable of

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2012 Morris, MN.

adaptation, and giving these programs the ability to adapt
would not necessarily be helpful – a program with consis-
tent behavior is likely to appear more “trustworthy” than
one whose behavior may change over time. But in some
contexts, the ability to recognize and gracefully handle novel
data is more valuable than predictability.

The field of AI has made progress in several subfields,
such as pattern recognition [6] and planning [10] . However,
individual AI systems (also referred to as AI) tend to be
domain-specific; an AI intended for one task is unlikely to
perform satisfactorily at another, even if the AI in question
is adaptive [8]. This limitation is in part due to the fact that
when writing an AI, a programmer typically has a particular
goal in mind – a specific problem which it is intended to
solve. When writing an AI, a programmer will give it all the
tools it needs to solve the problem in question, but those
tools are not necessarily sufficient for other problems. It is
necessary then for a general problem solver to have the tools
with which many problems can be solved, without knowing
in advance what these problems may be.

In section 2, we will outline two general machine learning
algorithms. Section 3 will describe the process of learning
as it relates to artificial intelligence, and finally in section 4,
we will look closely at two recent implementations, one of
which is intended as a general problem solving model, and
the other specific to the field of network security.

2. MACHINE LEARNING ALGORITHMS
The systems we will examine are based upon existing al-

gorithms in the field of AI. In order to understand how these
recently developed systems work, some background on their
underlying mechanisms is necessary. The two algorithms
we will look at are genetic algorithms and artificial immune
systems.

2.1 Genetic Algorithms
Genetic algorithms (GAs) are a set of search methods that

mimic the process of biological evolution. They start with
a large, initially random set of solutions and evaluate them
according to a problem-specific fitness function, which gives
a numerical representation of the quality of the solution.
The best solutions from the set are saved, and a new batch of
solutions is created by combining traits of the best solutions
from the previous generation, introducing a small number
of random mutations. By this incremental process, GAs can
often generate solutions to extremely complicated problems
in a short amount of time [11, 9, 10].

A subfield of GAs is genetic programming, which focuses

on the development of computer programs through an evo-
lutionary process. The process by which a new program is
generated from those in a previous generation must be care-
fully handled in order to ensure that the programs generated
are syntactically valid. For instance, if the base units being
manipulated were the characters which comprise the source
code of the program, mutating a semicolon into any other
character is likely to yield an invalid program, as semicolons
have a specific syntactic function (indicating the end of an
expression) which no other character would fulfill. Typically,
the smallest units being manipulated are functions.

Some GP implementations operate in a contrived lan-
guage which lacks many of the strict syntactical features
present in most languages, allowing low-level random changes
to yield productive features – a process which would be ex-
tremely difficult to accomplish in a language such as Java,
where a function declaration has certain complex features
which are unlikely to come about iteratively.

An example of such a language is Multi-Expression Pro-
gramming (MEP), which in its most basic form is a series of
mathematical expressions with the capacity to use previous
expressions as variables. As an example, Figure 2.2 shows
an MEP program which computes the average of two inputs,
a and b. Lines 3 and 4 use numbers to refer to the values of
expressions on the corresponding lines. For instance, on line
4, the expression (3/1) means “the value of the expression
on line 3 divided by the value of the expression on line 1.”

It is important to note also that no specific line in the
MEP program is designated as the solution. This is inten-
tional, as any line in an MEP program can be taken as the
result, and which comprises the output is determined only
when the program’s fitness is being calculated.

Which line is selected as the output of the expression is
defined in terms of the solutions for a set of training exam-
ples (S0..x), and value of the line for these examples (V0..x).
The line for which

∑x
i=0(|Si−Vi|) is minimized will be taken

as the output of the expression for all future uses.

2.2 Artificial Immune Systems
Artificial Immune Systems (AIS) are pattern-matching al-

gorithms which are meant to mimic our own immune sys-
tem’s mechanism of distinguishing between self (good) and
non-self (bad) elements. Biological immune systems tend to
attack any foreign material which enters the bloodstream,
without first needing to be programmed to recognize this
material as “hostile”. The immune system attacks this ma-
terial because the immune system contains a model of the
self – material comprising the body, which is not to be at-
tacked – which this foreign material does not fit. AIS are
well-suited to contexts where there are many types of behav-
ior which are considered unacceptable, and describing all of
them would be cumbersome or impossible.

The core of an AIS is its detector set, as the detectors
will determine what the system considers normal. Ideally,
no detectors in the set will match data seen in the course of
normal operation, and will match any data which is abnor-
mal. The detectors are generated as follows; first, a batch of
random detectors is generated, and they are used to examine
a large amount of data which comprises the self – data that
the detectors should not regard as harmful. At this stage,
the system selects for those detectors which do not indicate
a match with self-data. As the system is selecting for de-
tectors which do not present a specified behavior (matching

1. a
2. b
3. (1+1)
4. (3/1)
5. (1+2)
6. (5/4)

Figure 1: An MEP program which finds the average
of two numbers, (a,b). Numerical values used in the
expression refer to line numbers.

01101110

10101100

Figure 2: Two differing bitstrings, which have an
r-contiguous-bits match for r=4

self), this process is known as negative selection.
After detectors undergo negative selection, they can be

switched to testing against against a large set of undesir-
able, or non-self data. Here, the system would show prefer-
ence for those detectors which indicate a match with a high
proportion of the data with which they are presented. This
stage is known as positive selection. From the detectors that
are deemed satisfactory, the system constructs a set of de-
tectors that offer the best coverage against the set of known
threats, and uses this set to check data being processed by
the system for potential threats. In the case that positive se-
lection was not performed, the set of detectors used may be
a random set of detectors which passed negative selection.

AISs must be cautious when implementing a set of de-
tectors, as both an overly-strict and overly-relaxed detector
set will interfere with the operation of the system. An AIS
needs to have gaps in its model of self and non-self in order
to allow for the presence of legitimate data which were not
used as examples in the negative selection phase. An over-
fitted detector set will lack these gaps and lead to a large
number of false positives, seeing every new piece of data as
a threat, while for an underfitted detector set these gaps
will be too wide, and the AIS will be unable to generalize to
recognize threats upon which it was not trained [3].

Most AIS systems do not depend on matching an entire
detector to a piece of data being examined, but instead use
a scheme called r-contiguous bits matching [5, 3], wherein if
over a certain number of bits in a row match between a de-
tector and the data being examined, a match is said to have
been found. This is because for detectors of any reasonable
size, the probability of a randomly-generated detector com-
pletely matching any data considered is very small, and this
would severely limit their ability to form a concise detector
library.

3. LEARNING
In order for the performance of a learning AI to improve,

it must be exposed to a set of problems whose solutions are
known, so that the quality of the output generated by the
system can be judged by comparing it to ideal solutions.
The difference between the system’s output and the ideal is

referred to as error, and the process of adjusting an AI to
reduce the error present in its responses to example problems
is referred to as training.

While training is necessary to adapt an AI to a specific
problem, there is always a point at which further training
ceases to be beneficial. This occcurs when the system has
extracted all the information about the problem that it can
from the limited set of training examples, and further train-
ing can only serve to improve its performance on these ex-
amples. This process is referred to as overfitting, and de-
termining when this starts to occur and ceasing training of
the system is key to creating systems which can create a
general solution to a class of problems from a limited set of
examples.

The reason that training on a limited set of problems loses
effectiveness over time is that while being trained, the sys-
tem is modified to minimize the difference between what it
produces, and what the training problems specify as cor-
rect or acceptable outputs [2]. A system which adequately
models the problem will produce answers that are evaluated
favorably, but a system which has fit to some feature of the
training examples which has no correlation to the original
problem could also appear in the training phase to be solving
the problem adequately – much as a student who has stud-
ied for an exam can perform well, but will be outperformed
by a student who has taken the exam several times before
and knows that the seventh letter of any given question is its
answer, though this does not demonstrate an understanding
of the underlying problem.

One method of mediating this problem involves using a
separate set of example problems called a validation set to
judge the quality of the system’s solution. The training
examples cannot be used for this purpose, because if the
system is being trained in a reasonable way, the amount of
error in its solutions for these examples is always going to de-
crease, or stay roughly constant. After each round of train-
ing, the amount of error present in the system’s responses
to the validation set is recorded, and if it has increased af-
ter a given training session, this indicates that the system
has started to overfit, and training is halted [7]. Halting
training before this occurs is also undesirable, as continued
training would improve the system’s performance on general
problems of this type. A system which would have benefited
from continued training is called underfit.

Once the training data has been used to teach the system,
and the validation data used to determine when training
ought to be stopped, a third set of example problems must
be used in order to determine the quality of the system’s
solution to the problem. This third set is needed because
action has already been taken based upon the system’s per-
formance upon the first two, so a set of data upon which the
system’s performance is unknown is called for.

4. IMPLEMENTATIONS
Now that the basic premises of EC and AIS, as well as the

idea of training in a machine learning context, have been ex-
plained, the remainder of this paper will be used to examine
two recent implementations in the field of AI which use the
concepts described to handle novel data.

4.1 General Problem Solving: A-Brain
A-Brain1 is a general problem solving model proposed by

Oltean in his paper [8]. It ties into the ideas of GA and GP
discussed earlier, but is intended to autonomously adjust
parameters such as population size, frequency of mutations,
and allowable maximum solution size, reducing the amount
of human input needed to rapidly develop a solution.

4.1.1 Algorithm Description
A-Brain consists of three main components:

• A problem classifier, which determines the nature of
the problem to be solved.

• A set of solvers, used to generate solutions to identified
problems.

• A trainer, which is used to generate a new solver when
a new type of problem is encountered.

Figure 3 shows a schematic view of these components.
The problem classifier in this scheme has a difficult task.

Given only the input for a particular problem, it must de-
termine which of its available solvers (if any) can solve the
problem. Oltean’s classifier checks the size and type of the
input variables, and if an existing solver can take this input,
it is assigned to the problem. If this were the only mecha-
nism A-Brain had to classify problems, this would present
a significant limit to its generality, as if it learned to solve
one problem based upon four integers, it would be unable to
learn any other – assigning each new set four integers it was
given to the existing “solver which takes four inputs.” To
avoid this pitfall, problems are also given a short label de-
scribing the problem. This way a function which takes four
integers and computes their average can exist alongside one
which takes four integers and computes their sum, with no
risk of mis-classifying one problem as another. In the event
that the problem classifier is omitted, but an example prob-
lem is included, A-Brain will assign the set of problems it
was given to the solver whose output most closely matched
that given in the example problem, provided that the error
of the output was within a specified tolerance.

If the classifier can find no solver for a problem it is given,
it passes control over to the trainer, which prompts the user
to input a set of examples – problems paired with their solu-
tions – from which to train a solver. The solver is generated
by means of genetic programming. Oltean’s implementation
uses Multi-Expression Programming (MEP), but he notes
any genetic programming approach would suffice, and states
that plans exist to create a version of A-Brain which uses
neural networks as a solving mechanism.

Since the base fitness function for the solvers being cre-
ated is similarity of their output to that given in the ex-
amples, overfitting is a potential concern here, especially as
A-Brain must decide automatically what constitutes an ade-
quate training period. To combat this, the size of a solver is
held constant at various stages of the search process, increas-
ing only when no improvements are made over the current
best solver for a set number of generations. Oltean’s imple-
mentation doubles the allowed size of an individual when-
ever a size increase is called for, and whether this offers
an appropriate amount of granularity is debatable. Once a
predetermined number of generations have passed with no

1Written A6=Brain in the original text

Known Problem 1

New Problem

Problem Classifier

Request training
examples from user

Solver for
problem 1

Solver for
problem 2

Solver for
problem 3

Solver for
new problem

Trainer

Recognized problems

New problem

Known Problem 2

Known Problem 3

Figure 3: A diagram of A-Brain’s operation.

improvement over the previous best found solution, that so-
lution is integrated into the population of solvers, allowing
A-Brain to solve problems of this type [8]. It is important
to note that while generating a solver, A-Brain is only using
evolved MEP individuals, and varying their length. In this
sense, A-Brain can be seen as an “autopilot” for standard
problem-solving techniques.

4.1.2 Results
Oltean describes testing A-Brain’s performance on a small

mathematical problem, finding the sum of seven integers,
and also several parity problems of varying complexity. Nu-
meric results for all of the problems discussed can be found
in table 1. For the sum-seven problem, 1,000 randomly gen-
erated datasets were used to train the system over 100 runs.

The remaining problems were of type X-parity – parity
problems on bitstrings of length X. A parity problem in-
volves examining a bitstring, and determining whether an
even or odd number of bits are set to 1. These parity prob-
lems were divided into even-parity and odd-parity classes, so
that A-Brain could output a boolean response. As an exam-
ple, for even-5-parity, the bitstring 01001 would return true,
as would 00000, but not 01101 or 00010. For odd-parity, the
results for even-parity are reversed – the first two bitstrings
would return false, and the last true.

For all experiments, 100 runs were performed for both A-
Brain and standard MEP, with the exception of the sum-7
problem which was applied to only A-Brain. For the par-
ity problems, 2x training cases were given, where x is the
length of the bitstrings being considered. That is to say, ev-
ery possible bitstring of length x, and their solutions, were
presented as training data.

For even-3 and 4-parity, the set of boolean functions that
A-Brain was allowed to use was restricted to AND, OR, and
their negations NAND and NOR, because runs performed
with the full set of boolean operators generated perfect so-
lutions too quickly. On these problems, A-Brain achieved

Problem % Successes Avg Solution Size

Static MEP A-Brain Static MEP A-Brain

Sum-7 omitted 18% omitted 128

3-Parity 40% 41% 30 78.4

4-Parity 13% 12% 50 480.9

11-Parity 25% 6% 300 256*

12-Parity 80% 3% 500 1024*

Table 1: Table of results from A-Brain and standard
MEP. 100 runs were performed for each problem.
Entries marked with an * are not averages, but the
size of the smallest individual to find a solution.

success rates on par with those realized by multi-expression
programming trainers which did not vary the length of so-
lutions over time.

When 11 and 12-parity were considered, the set of ex-
pressions available to A-Brain was expanded to encompass
all binary operators. Unfortunately, here A-Brain seemed
to stumble, achieving far fewer successes than its standard
MEP counterpart. Oltean does not offer an explanation for
this poor performance in his paper, but it could be due to the
fact that structures which contribute to the success of an in-
dividual of length 16 will not necessarily have relevance when
the size of the individual is increased, but that these struc-
tures are carried on to the next generation regardless, and
will require extensive crossover and mutation before they are
removed completely.

In addition to these simple problems, A-Brain was also
used to solve a more complicated problem involving many
inputs, and for which a general solution did not already ex-
ist. The problem was to determine the amount of electrical
power a building would consume based upon the date, time
of day, indoor and outdoor temperature, and several other

environmental factors. A-Brain was trained against a set of
4,208 data, and created 100 different solvers over 100 runs,
having a stated average error of 7.58 and a minimum error
of 6.21. Units for this output are never specified, nor is any
indication given of how closely this fits the real data. This is
regrettable, as an error of 6.21 is insignificant when dealing
with quantities in the millions, but quite significant for a
range of 0-20. Its effectiveness on data upon which it was
not trained also cannot be known, because all available data
was used for training, with none being reserved for valida-
tion or testing. A competing MEP approach which did not
vary the lengths of individuals was also used, and over 100
runs had an average error of 3.81. For that trial, two impor-
tant notes must be made: the length of individuals in the
standard MEP approach was 34 expressions, far fewer than
the best solution generated by A-Brain which had a length
of 1024 expressions, and only half of the data used to train
A-Brain were used in the standard MEP runs, calling into
question the validity of the results obtained.

4.2 Security: Artificial Immune Systems
Conventional network security systems are based upon a

set of rules, stating which ranges of addresses may be ac-
cessed, on what ports and by whom. These rules are typi-
cally set by human operators, and must be adjusted manu-
ally whenever a change is required. Typically, they fall into
two broad categories:

• Whitelists, which explicitly grant permissions to cer-
tain IP addresses, denying this permission to any ad-
dress not on the whitelist.

• Blacklists, which explicitly deny permissions to certain
IP addresses, granting this permission to any address
not on the blacklist.

These two categories have flaws. Whitelists can be cum-
bersome if a large number of addresses are to be allowed
to access a service, and blacklists are typically only used to
deny permission to specific addresses which have been the
source of attacks in the past, which requires identifying the
attack and its origin. Blacklists can also be circumvented by
an attacker who routes their attack through some computer
which is not on the blacklist, concealing the true origin of
the attack.

The AIS algorithm offers a way to avoid cumbersome and
overly specific rule sets, by generating a concise detector
set which is well fitted to the set of behaviors considered
normal. In the terms of the rule sets described above, an
AIS behaves like a very broad, less draconian blacklist, which
flags all behaviors not seen in the normal course of operation
as suspicious rather than preventing them outright.

4.2.1 Algorithm Description
To combat overfitting, this AIS model removes detectors

from the active set which have failed to form a match for
over a specified period of time, replacing them with detec-
tors generated by the negative selection process described in
section 2.2.

In addition to conventional r-contiguous-bits detectors,
this algorithm also uses some which match on data that
has been put through a permutation mask, a function which
reorders data in a predictable way. An example of such a
mask, represented in the form “2-5-4-3-1”, would convert a

string “A B C D E” into the string “B E D C A”, by creat-
ing a string whose first symbol is the second of the original
string, whose second is the fifth of the original, and so on. By
reordering the data, certain features which could not have
been found by r-contiguous-bits matching on the original
due to separation become detectable [4].

4.2.2 Implementation and Results
A paper by Barthrop, et al [4] describes a system called

ARTIS, which is an AIS designed to detect network attacks.
In the experimental setup, 100 detector sets of 5,000 detec-
tors each were trained, and self-data was provided in the
form of eight days of normal network traffic – around 15,000
packets. Positive selection was not performed – the detec-
tors were to regard all non-self data as a potential threat [1].
ARTIS examines a 49-bit representation of network packets,
which includes the following information:

• The local IP address associated with the packet

• The remote IP address associated with the packet

• The port along which the packet is travelling (typically
indicates the service being accessed by the packet)

• A one-bit flag indicating whether the packet is out-
bound (intended for the remote IP) or inbound (in-
tended for the local IP)

In the 15,000 packets the system was trained against,
only 136 unique strings were seen. This is because ARTIS’s
compressed packet representation does not include the large
“payload” section of the packet, which contains the infor-
mation being transferred by the packet. Because of this,
communication between one internal address and one exter-
nal address along a specific port would appear as one unique
string, even if thousands of packets each containing different
information were sent.

After training, the AIS was exposed to a series of 7,000
packets composed of 426 unique strings, of which 400 rep-
resented “attack” data, and 26 were normal network traffic
which had been omitted from the original training set. A
perfect result would have the system match all 400 attack
packets, and fail to match any of the 26 non-threats. The
non-permutated sets discriminated relatively poorly, match-
ing ∼90% of the attack strings, but also matching a high
(∼70%) proportion of the non-threat strings.

The permutated detector sets had very good performance
on the test data, with most (97/100) detecting more than
93% of the attack data. Their false-positive rates were more
variable, some having as few as 3/26 false positives, and
some matching on 24/26. The fact that these detector sets
do not have a 100% detection rate on attack packets is poten-
tially problematic, but as Barthrop points out, very few net-
work attacks will generate only one anomalous packet, and
so a high but imperfect match rate is acceptable. Likewise,
a non-zero false positive rate is also a potential problem, but
it is also stated that if the system reacts only when a large
number of matches are reported, these false positives will
be ignored unless they happen very frequently, which would
indicate that the training data for the detector set should
be expanded.

5. CONCLUSIONS
A-Brain and AIS represent two very different approaches

to handling novel input. AIS attempts to maintain a kind
of homeostasis in a computing system, by accepting famil-
iar behavior, even forming the ability to generalize what is
“normal”, and regarding changes in this behavior as poten-
tially hazardous. The ability to recognize unfamiliar behav-
ior represents a step forward over purely reactionary security
systems, which must first be taught about a threat in order
to counter it. A-Brain is an interesting approach to evo-
lutionary computation systems, which attempts to reduce
the amount of human input needed before a solution can
be formed. The fact that it did not outperform standard
MEP approaches is in some ways unsurprising, but may be
irrelevant because of the use of different training sets for
each.

Research in the field of AI is ongoing, and the state of the
art changes constantly. These algorithms represent just two
recent developments in the field, and their ability to deal
with the unexpected represents a noteworthy step forwards.

6. ACKNOWLEDGMENTS
Thanks to Wayne Manselle for his insightful feedback on

this paper, and also Nic McPhee and Elena Machkasova for
their advice and support through the years, encouraging the
right sorts of questions which have led me to where I’m going
today, which I hope is somewhere nice.

7. REFERENCES
[1] J. Balthrop, F. Esponda, S. Forrest, and M. Glickman.

Coverage and generalization in an artificial immune
system. GECCO 2002, pages 3–10, New York, 2002.

[2] Y. Bar-Yam. Dynamics of Complex Systems.
Westview Press, 2003.

[3] W. Britt, S. Gopalaswamy, J. A. Hamilton, G. V.
Dozier, and K. H. Chang. Computer defense using
artificial intelligence. In Proceedings of the 2007 spring
simulation multiconference - Volume 3, SpringSim ’07,
pages 378–386, San Diego, CA, USA, 2007. Society for
Computer Simulation International.

[4] S. A. Hofmeyr and S. A. Forrest. Architecture for an
artificial immune system. Evol. Comput.,
8(4):443–473, Dec. 2000.

[5] Z. Ji and D. Dasgupta. Revisiting negative selection
algorithms. Evol. Comput., 15(2):223–251, June 2007.

[6] N. B. Kalamkar and M. S. Ali. Emotion recognition
through facial expression analysis using neuro-fuzzy
system. In Proceedings of the International Conference
#38; Workshop on Emerging Trends in Technology,
ICWET ’11, pages 719–723, New York, NY, USA,
2011. ACM.

[7] S. Marsland. Machine Learning: An Algorithmic
Introduction. CRC Press, New Jersey, USA, 2009.

[8] M. Oltean. A-brain: a general system for solving data
analysis problems. Journal of Experimental and
Theoretical Artificial Intelligence, 19(4):333 – 353,
2007.

[9] R. Poli, W. B. Langdon, and N. F. McPhee. A field
guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[10] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 1995.

[11] H.-T. Wu, W.-T. Hsiao, C.-T. Lin, and T.-M. Cheng.
Application of genetic algorithm to the development of
artificial intelligence module system. In Intelligent
Control and Information Processing (ICICIP), 2011
2nd International Conference on, volume 1, pages 290
–294, July 2011.

