
Elliptical Curve Problem Solving with Hardware

Gregory Schumacher
University of Minnesota Morris

600 E. 4th St.
Morris, MN 56267

schum319@umn.edu

ABSTRACT
This paper discusses the feasibility of breaking elliptic curve
cryptography (ECC) using specialized hardware. The ellip-
tic curves are mathematical groups of points that are used in
ECC. Although data security with ECC is an important sub-
ject in computer science, not many papers look into having
hardware breaking ECC. This paper examined two proposed
hardware designs for solving ECC and compares the costs
of the two systems, as well as their speed.

Keywords
discrete logarithm problem, elliptic curves, collision points,
distinguished points,finite fields, modular arithmetic, Pol-
lard rho method, elliptic curve cryptography, elliptic curve
discrete logarithm problem

Categories and Subject Descriptors
[Data security, Hardware]

General Terms
cryptography, group, finite field

1. INTRODUCTION
In the cybernetic world, messages sent from computer A

to computer B are encrypted so that the message is not
intercepted and read by other people. This science of en-
crypting messages is called cryptography. This word comes
from the Greek words for ”hidden” and ”writing”. Encryp-
tion systems are easy to encrypt and hard for third parties
to decrypt (undo encryption). Third parties that want to
read these messages will need to solve a very hard mathe-
matical problem that would take years or perhaps decades
to solve, such as the discrete logarithm problem(DLP). El-
liptic Curve Cryptosystems (ECC)[2] are based on a mathe-
matical problem called the elliptic curve discrete logarithum
problem (ECDLP) with the same mathematical concepts as

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference,04/28/12 Morris, MN.

DLP. ECC leaves only generic and long tedious ways of solv-
ing it under desired conditions. The concept of hardware
built to solve ECC is a relatively new topic in the field of
data security. If a system can be built to break ECC in a
reasonable time, then messages encrypted in this system will
not be secure from third parties.

One method to solve the mathematical problem that ECC
is based on and break the encryption is the Pollard rho
method. Creating a hardware system that would effectively
use the Pollard rho method would be a useful and power-
ful tool for breaking ECC encryption. Hardware like this
would have an impact on the security of text encrypted by
ECDLP and would drastically decrease the amount of time
it takes to decode text that would otherwise be secure. This
paper describes two developing hardware systems created to
solve ECC. Hardware may play a more critical role in solv-
ing these problems if the cost of the hardware is low enough
relative to software implementations. The cost of the hard-
ware will affect its feasibility in the real world. In examining
the two proposed hardware systems we look at the time it
takes for the hardware to decrypt messages and the cost of
the hardware used.

Our discussion will briefly explain the mathematical foun-
dation on which DLP and ECC are formed.The complexity
of DLP can be given and explained how it is useful in en-
cryption. Understanding DLP will make ECC easier to un-
derstand. An example of an ECC encryption will be given.
After ECC is explained, the Pollard rho method will be in-
troduced, it will be shown how it solves DLP. Then it will be
explained how the Pollard rho method can be used to break
ECC. The hardware implementations created to break ECC
from [1] and [2] will then be discussed. Results of these
hardware systems will then be examined to show how well
ECC stands against them.

In order to understand the hardware and the results it
is important understand the mathematical ideas in the en-
cryption processes presented in sections 2-5.

2. MATHEMATICAL BASIS
The difficulty of decrypting ECC can be explained by

looking at a similar problem of solving DLP. The DLP men-
tioned previously in the paper is a mathematical oddity that
has useful properties for encryption. Because of its detailed
study in mathematics, we can be reasonably sure that en-
cryption methods similar to DLP will be difficult to solve.

2.1 Modular Arithmetic
The encryption algorithms discussed in this paper use fi-

Figure 1: Clock Z12

nite fields in their scheme.

Definition 1. An abelian group is a set of elements G
with a binary operations * is a set of elements that satisfy
the following properties.

• ∀a, b ∈ G, a ∗ b ∈ G

• ∃ I ∈ G (an identity value) such that a ∗ I = a = I ∗ a

• ∀a ∈ G ∃ an inverse a−1 ∈ G such that a ∗ a−1 = I =
a−1 ∗ a

• ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

• ∀a, b ∈ G, a ∗ b = b ∗ a

Definition 2. A finite field is a set of elements G with
two binary operations +,* that form an abelian group under
+ and for non zero elements under * such that

∀a, b, c ∈ G, a ∗ (c+ b) = a ∗ c+ c ∗ b

Definition 3. Modular arithmetic is arithmetic on inte-
gers in which the result of every operation is taken modulo
a fixed positive integer. This shall be written as as
j ≡ x(mod y).

Definition 4. Zk is the set of integers under operation
(mod k) which are 0 to k − 1.

Definition 5. The additive inverse of an integer a in
a ∈ Zk is b where a+ b ≡ 0(mod k).

In Z7 we have additive inverses [(1, 6), (2, 5)(3, 4)]
A good example of modular arithmetic Z12 would be a

clock.
Let Zk represent a standard clock with the 12 replaced

with a zero (this is the abelian group of integers form 0 to
11 set under addition operation). Let 5 hours pass from hour
0. Then we are at 5.

5 ≡ 5(mod 12)

If we are 15 hours past 0 then we loop around the en-
tire clock and end up at 15 ≡ 3(mod 12). For each el-
ement a ∈ Zk there exists another element b such that
(a + b) ≡ 0(mod k) were b = k − a. The element b is
an additive inverse of element a. As an example in Z12

(1,11),(2,10),(3,9),(8,4),(7,5),(6,6) are pairs of elements and
their additive inverses. A multiplicative inverse for element
a ∈ Z12 would be element c that when multiplied with a
create 1 in Zk.

[a× c] ≡ 1(mod k)

However not all elements a in Z12 have multiplicative in-
verses c (an example would be 2). So Z12 is not a finite
field. An example of a finite field would be set Z7 that has
multiplicative inverses for all y ∈ Z7. If we use a prime num-
ber p then all (non zero) x in set Zp have a multiplicative
inverse. This is important, because later when messages are
encrypted the inverse of the value used to encrypt will be
used to decrypt the messages.

Definition 6. The order of a finite field is the number
of elements in that field, denoted as |F | for field F.

All finite fields have an order. In the example above Z7 has
an order of 7. In Zk k being a positive integer the order is
k.

Definition 7. The order of element g ∈ group G under
operation * (denoted as ord(g)) is the smallest positive inte-
ger a such that g ∗ g ∗ g.. ∗ g (a times) equal to multiplicative
identity I.

An example of this would be the multiplicative order of 4 ∈
Z7. We compute 42 = 16 ≡ 2(mod 7) , 43 = 64 ≡ 1(mod 7),
so ord(4) = 3.

Definition 8. g ∈ group G such that ord(g) ≥ ord(f)
for all f ∈ G, because we will want the order as large as
possible for encryption.

This ideally means that when g is raised to the power of
integers 1 to p-1 we get every (non zero) element in field
Zp. An example of this would be 2 in Z5 2 ≡ 2(mod 5),
2×2 ≡ 4(mod 5), 2×3 ≡ 1(mod 5), 2×4 ≡ 3(mod 5). If we
choose a different element , such as 0 in Zk, we would have
only one possible outcome 0. So 0 is a poor choice and can
lead to security problems.

3. DISCRETE LOGARITHM AND ECC
The DLP is a complicated problem. This is important,

because encryption methods that use similar principals like
ECC cannot be decrypted quickly and reliably.

3.1 Discrete Logarithm Problem

Definition 9. The discrete logarithm problem is solving
for a in equation ga = x(mod p) were g and x are in finite
field Zp.

If we try to solve a in the set of all real numbers, then we
could approximate for a, and work our way to the solution.
An example is 5a = 12. We can say a = log512. This would
give us an approximation for a. This will not work in the
finite field, because we need an exact answer. If one needs to
find a for 3a ≡ 4(mod 31) there is no quick and easy solution
to find a which is a = 18.

Figure 2: Point addition image [4]

3.2 Elliptical Curves

Definition 10. An elliptical curve is the set of points
that satisfy cubic equation of the form E(x) = y2 = x3 +
xq + e, such that all roots of said equation are distinct [5].

We can describe the addition of two points P,Q as the point
P+Q=R geometrically: by drawing a line through points
P,Q and finding a third point where this line intersects with
the elliptical curve. This point is −R. If we reflect −R over
the x-axis we get R. [6] The visual representation of this
addition is given in Figure 1.

The points of the elliptical curve form an abelian group
under addition, however we want to represent the coordi-
nates of points as integers or binary, so software or hardware
can represent them accurately.

3.3 Elliptical Curve E(FP)

To get an elliptical curve of integer points an elliptical
curve is generated over field Fp. This curve E(Fp) is the set
of points that satisfy the equation y2 = x3 + xq+ e(mod p).
Addition in E(Fp) is similar to addition in E(x), but the
(X,Y) coordinates of the resulting point from addition are
placed in function x(mod p). This forms an abelian group
because Fp is a field. [5] Examples of this will be presented
in section 4.1.

3.4 Elliptical Curve E(F2m)

Another type of the elliptic curve is over F2m , where m
is an integer. This elliptical curve is similar to the curve
under Fp, but the coordinates of the points are represented
as polynomials under Z2. This is ideal for representing the
coordinates as binary and easy for hardware to interpret.
Addition in E(F2m) is similar to addition in E(Fp) and forms
an abelian group [5]. The elliptical curves create a large
set of points in large fields, which makes them useful for
encryption.

3.5 Elliptical Curve Discrete Logarithm Prob-
lem

The elliptical curve discrete problem (ECDLP) is a prob-
lem similar to DLP. The problem of solving ECDLP is de-
fined as follows: given two points G,Q in E(Fp) or E(F2m),
find the integer l such that

l ∗G = Q

l ∗G can be described as l additions of G on itself (G+G+
G.. + G) [1]. The elliptical curve problem is a complicated
one that cannot be solved easily when elliptical curves are
in large fields, because of the large set of points that can be
generated by the elliptical curves.

4. ELLIPTIC CURVE ENCRYPTION
Since the elliptical curve problem is a complicated math-

ematical problem, it is useful for encryption. Suppose Alice
wants to send message ”m” to Bob. ECC uses public key
cryptography with elliptic curve group operation.

Definition 11. Public Key cryptography has the recipi-
ent with a set of matching keys (public and private). The
recipient has given out public information (public key) to
any sender of messages that is used to encrypt that mes-
sage. After the message is encrypted the sender will send
the message to the recipient. Once the recipient gets the en-
crypted message they use private information that only they
have (private key) to decrypt the message. Suppose Alice
wants to send a message ”m” to Bob without it being read by
anyone. These are the steps that Alice would take.

Encrypted message exchange works as follows:

1. Create a curve, E(x), over a finite feild, Fp. Choose a
point G on curve E(x). With point G generate a group
[G, 2G, .., nG = I] (I is the identity point) of order n.
The private key integer l will be picked randomly from
[1, 2, .., n−1] and used to create public key lG. Message
”m” will be mapped to a point M on the elliptic curve.

2. Alice creates a random integer k in [1, 2, .., n− 1] and
computes kG

3. Alice looks up Bob’s public key lG and computes klG,
M + klG

4. Alice sends Bob the pair of elements (kG, M + klG)

5. Knowing l Bob computes (M + klG − lkG) = M and
gets the message point M, which is mapped back to
message ”m”.

The problem exists in finding l from G and lG. This is sim-
ilar to trying solve for a in DLP ga = x(mod p). There are
however methods that can through tedious work solve the
problem. The most popular and reliable of these methods is
the Pollard rho method.

Now here is an example of ECC encryption to show how
it is used. The elliptical curve chosen for this encryption is:

E : y2 = x3 + x+ 1(mod 23)

Our generating point G = (3,10), the private key l = 5,
the public key lG = G+G+G+G+PG = (9,16). Points P,lG
along with the elliptic curve equation y2 = x3+x+1(mod 23)
will be the public key. If Alice wants to send message ”m”
to Bob then Alice will need to do the following:

1. Turn message ”m” into a point(s) M = (7, 12) on the
elliptical curve

2. Generate a random number k (which for this case is 3)

3. Create points klG = (1, 16) and kG = (19, 5)

4. Send points (kG,M + klG = (18, 3))

The points are now set, so Bob has the encrypted message
point(s) M . Now Bob will decrypt the message in the fol-
lowing steps.

1. Take point kG and use private key l to generate point
lkG = (1, 16) = (klG)

2. Generate −lkG = (1,−16) = (1, 7)
3. Use cancellation to get point M = M + klG+−lkG
4. Now Bob can turn point(s) M into message ”m”

5. POLLARD RHO METHOD
If there is a room full of people what are the odds that

two people have the same birthday? If there are 367 people
there is a 100

100
chance that there will be a collision of two

birthdays, but you only need 57 people to have a 99
100

chance

of a birthday collision and only 23 people for a 50
100

chance of
a birthday collision. This is known as the birthday paradox,
because we need a small number of people to get a large
probability of a a collision of two birthdays [1]. Pollard rho
method uses a method to solve the following problems with
collision of random points. We want to use these collisions
to solve DLP or find the private key in ECC by solving
ECDLP.

5.1 Pollard rho DLP
Consider a DLP problem ga = x(mod p) where we want

to solve for a. This can be done by finding two points that
form the following collision where c, b, u, v ∈ Fp :

gcxb = guxv

a ≡ (c− u)

(b− v)
(mod ord(g))

We have (mod ord(g)) in the equation above, because we
want the smallest integer that a is equivalent to. The Pol-
lard rho method is a collision based method to solve DLP.
The end goal of this algorithm is to create two equal points
that are generated differently. These points are called colli-
sion points if they are not generated with the same values
of c, b, u, v. The collision points are found by first having a
starting point that goes on a random leap (a random incre-
ment increase from previous value) from one point to the
next point generated until a collision is found. We then cre-
ate a set of jumping sizes were X is a function of integer i
that increments b and c. So Xi = gaixbi We will create a
large set of S of size k so we have more points for a collision.
Finally we create a separate set of points. The algorithm is
summarized below.

1. Generate point Xk = gakxbk .
2. Look for a point Xi in S such that Xi = Xk.
3. If no such Xi exists go back to step 1.
4. If there exists a Xi such that Xk = Xi check to make

sure bi 6= bk. If bi = bk go back to step 1, else go to step 5.

5. Calculate a with equation a ≡ (c−u)
(b−v)

(mod ord(g))

The Pollard rho method takes on average
p
πord(g)/2

steps to solve [3]. Now we discuss how a modified Pollard
rho method can be used to find the private key in ECC by
solving ECDLP.

5.2 Pollard rho elliptical curve
The process of solving the elliptical curve problem is sim-

ilar to DLP. Just like with DLP, it is important to have a
starting point and generate other random points from walks

to find two points that equal each other to find integer l such
that l ∗G = Q (l is the private key in ECC).

Now we can modify the Phollard rho method to solve
ECDLP. Create a random point R0 = q0G + e0Q, where
q0, e0 are numbers between 1 and ord(G). Then create a
random point Hk = qkG+ekQ with qk, ek randomly chosen.
To generate the next point we set Ri+1 = Ri + Hk. When
we find two points Ri = Rj calculate l by Ri = qiG+ eiQ =
qjG+ ejQ = Rj . So if we replace ejQ with ej lG then qiG+
eilG = qjG+ ej lG, so l ≡ (qj − qi)/(ei − ej)(mod ord(G)).

Definition 12. A distinguished point (DP) is a point that
satisfies a specific condition. In this case the condition is the
x-coordinate of the point is made of bits consisting of a spe-
cific number of consecutive zeros. The number of consecutive
zeros is set based on the size of the field the elliptical curve
is on.

The advantage of searching for distinguished points is the
odds of collision between two distinguished points is greater
than that of regular points (depending on the number of
consecutive zeros).

6. HARDWARE USED TO SOLVE ECDLP
In this section we will review two proposed hardware sys-

tems presented in [1] and [2]. These hardware systems work
over two different elliptical curves.The hardware used in [1]
will solve ECDLP for elliptical curves in E(Fp) and the hard-
ware in [1] will solve ECDLP in E(F2m).

6.1 Hardware used in prime Elliptical Curve
The first hardware tries to solve for groups smaller or

equal to 128 bits with COPACOBANA which is a parallel
computer of 120 field programmable gate arrays (FPGAs).
They are integrated circuits that process in parallel. The
hardware used is Xilinx Spartan-3 XC3S100. ”Due to the
relatively low cost at low quantities and the reconfigurabil-
ity, the choice of FPGAs seems optimal”[1]. Some properties
of this hardware include low cost, high performace logic so-
lution for high volume, and 1,872 Kbits of total RAM.

6.2 Normal Elliptical Curve Hardware Imple-
mentation

In this hardware system we will have W point processors
(W is an arbitrary number) to generate DP to find a colli-
sion.

There is a central server to store the possible collision
points from the processors. The points need to be stored so
we can eventually find two points that match. The server
will also have a communication controller for data exchange
with W point processors.

There will also be a database for storing values (c,d,R) for
point R = cP +dQ in a table. So if two points are equal we
want to make sure they were not generated the same way or
the Pollard rho method will not work.

The servers also needs a unit for validating distinguished
points from a processor. This is necessary for defective pro-
cessors which could undermine the result. Once we find
two points that collide and are not generated the same way,
we then use an arithmetic unit for computing Pollard rho
method from detected collision points. Finally the server
will need an elliptic curve generator for testing hardware.
Finding a collision will allow us to compute the private key

Figure 3: Hardware system used in hardware 1 [1]

used in ECC. The central server will have more modest com-
putational requirements depending on the size of the subset
used and the number of point processors. The central server
will only process a collision point occasionally.

The point processors will compute the trial of each point
in four steps.

The first step is distinguished point (DP) detection. We
need to find if the current point R is a possible collision
point. The hardware uses a DP property which is satisfied
when the z most significant bits of point R = (x,y) are zero.
If such a point is found, it is transmitted to the central sever.
The advantage of this is immediate control of the number of
point transfers between database server and point processors
in hardware. If we choose a large z value it will cause a longer
computation trials and less points to give central server. If
z is too small we will send a large number of points, but
they will be less likely to be a collision point and may waste
the central servers time. If a collision is not found we will
continue by partitioning (creating a new number with the
sum of two other numbers). In order to select the next
random point Hk we need to update the coefficients. This is
done by creating random numbers cr, dr which are used to
create partitions that will be added to the old coefficients to
create coefficients ck = ck−1 + cr, dk = dk−1 + dr. qr, er =
1, 2...s − 1 where s is an arbitrary number to limit the size
of the partitions.

Now with our partitions we will need to update the corre-
sponding coefficients c and d for point X with X = cP + dQ
by adding the random coefficients ci ≡ c + qi(mod p) and
di ≡ d + ei(mod (ord(P))) according to the selected parti-
tions.

Finally we need to do point addition operation. In order
to update the current point by calculating Hk we need to
do some point addition Hk = ckP + dkQ.

6.3 Hardware used in 2m Curve

The second elliptic curve uses Spartan 3E FPGAs. They
make calculations for S3E1600-5, S3E1200-4 and S3E1600-
5. This hardware has similar properties to the hardware
listed above: low cost, and high-performance logic solution
for high volume.

6.4 2m Elliptical Curve Hardware Implemen-
tation

The second hardware is made of several subsystems, each
designated a role in finding the private key. The connected
point processors are designed to run on special-purpose hard-
ware. The central server will have more modest computa-
tional requirements depending on the size of the subset used
and the number of point processor. The central server will
only process a collision point occasionally.

For the second hardware system we will have an arbitrary
number of client systems. First the client hardware will gen-
erate the points with a starting point and will generate the
new points with partitions until a collision is found. All
the hardware clients will embed a First in First Out (FIFO)
communication interface, a main controller, and some ellip-
tic curve processors with a communication buffers for EC-
uP (Elliptic curve update point) point generator, so client
hardware generates appropriate points. We will also have
a software server which will handle the less intensive job
of dispatching the starting points for each hardware client,
collecting DP (distinguished points), and checking for col-
lisions. Each data point sent through communication will
have a header. The header will be created from the x-y
coordinates and the coefficients ci,di components in point
Ri = ciP + diQ. The header will determine the address of
EC-uP; depending if point is DP or SP (starting point).

In the initial phase, the data is sent from main controller
to the first EC-uP, which collects one SP for every walking
chain. When the length of the chain extends (20× θ) where
θ is an arbitrary large number, use a new SP to start a
new chain. SPs are fed to FIFOs to load point updates and
coefficient updates (in most architectures coefficient update
work on k-bit data to avoid a specific serialize circuit). When
DP is found, the point and its coefficients are stored in other
FIFOs to serialize and output data as soon as possible. EC-
uP will compute point additions, update coefficients and
track the chain length until the problem is solved.

7. RESULTS
From papers [1] and [2] the performance of these hardware

systems can be estimated. Although the systems measure
their results in different ways, the data collected at the end
tells that hardware decrypts ECC by finding the private key
where the key is of a relatively small bit size. However, time
estimates show that ECC decryption would be impractical
for a significantly large key size.

The estimated time for solving the elliptical curve problem
was calculated for 3 different hardware systems. A Pentium
M hardware as a more common hardware will serve as a
control, XC3S1000, and ASIC. ASIC is believed to solve
the elliptical curve problem much faster for larger k bit size
for the private key. Pentium M hardware acts as a control
to better compare the effectiveness of ASIC against other
hardware.

The time it takes to find the private key of bit size 64 for
the hardware in system 1 is just over 78 minutes. However
the system drastically slows down for k sized of over 80.

Figure 4: Time to solve ECC by private key size k
[1]

Figure 5: Complexity vs. Point generation [1]

This means that this hardware cannot solve ECDLP within
a reasonable amount of time. Most ECC will have a k size of
128, so this hardware is not capable of breaking mainstream
ECC.

In [1] the complexity of generating a point with private
key of bit size k was calculated using the equation,

C(k) = 5k + 55

The complexity C(k), total number of points the hardware
can generate per second (Total Pts/s) are given in Figure 5.

As you can see from the table the complexity of generating
points increases with the size of k.

The estimated cost of this system with a market cost of
XC3s1000 is 50 dollars a chip. The total cost of a system
with 120 Xc3S1000 chips is approximately 10,000 dollars.

In paper [2] with FPGA hardware XC3S1200E-4FT256 at
21 dollars or XC3S1600E-5FG320 at 33 dollars and electric-
ity at 0.1 dollars per KWh. The paper focused on the cost of
attacking ECC F2m . It was found that ECC of F2m m = 113
and F2m m = 131 was not secure against attacks from the
hardware. ECC in F2m m = 163 which is the standard se-
curity was beyond the hardware to decrypt. The estimated
cost of the hardware is given below in Figure 6. The vari-
able number of Copa for 1 year is the estimated number of
hardware systems needed to break an encryption in 1 year,
costs are is US dollars.

It is estimated to take 6 months to solve the elliptical
curve problem on an eliptical curve in F2m for m=113. The
estimated cost for a 150 dollar computer in electricity is 35
times greater than the hardware. For a computer with no
dedicated F2m arithmetic logic init ALU the cost can be
500 times greater. So the cost and run time of this system
makes ECC decryption by a third party with this hardware
more of a threat than a system that utilized software. The

Figure 6: Complexity vs. Point generation [2]

hardware for ECC F2m was compared to the hardware for
Fp in [1]. The authors of F2m thought that the hardware
would be more effective against ECC F2m . They found the
hardware [1] to hardware [2] speed of solving an elliptical
curve of security level k = 160 in Fp was a ratio of near 50
to 1. We can see a clear case of the improvement of hardware
to solve ECC from these two papers [1] and [2].

8. CONCLUSION
In conclusion, the process of building a hardware system

to solve DLP and ECDLP is a complex one. The mathe-
matical principles that protect encrypted messages still (at
this papers current date) protect most encrypted messages
of large fields. The research done in the papers above may
encourage other researchers to invest hardware to break en-
cryption. Another aspect of hardware that may make it at-
tractive is the decrease of cost in hardware over time. Take
for example the cost of a Xc3S1000 chip that in 2007 was 50
dollars. The rising computing power of specialized hardware
makes it an attractive system for solving the elliptical curve
problem in the future. This paper has only examined two
hardware systems, but more powerful hardware systems may
exist that have not been described in research literature.

9. REFERENCES
[1] T. Güneysu, C. Paar, and J. Pelzl. Special-purpose

hardware for solving the elliptic curve discrete
logarithm problem. ACM Transactions on
Reconfigurable Technology and Systems (TRETS),
1(2):8, 2008.

[2] G. Meurice de Dormale, P. Bulens, and J. Quisquater.
Collision search for elliptic curve discrete logarithm
over gf (2 m) with fpga. Cryptographic Hardware and
Embedded Systems-CHES 2007, pages 378–393, 2007.

[3] R. Montenegro and P. Tetali. How long does it take to
catch a wild kangaroo? In Proceedings of the 41st
annual ACM symposium on Theory of computing, pages
553–560. ACM, 2009.

[4] C. Scheytt. Resource-efficient
hardware-software-combinations for elliptic curve
cryptography. Point addition, 2007.

[5] J. Silverman and J. Tate. Rational points on elliptic
curves. Springer, 1992.

