
Overview of Operational Transformation

Zach Smith
University of Minnesota, Morris

smit4608@morris.umn.edu

ABSTRACT
The Operational Transformation algorithm is designed to
facilitate seamless real-time cooperation and collaboration.
Operational transformation can be used for collaboration
where users need to remotely interact with a shared resource
in real-time. In this paper we specifically cover cases in
which operational transformation is used in text-documents
that are collaboratively edited in a web-based environment.
Operational transformation can, however, be used in many
different contexts.

Categories and Subject Descriptors
H.5.3 [Information Systems]: Group and Organization
Interfaces—Web-Based Interaction; C.2.4 [Computer Sys-
tems Organization]: Distributed Systems—Client/Server

General Terms
Algorithms, Theory

Keywords
Computer Supported Collaborative Work, Operational Trans-
formation

1. INTRODUCTION
In recent years collaborative technologies have become

more popular. Many current applications allow physically
separated users to simultaneously edit a shared document,
spreadsheet, presentation, or image. A well-known example
of this type of application is Google Docs.

In order to facilitate this type of interaction, the software
must seamlessly keep collaborators up-to-date with one an-
other. Optimally the software would allow users to work as
easily as if they were not using collaborative software.

Pessimistic concurrency technologies such as locking, where
a user locks a document, preventing all other users from
using it until they save and unlock the document, are ill

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2012 Morris, MN.

equipped to solve the problem of Computer Supported Co-
operative Work (CSCW), since only one user can interact
with a document at time, and other users cannot see the
changes made by other users in real-time. Other methods
of collaboration, such as those used by source-code control
software (e.g. subversion or git) can support multiple users
editing the same document, but do not support real-time
updates, and many conflicts must be handled manually by
the user, making these solutions non-optimal for situations
where real-time collaboration is a requirement.

For this discussion, we are interested in optimistic concur-
rency, which is real-time, distributed, and unconstrained [5].
Real-time, in this context, means that the latency between
when a client performs an action and another client sees
the action is determined by the users connection latency. If
the delay is much longer than it takes for the changes to
propagate through the network, the system is not real-time.

The term “distributed” means that clients can be on sepa-
rate remote machines and still interact with one another. If
users are constrained to being on the same machine, the al-
gorithm is not distributed. The term“unconstrained”means
the user can make modifications to any part of the document
at the same time as other users, regardless of what any other
users are doing.

Operational Transformation (OT) is an optimistic consis-
tency control algorithm used in applications such as Google
Docs [3]. OT is well-suited to collaborative applications,
since it allows multiple people to collaborate on a single doc-
ument simultaneously. OT allows client software to respond
immediately to user interaction, regardless of network la-
tency, and will merge updates from other clients seamlessly
and without any interaction required from the user.

This means that, when a user types something, it appears
immediately as they type it. Those changes are sent to the
server, and any new changes are integrated into the user’s
view of the document [1].

2. OPERATIONAL TRANSFORMATION
There are many implementations of operational transfor-

mation. The implementations we will be discussing, such
as [4] and [6], are based on a client-server model. For web
applications a client-server model is the only viable model
due to difficulties in implementing peer-to-peer systems from
a web browser. The remainder of this section will outline
the fundamentals of operational transformation: operations,
transform functions, and the constraints required to achieve
consistency.

2.1 Operations
The basic unit of OT is an operation. In a basic OT

algorithm, an operation is the insertion or deletion of a sin-
gle character. From these two operations we can make any
change to a document. A deletion followed by an insertion,
for example, makes a substitution.

An important property of the operation is causality. We
will use the following notation to describe causality: given
two operations o1 and o2 the notation o1 → o2 denotes that
o1 occurred before o2. Causality will be discussed more in
depth later.

2.2 Consistency Model
Previous OT work use a consistency model based on con-

vergence, causality preservation, and intention preservation
[5].

1. Convergence: Eventually all documents in the system
will be in the same state. Documents diverge when
a client makes an edit to a document. For an OT
algorithm to be correct the algorithm must ensure that
all documents in the system eventually converge on the
same state.

2. Causality preservation: any two operations o1 and o2,
such that o1 → o2, if both executed, must be executed
in that order on all clients.

3. Intention Preservation: the effect of any operation o
must, on all clients, be the effect that the creator of
the operation intended.

Convergence is the property that, even though clients may
have differing states, once they have received and applied all
of the updates from the server, all clients must have the same
final state. If client 1 inserts an x and client 2 inserts a y
after both clients have received and applied the operations
they must both either have the state xy or yx.

Causality is simply the order in which operations occur.
Any two operations are causally related if o1 was executed
before o2 at the same location. If o1 occurs before o2 but
they are at different locations, i.e. two separate clients, and
neither client has received notification of either of the oper-
ations, the operations are not causally related.

If convergence and causality preservation were the only
rules for maintaining consistency, an algorithm could sim-
ply always return a sequence of operations to delete all of
the characters. With this algorithm the documents would
always converge on the same state, an empty string.

To solve this, [5] suggests intention preservation. For ex-
ample, assume we have a document that is shared between
two clients. The document consists of the following string:

There will be word here

Client 1 inserts an s, changing their document to:

There will be words here

At the same time, client 2 inserts the article a changing
their document to:

There will be a word here

Each client’s intention was to correct the grammar of the
sentence, however, determining that this was their intention
is a very difficult problem. A naive approach to intention
preservation, which is what is used in most OT implemen-
tations, will simply converge upon the following string:

There will be a words here

The problem that becomes obvious in this situation is that
it preserves syntactic intention but not semantic intention.
However, the design of an algorithm that also preserves se-
mantic intention would present a difficult problem [5].

2.3 Transformation
The transformation step of OT is responsible for bring-

ing clients into convergence. The transform function trans-
form(seq1, seq2) takes in two sequences of operations and re-
turns a sequence seq′

2. When the sequence seq′
2 is applied to

a client who has already applied seq1, the client will converge
with another client who has already applied seq2 and then
applies seq1’, which is the result of transform(seq2, seq1).

Applying seq1 followed by seq′
2 results in the same end

state as applying seq2 followed by seq′
1. This is very useful

in a collaborative environment, since each client will imme-
diately apply any operations it receives from the user. The
server needs to be able to compute which operations need
to be performed on the client in order to bring it into con-
vergence.

Assume we have a string “ca” which is the current state
of the document on all clients and the server. Client 1 per-
forms an operation o1 = ins(2, n) and at the same time
client 2 performs operation o1 = ins(2, t). Each client has
applied the operation to their local copy of the document,
so client 1’s state is “can” and client 2’s state is “cat”, when
the operations reach the server. If we were to simply send
client 1’s operation to client 2 and client 2’s operation to
client 1 the two states would not converge. Client 1 would
apply client 2’s operation, resulting in “catn” and client 2
would apply client 1’s operation resulting in “cant”. This
violates convergence, since all operations have been applied
on all clients and the documents are not in the same state.

If both operations arrive at the same time, the server can
apply either operation first, as long as it applies sequences
atomically. The server first applies o1, bringing its state
to “can” It then receives o1, and since o2 is based on the
state “ca” it applies transform(o1, o2) which gives us o′

2 =
ins(2, n) and transform(o2, o1) which gives us o′

2 = ins(3,
t). Then, sequence o′

1 is sent to client 2 and o′
2 is sent to

client 1. After the operations are received and applied, both
clients and the server converge on the final state“cant”. Note
that if the server had integrated client 2’s operation first, the
final state would be“catn”, which would be completely valid.

This is the simplest case of operational transformation.
However, multiple sequences of operations can be sent from
a client a, before client b receives these changes. This means
that b’s operations have not taken into account any of client
a’s updates, so multiple transform steps will have to be per-
formed to bring the a and b documents back into conver-
gence. In this case, the transform function cannot simply
be applied to the operations, because the second client’s
operations are not based on the same state first client’s op-
erations.

Therefore, the last state that both clients shared must be
found, and transform must be run multiple times to find the

set of operations to send to to bring the clients into conver-
gence. One issue that this creates is that it ends up taking
O(|h|2) memory to maintain a history of operations in the
worst case. However, methods exist to garbage collect un-
needed history, so that the history does not end up being
the number of operations that have been performed. Other-
wise, If a client has been editing a document for hours, the
number of operations for each client could easily be in the
thousands, making OT slow and memory intensive. In the
next two sections, we will discuss implementations of OT
which decrease this space requirement.

2.4 Google Wave
Google Wave is a communication tool which uses Oper-

ational Transformation to allow users to edit shared docu-
ments collaboratively. Google Wave supports operations for
inserting opening and closing XML tags, annotating ranges
of the text, and retaining characters, in addition to inserting
and deleting characters [6].

A sequence of operations in Google Wave is a sequence
which spans the entire length of the document. Instead of
each operation having a position as above, a number of char-
acters are retained in between each ins and delete. The se-
quence to add an “e” to the end of “wav” would look like
“retain(3)ins(e)”. It would retain the first three characters,
and then it would insert an “e” after the third character.

In Google Wave’s OT algorithm two sequences of opera-
tions can be composed. Given two sequences of operations,
the composition of those two sequences would be a new se-
quence, which would have the same effect as applying the
first sequence followed by the second sequence.

This algorithm allows both the server and the client to
store operations and then compose new operations onto the
old, before sending them to the server. This can reduce
bandwidth, because the server does not have to send each
operation or small set of operations individually. Since these
sequences are linear and ordered based on the document they
are modifying, two sequences of operations can be composed
efficiently in linear time.

To resolve the problem of the server having to store O(|h|2)
history in the worst case. Google Wave does not allow clients
to rapid-fire changes to the server. The client will compose
all new operations into a buffer until the server sends a mes-
sage requesting the changes the client has made. It will send
this message for to each client that is connected. The client
will then send the stream of operations to the server. The
server can then parse all of the streams from all of the clients
at once.

Because the server decides when the client sends all of its
operations, it knows exactly what state the client operations
are based on, namely the last one it sent. This reduces the
complexity of the history from O(|h|2) to O(|h|).

One downside of this solution is that changes are not prop-
agated as often, which may lead to a reduced user experi-
ence [6]. Another is that more work is required of the client,
which may drain battery life on mobile devices [3]. The
upside of more work being performed on the client is that
it frees up memory and resources on the server, since the
server only needs to store a copy of the document, rather
than the transform operation history of each client, making
the server much more reliable and scalable [6].

3. ADMISSIBILITY BASED TRANSFORM

Admissibility Based Transform (ABT) is a recent model
of Operational Transformation where intention preservation
is not used as a correctness property, instead, the admissi-
bility property is used. Admissibility ensures the order of
characters is consistent across all clients at all times [2].

ABT has many similarities to the Google Wave protocol
discussed earlier. ABT prevents clients from getting more
than one step out of state, relative to the other clients, by
limiting how often clients can send new operations, and has
clients buffer operations until the server is ready for them.

As an example of admissibility, if a character x is inserted
before another character y then at any point, on all clients
and the on server, the character x must always precede the
character y, this must hold true for the clients as well as
the server. If x were to appear after the character y the
effects relation would be violated and the algorithm would
not satisfy the admissibility criterion.

The admissibility property has been formally proven cor-
rect. The theoretical proof of admissibility based OT, a
global effects relation graph is created. The effects relation
property is the order relative to the position that they effect.
This graph observes the entire system, where the nodes are
operations, and the edges are the effects relation between
the two operations. Admissibility is preserved when the ex-
ecution of an operation does not violate the effects relation
in the global graph, meaning that there are no cycles be-
tween nodes. If there were a cycle, that would mean that an
operation o1 preceded an operation o2 at one point, and at
another point o2 preceded o1 [2].

As an example of the effects relation order, when given the
sequence of operations [ins(2, x), del(1, b), ins(4, y), del(2,
c)], the string “abcd” will be changed to “axdy”. When re-
ordered into effects relation order, this sequence becomes
[ins(1, b), ins(1, x), del(2, c), ins(3, y)]. These two se-
quences, when applied to a document, will have the same
effect [4].

3.1 Use in Web Applications
The OT framework presented in [4] uses an Admissibility-

Based Transformation (ABT) algorithm. The framework
can be used to implement Web 2.0 CSCW over HTTP with
a request-response architecture, or if available with a server
push architecture.

A request-response architecture restricts the ways in which
the server can communicate with the client. The server can-
not initiate a connection to the client, and must wait until
the client contacts it and asks for information to send data.
This is an issue for a simple implementation of operational
transformation, since the server needs to send updates out
to clients as fast as possible once another collaborator has
made changes.

The way around this is to have the client poll at a certain
interval. For example, rather than send an update message
every time any client changes something, the server must
remember the results of all of the transformations it ran
against messages from the client, and then send them to
the client when the client polls. The issue with polling is
that there is a great deal of overhead which comes from
creating a new http connection every 100-200 milliseconds.
Many times polls are unproductive, since the server has no
information for the client and the response from the server
is simply that there is no new data for the client.

The request-response architecture can also create prob-

lems with detecting disconnect, since there is no persistent
full-duplex connection, a connection where information can
be sent or received by either party at any time. The server
the server has no way of knowing when a client has discon-
nected.

When using a request-response architecture the algorithm
on the client handles all user input and merges it into a local
buffer of operations. This is very similar to the method used
in the Google Wave Protocol, in that all changes are queued
in a buffer and then composed or merged as new operations
are created. Since the server cannot send changes to the
client at any time, it has a similar buffering procedure before
it sends the operations to each client.

At an interval the client checks for any updates from the
server. If the client receives any changes it must transform
them against its local operation buffer, this will become the
new working copy for the user. It must then perform the
reverse transformation in order to find the set of operations
to send to the server [4].

In a server push architecture, a full-duplex connection to
the server is kept open. This allows the server to request
information from the client at any point. This vastly simpli-
fies the design of an ABT implementation. We will therefore
discuss an implementation of ABT with a server push archi-
tecture in the following section.

3.2 Implementation
A protocol for implementing ABT is the Transformation

and Time Interval Based Protocol for Synchronization (TIPS)
from [4]. TIPS is designed for Web 2.0 applications, specif-
ically, the client-side portion can be implemented in a web
browser. In [4] the authors describe both a request-response
protocol for TIPS, as well as an outline for implementing
TIPS as with a Server Push architecture. We will discuss
the server push architecture for the remainder of this section.
An outline of the algorithm can be seen in Figure 1.

Firstly, all clients must be assigned a unique id. For this
discussion we’ll assign each client a monotonically increasing
integer id. In the TIPS protocol, each operation oi consists
of the following four parts:

1. The type of the operation (e.g. insert or delete).

2. The specific character to insert or delete (e.g. ’w’).

3. The index at which the character should be inserted
at or deleted.

4. The id of the client where the character was inserted,
or, if the operation type is delete, the ids of all clients
where this character was deleted.

Note, if the operation was a deletion, we must store the ids
of all clients at which this character has been deleted. This
ensures the same character is not deleted multiple times,
since it only exists once in any copy of the document.

At initialization, each client starts with a copy of the docu-
ment, this document is the same as the copy of the document
on the server. The document is presented to the user and
they are able to modify the document. Any modifications
they make are turned into operations.

Each operation a user performs is merged into a sequence
of performed operations Buffer, which is stored on the client.
The merge algorithm used merges the operation into Buffer,
and maintains the effects relation order. This is similar to

the composition of operations in Google Wave OT. This al-
gorithm will be explained in greater detail later.

At an interval Is the server sends a SYNC message to
each client. When a client receives this they send all of the
operations in Buffer to the server.

Once the server has received the operations from each con-
nected client, the nWayMerge algorithm is used. nWayMerge
repeatedly merges two sequences into each other until there
is only one sequence left, this will be explained in greater
detail later. The result of the nWayMerge is then applied
to the server’s master copy of the data and is sent to each
client. Before the result of nWayMerge can be sent back
to the client, we must remove all operations that originated
from the client receiving the sequence. Recall that, one prop-
erty of an operation in ABT is the originating client’s id, so
we remove all operations whose client id is the same as the
id the operations are being sent to.

Once that is complete, the operations are sent to the
client, shown as the UPDATE message in Figure 1. Once
received by the client, the operations are transformed with
any new client operations via transformSequence and then
applied to the local working copy, which allows the user to
see changes made by their collaborators. We will now dis-
cuss the component algorithms in greater detail.

3.3 merge
The merge algorithm allows the client to store sequences of

operations without sending them to the server immediately.
As operations are performed, they are applied to the working
copy and displayed immediately. Then merge merges the
operations into the local history, Buffer. This allows users to
make changes without the changes being sent to the server
until the server requests them. The running time of this
algorithm is O(n) where n is the length of sequence.

The merge algorithm takes in a single operation and a
sequence of operations and inserts the single operation into
the sequence in the correct effects relation order. It works
by looping backwards over Buffer shifting each operation’s
position, until the correct position is found and then the
operation is inserted into Buffer.

In order to discuss merge, we define a utility method
precedes(o1, o2). The precedes function takes in two opera-
tions and returns true if the first operation comes before the
second in effects relation order, and false otherwise. More
specifically, it returns true if o1.position < o2.position or
o1.position = o2.position and o1.type = delete, and returns
false otherwise. Below, Bufferi denotes the ith operation in
Buffer.

The merge algorithm can be defined more precisely as
follows:

1. Initialize:
insertPosition ← length(Buffer)
∆← 1 if o.type = insert
∆← −1 if o.type = delete

2. For each position i in Buffer starting from the end:

(a) If precedes(Bufferi, o) = true, break out of the
loop.

(b) Else, Bufferi.position ←Bufferi.position +∆
insertPosition ← i.

3. Insert operation o into Buffer at insertPosition.

Figure 1: An overview of TIPS with server push

3.4 nWayMerge
Once the server has sent the SYNC message to the clients,

and has received a sequence of operations from each client,
it must merge the operations into a sequence of all of the
changes that have happened since the last SYNC.

It does this with the nWayMerge algorithm, which takes
in a sequence of operations from each connected client and
merges them into a single sequence of operations in effects
relation order.

The nWayMerge algorithm takes in list, which is a list
of sequences of operations, which will all be from different
clients. The sequences in list will, for our purposes, always
be the sequences received from the SYNC command.

A more rigorous explanation follows:

1. While length(list) > 1 :

(a) listfirst ← mergeSequence(listfirst, listlast)

(b) remove listlast from list.

2. return listfirst

3.5 mergeSequence
The mergeSequence algorithm is called by nWayMerge on

all of the sequences received from clients. It takes in two
sequences of operations seq1 and seq2, which may be from
different clients and merges them together, returning the
merged result.

The algorithm goes through all operations in each se-
quence, merges them into a single new sequence and updates
the new position of each operation, maintaining effects rela-
tion order.

We’ll use an expanded version of the precedes function
multiClientPrecedes, with an additional case, if o1.position
= o2.position and o1.type and o2.type are insert, return true
if o1.id < o2.id. This last clause is a tie breaker, for two
clients committing an insert operation at the same time and
at the same position. The tie needs to be broken in a con-
sistent manner on the server as well as on all clients, so the
operation with a lower client id number precedes the same
operation from another client. Inside the while loop refer to

seq1,i as o1 and seq2,j as o2. The ∆1 and ∆2 variables are
used to shift the offsets to include the effects of the merged
operations.

1. Initialize:
seq ← empty sequence
i← 0
j ← 0
∆1 ← 0
∆2 ← 0

2. While i < length(seq1) and j < length(seq2):

(a) o1.position ← o1.position +∆1

o2.position ← o2.position +∆2

(b) if o1 and o2 are delete operations, and have the
same position and have the same character
then o1.position← o1.position + ∆2

o1.ids ← o2.ids ∪ o1.ids
Append o1 to seq

(c) Else if multiClientPrecedes(o1, o2)
then o1.position← o1.position + ∆2

o2.position← o2.position + ∆1

if o2.type = insert then increment ∆1,
else decrement ∆1

Append o1 to seq
Increment j

(d) Else o2.position← o2.position + ∆1

if o2.type = insert then increment ∆2,
else decrement ∆2

Append o2 to seq
Increment i

3. For each remaining operation in seq2 append it to seq
and add ∆1 to the operation’s position.

4. For each remaining operation in seq1 append it to seq
and add ∆2 to the operation’s position.

It is important to note that within the loop, if both oper-
ations are deleting the same character at the same position,
we only add the first operation to seq because a character
can only be deleted once, since once it has been deleted it
is gone and cannot be deleted again. We therefore add the
ids in o2 to the ids in o1 and append o1 to seq.

3.6 transformSequence
The transformSequence algorithm is responsible for trans-

forming the sequence received from the server, the input se-
quence will be the result of nWayMerge received from the
server. Before operations can be transformed, however, the
extractRemotes algorithm must remove any operations from
seq where the o.id = id in the case of an insertion or id ∈
o.ids in the case of a deletion. This prevents a clients own
operations from being reapplied on their working copy of the
document [4].

The transformSequence(seq1, seq2) algorithm takes in two
sequences seq1 and seq2 and returns a sequence seq′

1 which,
when applied to a document after seq2 has been applied,
will converge with a document where seq1 and result of
transformSequence(seq2, seq1) have been applied.

1. Initialize:
seq′

1 ← seq1

i← 0
j ← 0
∆1 ← 0
∆2 ← 0

2. While i < length(seq1) and j < length(seq2):

(a) o1.position ← o1.position +∆1

o2.position ← o2.position +∆2

(b) If both operations are delete operations and have
the same position and the same character then
replace the operation at seq′

1,j with an identity
operation.
Increment i and j

(c) Else if multiClientPrecedes(o1, o2), seq′
1,j.position

← seq′
1,j.position +∆2

Increment j
if o2.type = insert then increment ∆1,
else decrement ∆1.

(d) increment i
if o2.type = insert then increment ∆2,
else decrement ∆2.

3. For each remaining operation in seq′
1 add ∆2 to its

position.

After this step is completed, the cycle can repeat. The
user can perform operations and they will be transformed
and propagated out to all other collaborators.

4. CONCLUSIONS
This paper discusses Operational Transformation from a

high level, covering the problems it tries to solve and the
properties of the algorithm. These properties being conver-
gence, causality preservation, and intention preservation in
the general case. It then presents admissibility as a more rig-
orous, and provably correct, alternative to intention preser-
vation.

Further research into the possibility of dynamically mov-
ing the transform step of ABT to the server in situations
where a client has low processing power or battery life, such
as a mobile phone, would be interesting. It is an open prob-
lem to implement ABT with undo and redo ability, it is
currently not possible for a user to undo or redo operations
in the TIPS framework we discussed. The TIPS framework
also does not support operations on XML elements.

Operational Transformation is a very useful algorithm which
can solve a wide range of CSCW problems. This algorithm,
and others like it, will only become more important in the
future, as remote collaboration becomes more popular.

5. ACKNOWLEDGEMENTS
I would like to thank Elena Machkasova for advising, proof-

reading, and technical advice. I would also like to thank
Chad Seibert and Eugene Butler, for proofreading and sug-
gestions as well.

6. REFERENCES
[1] D. Li and R. Li. An analysis of intention preservation

in group editors. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed
computing, PODC ’07, pages 348–349, New York, NY,
USA, 2007. ACM.

[2] R. Li and D. Li. Commutativity-based concurrency
control in groupware. In Collaborative Computing:
Networking, Applications and Worksharing, 2005
International Conference on, page 10 pp., 0-0 2005.

[3] B. Shao, D. Li, and N. Gu. A sequence transformation
algorithm for supporting cooperative work on mobile
devices. In Proceedings of the 2010 ACM conference on
Computer supported cooperative work, CSCW ’10, pages
159–168, New York, NY, USA, 2010. ACM.

[4] B. Shao, D. Li, T. Lu, and N. Gu. An operational
transformation based synchronization protocol for web
2.0 applications. In Proceedings of the ACM 2011
conference on Computer supported cooperative work,
CSCW ’11, pages 563–572, New York, NY, USA, 2011.
ACM.

[5] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative editing
systems. ACM Trans. Comput.-Hum. Interact.,
5:63–108, March 1998.

[6] D. Wang, A. Mah, and S. Lassen. Google wave
operational transformation. July 2010.

