
Usability and Security of Text-based CAPTCHAs

Cody Sutherland
University of Minnesota, Morris

suthe112@umn.edu

ABSTRACT
Several free internet resources, such as email, blogs, polls,
and many others, are targeted for exploitation by automated
processes. In order to differentiate between these automated
processes and human users, it has become standard secu-
rity practice to implement CAPTCHAs (Completely Auto-
mated Public Turing test to tell Computers and Humans
Apart). This paper discusses various properties of text-
based CAPTCHAs and their impact on security and us-
ability. It also outlines an automated attack on a high-
profile CAPTCHA and examines one of the most successful
CAPTCHA-related projects to date.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and Principles—
User/Machine Systems; K.6.5 [Computing Milieux]: Man-
agement of Computing and Information Systems—Security
and Protection

General Terms
Security, Human Factors, Verification

Keywords
CAPTCHA, usability, segmentation, interent security

1. INTRODUCTION
In the most general sense, CAPTCHAs are problems that

a human can easily complete, yet current computer pro-
grams cannot. Thus they are used to determine whether
a given request is coming from a human user or an auto-
mated process. Throughout their history and even today,
the most widely used CAPTCHAs are text based [8]. How-
ever, it is important to note that a CAPTCHA may use
audio, video, images, or a combination of various media.
CAPTCHAs were first developed by faculty and students of
Carnegie Mellon University in 2000 and were originally used

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, May 2012 Morris, MN.

to protect Yahoo’s free internet resources [1, 3]. Since then,
they have become an internet security standard to protect a
wide variety of internet resources against automated attacks.

The major driving force behind the creation and use of
CAPTCHAs is purely economic in nature. A large portion
of the economy of the internet is based on advertising rev-
enue. In most cases, users of free internet resources are indi-
rectly paying for these resources through viewing ad content
[5]. An automated process bypasses this system in the sense
that a resource is being used, but a human is not viewing any
ad content. In addition, automated processes can exploit
these resources on a large scale. In many cases automated
processes designed to solve CAPTCHAs are used to abuse a
free internet resource by creating spam or unauthorized ad-
vertisements. It is important to understand the basic eco-
nomics involved in order to understand why CAPTCHAs
are a necessary security tool.

Given that CAPTCHAs have become a standard internet
security technology, many usability issues have arisen. It
has been shown in studies that blind or visually impaired
individuals and those who suffer from certain learning dis-
abilities can be unable to solve CAPTCHAs, which prevents
them from accessing resources they should be able to use [8].
Usability issues are not limited to those with disabilities. It
has been shown that text-based CAPTCHAs that imple-
ment heavily distorted characters have significantly lower
solve rates by humans [8]. Many of the same properties
that make CAPTCHAs more resistant to automated at-
tacks also negatively impact their usability [2]. Since a good
CAPTCHA is both user friendly and secure, this creates the
need for a delicate balance between usability and robustness
in text-based CAPTCHA design.

This paper will analyze several properties of text-based
CAPTCHAs in terms of their effect on usability and security
with respect to resistance to automated attacks. It will also
outline an attack on the Microsoft CAPTCHA based on a
series of algorithms created to exploit design weaknesses.
Finally this paper will discuss the impact of CAPTCHAs on
productivity and the reCAPTCHA project, which addresses
this issue.

2. BACKGROUND INFORMATION
This section introduces terminology related to CAPTCHA

design and automated CAPTCHA attacks.

2.1 CAPTCHA Text Properties
CAPTCHA texts have several properties that are defined

within the field that are important to understanding their



design. The majority of these properties are used to dis-
rupt Optical Character Recognition (OCR) software,
which is software designed to convert images of characters
into text. For the purposes of this paper, we define the fol-
lowing terms. Font refers to the typeset and size of the text.
The character set is the collection of characters used in a
particular CAPTCHA scheme as well as their case sensitiv-
ity. String text is comprised of the length and makeup of
the string encoded in the CAPTCHA image. Distortion is
the use of attractor fields which alter the image by chang-
ing the relative location of pixels. This creates a deviation
from a standard character pattern. Tilting is the rotation
of characters to different angles throughout a CAPTCHA
image. Waving refers to positioning tilted characters at
various vertical locations creating a wave pattern with the
textual foreground [2].

2.2 CAPTCHA Layout Properties
CAPTCHA images also have several layout properties that

contribute to their design. Unlike text properties which dis-
rupt OCR software, layout properties are generally used to
combat character location by automated processes. A com-
plex background is the use of a detailed background in an
attempt to hide the foreground text. The idea is to impede
an automated solver without disrupting a human’s ability to
locate the characters. Stray lines, sometimes refered to as
arcs, are lines which are not part of the textual foreground.
This strategy aims to artificially connect distinct characters
or create pseudo-characters which may be incorrectly classi-
fied as a character by an automated process. Collapsing is
the removal of space between characters, making it difficult
for automated processes to distinguish one character from
the next [2].

2.3 Automated CAPTCHA Attacks
Certain CAPTCHA attacks are general and intended to

break a wide variety of CAPTCHAs with moderate to high
success rates. Others are specifically tailored to a given
CAPTCHA scheme and are created to exploit design weak-
nesses such as the Microsoft CAPTCHA attack covered in
Section 4 of this paper. Regardless of the type of attack,
automated processes designed to solve CAPTCHAs gener-
ally have three phases: The first is pre-processing which
attempts to make the CAPTCHA image easier to analyze
by removing color, removing complex backgrounds, and im-
plementing noise reduction to clarify the image. The next
phase is segmentation which involves locating the indi-
vidual characters in a CAPTCHA image while preserving
their order. The final phase is classification or recognition.
Classification takes the segmented characters and converts
them to the plain text used to solve the CAPTCHA [2].
This phase is primarily accomplished using standard OCR
software [4, 7].

3. ANALYSIS OF CAPTCHA PROPERTIES
The degree to which various CAPTCHA properties are

present and how they interact in a CAPTCHA scheme largely
impact the scheme’s overall usability and security. This
section discusses several CAPTCHA properties and their
known effects on both usability and security.

3.1 Character Set

A larger character set leads to a more secure CAPTCHA
scheme. A larger number of possibilities decreases the odds
that any given guess from an automated process is correct.
However, this same concept negatively impacts usability.
The increased security gained from using a large character
set is negligible when compared to the decreased accuracy
by human solvers. Studies have shown human solve rates as
high as 98% in CAPTCHA images which use only numerical
values (0-9) as the character set. This drops to 82% when
using an alphanumeric and case sensitive character set (a-
z,A-Z,0-9) [2]. It can be assumed that this human accuracy
would be further decreased by including non-alphanumeric
symbols in the character set. A large character set also
leads to more characters, such as lowercase i and j, looking
similar after distortion and blurring are applied [8]. This
is known to create several usability issues in various widely
used CAPTCHA schemes [2].

3.2 String Text
A short string length combined with a small character set

can lead to a situation where random guesses can solve a
CAPTCHA with a success rate higher than 0.01%, the in-
dustry standard for determining whether or not a CAPTCHA
is secure. For this reason, having a sufficiently long string
length is important. String length has opposite implica-
tions in terms of usability depending on whether or not the
string text contains a dictionary word or a sequence of ran-
dom characters. In the case of a dictionary word, increas-
ing the string length directly correlates to an increase in
user accuracy. However, there is negative correlation be-
tween string length and user accuracy when applied to a
CAPTCHA scheme using a string of randomly generated
characters. This has been attributed to the fact that hu-
man solvers are able to use surrounding characters to infer
indistinguishable characters when working with a dictionary
word. This obviously is not possible when working with a
string of random characters. While using a dictionary word
clearly increases usability, it has a negative impact on secu-
rity which is similar to using a smaller character set as there
are fewer possible solutions compared to strings composed
of random characters. [8]

Another interesting aspect of the string text is the differ-
ence between a fixed-length and a variable-length scheme.
A fixed-length string text has negative security implications
[7]. If the number of characters in a given CAPTCHA image
is known, the segmentation process of an automated attack
can make assumptions allowing it to locate individual char-
acters with a higher success rate. This is covered in more
detail in the Microsoft CAPTCHA attack outlined in Sec-
tion 4.

3.3 Distortion
Distortion is often given credit for being the most effective

CAPTCHA property to disrupt classification by the OCR
component of an automated attack. However, it can also
heavily decrease the accuracy for a human solver if imple-
mented excessively. Given that distortion alone is not able
to completely resist classification, the usability issues caused
by distortion are often more significant than the increased
security [2].

3.4 Font
A CAPTCHA scheme that makes use of multiple fonts



is more resistant to automated attacks in that OCR soft-
ware will have a decreased success rate [2]. This is because
varying fonts makes character size unpredictable. The use
of multiple fonts has not been shown to negatively impact
usability.

3.5 Complex Background
The goal of a complex background is to increase security

by hiding the foreground text within the background mak-
ing the CAPTCHA image more difficult for an automated
process to segment (see Figure 1). In recent years complex
backgrounds have been popular despite the fact it has been
shown that they generally add very little to the overall secu-
rity of a CAPTCHA scheme [2]. A common tactic is to use
foreground and background colors that differ very little in
their values on the RGB scale (a pixel represented in terms
of its red, green, and blue values), yet are easily distinguish-
able by human vision. However, studies have shown this can
be easily countered by converting color from the RGB scale
to cylindrical coordinate color models that more accurately
reflect human vision [2]. It has been determined that using
very similar colors or an overly-complicated color scheme
can create usability issues without necessarily increasing the
overall security [8].

3.6 Stray Lines
There are three main types of stray lines which have vary-

ing impacts on segmentation. The first is small lines that do
not cross characters. These have no proven security benefits
as they can generally be removed in the preprocessing phase
of an automated attack [7]. The second type is small lines
that connect distinct characters (see Figure 2). These pro-
vide more of a security increase than the first type, but are
not entirely segmentation resistant. A histogram attack, as
discussed in Section 4, can yield high segmentation success
rates against small connecting lines. The final type of stray
lines is large lines that have the same thickness as charac-
ters in the CAPTCHA image. These have been proven to
be an effective anti-segmentation measure in that it is very
difficult for automated processes to differentiate them from
characters [2]. Large lines must be implemented appropri-
ately, as in matching the foreground color and staying within
the CAPTCHA foreground, or they will be more easily de-
tected by a segmentation algorithm [2]. Using the correct
type of stray lines will significantly increase a CAPTCHA
scheme’s security through segmentation resistance without
negatively impacting its usability.

3.7 Collapsing
Collapsing is often given credit for being the CAPTCHA

property that most directly correlates to segmentation re-
sistance [2]. However, predictable collapsing, which uses a
fixed string length and character width, can still result in

Figure 1: The Blizzard CAPTCHA makes use of a
complex background in an effort to hide the text
from automated processes while keeping the text
recognizable to a human solver.

Figure 2: The Yahoo CAPTCHA makes use of thin
connecting lines as the main resistance to automated
segmentation attacks.

Figure 3: Google relies on collapsing as its main
segmentation defense property in its CAPTCHA.

unacceptable success rates for automated segmentation pro-
cesses. Predictable collapsing is a factor when the string
length and approximate character width are known values.
A segmentation algorithm can make high-probability guesses
on where to segment, which leads to moderate success rates
[2]. This is why it is much more secure to use collapsing
with variable-length string text and multiple fonts. While
collapsing generally does not create usability issues, studies
have proven that extreme collapsing (more than a 5-pixel
character shift) can drastically reduce the accuracy of hu-
man solvers [2].

4. MICROSOFT CAPTCHA ATTACK
Various versions of the text-based Microsoft CAPTCHA

have been in use since 2002 protecting Microsoft online ser-
vices from automated processes designed to exploit the free
resources. Although not everyone agrees [2], it is a com-
monly held belief that character recognition is trivial and
therefore the majority of CAPTCHAs focus much more on
segmentation resistance than techniques to disrupt charac-
ter recognition. The Microsoft CAPTCHA was designed
around segmentation resistance with the goal that an auto-
mated process should not be able to solve the CAPTCHA
with a success rate higher than 0.01% (see Figure 4). This
is on the same level as field-wide CAPTCHA standards. In
2008, Jeff Yan and Ahmad Salah El Ahmad [7] of New-
castle University, UK were able to segment the Microsoft
CAPTCHA using automated processes with a success rate
greater than 90%. Their attack focuses on the preprocessing
and segmentation phases and leaves the recognition phase to
common OCR (Optical Character Recognition) software.

While the Microsoft CAPTCHA was resistant to generic

Figure 4: Four examples of the Microsoft
CAPTCHA targeted by the segmentation attack [7].



Figure 5: An example of histogram vertical segmen-
tation with each bar representing the pixel count of
the column directly above it in the top image. The
long vertical lines in the bottom image represent
segmentation breaks [7].

attacks, Yan and El Ahmad proved it was vulnerable to
an attack based on algorithms designed to exploit several
of its design weaknesses. The first step in their approach
was to identify the properties of the Microsoft CAPTCHA
and then decide which ones could be exploited. By analyz-
ing 100 CAPTCHA images provided by the Windows Live
account sign-up page, Yan and Salah El Ahmad concluded
that the Microsoft CAPTCHA consistently exhibited prop-
erties making it vulnerable to an automated attack. Based
on these properties, Yan and Salah El Ahmad tailored a six-
step attack to remove the anti-segmentation arcs and locate
each character in the CAPTCHA images.

The first step is preprocessing which starts by converting
the colored image to only black and white. This is done by
analyzing pixel intensity and converting those higher than a
determined value to white and converting the rest to black.
The exact threshold value was determined through empiri-
cal data based on the 100 images originally analyzed. This
process occasionally separates characters in the image by
converting a small number of pixels of the foreground (text)
to the background color. To correct this, all pixels of the
background color which have pixels of the foreground both
to the left and right or above and below are converted to the
foreground color. This process results in a black and white
image with all characters intact.

The next step involves segmenting the characters verti-
cally. This is done by creating a histogram representing the
number of foreground pixels in each column (see Figure 5).
In many cases, valleys in the histogram represent spaces be-
tween the characters. However in the algorithm, the image is
only segmented into chunks split on columns with no pixels
of the foreground color. This guarantees a correct split.

The third step separates each chunk from the previous
step into objects represented with a unique color. An object
is defined as a connected series of foreground pixels. They
are detected by selecting a pixel of the foreground and con-
verting it to a new color. Then every foreground pixel ad-
jacent to a pixel of this color is converted to the given color
until the whole object is detected. This process is repeated
for non-connected foreground pixels using new colors until

all foreground pixels have been converted. This ensures all
objects have been located.

Next is the removal of arcs, which are small connecting
lines as discussed in Section 3.6. Properties of arcs are ex-
ploited to distinguish them from valid characters. Using
pixel count, shape, and location, it is possible to detect arcs
for removal. Pixel count and location are straightforward.
Arcs generally have significantly fewer pixels than characters
and only arcs are found near the edge of the image. Shape is
much more interesting in that characters may contain circles
(0, 4, 6, A, B, D, etc.) but arcs never will. Circles are de-
tected by isolating an object in a rectangular box. Starting
at one corner, all adjacent background pixels are converted
to the new color as well. This continues with all pixels adja-
cent to a pixel of the new color being converted to the new
color. When all pixels that satisfy the requirement have been
converted, if any of the original background color remains,
there is a circle present. This means the object definitely
contains a character. Figure 6 shows a visual representation
of this process. All objects not containing circles are ana-
lyzed in terms of their other properties and are removed if
the probability of being an arc is significant.

Figure 6: A visual representation of the circle detec-
tion algorithm when applied to a stray line (a) and
a character containing a circle (b). Any remain-
ing pixels of the original background color after the
algorithm has been completed indicates a circle is
present. [7].

The final two steps involve locating and segmenting con-
nected characters. This relies heavily on three assumptions
that hold true for all Microsoft CAPTCHA images: there
are exactly eight characters in the string text, characters
are never positioned above and below each other, and the
same font is used for all CAPTCHA images. Given the num-
ber of chunks separated by the second step and the known
amount of characters, the algorithm uses the chunk width
to locate connected characters within the given chunks. The
chunks are then segmented by dividing them into sections of
equal width, each containing one character. This is possible
because a constant font allows for assumptions to be made
on approximate character width.

At this point the image is entirely segmented and OCR
software is used to solve the CAPTCHA. The success rate
for the segmentation phase of this attack was reported to be
92%. The success rate assumes the first attempt is correct
for this attack as its focus is on correct segmentation in one



attempt. Nearly all CAPTCHAs allow multiple attempts
per request as human solvers naturally will make occasional
mistakes [2]. When factoring in standard OCR software, it
is estimated that the success rate of the automated attack as
a whole is approximately 60%. It is important to note that
the data was gathered by testing this attack on 500 ran-
domly generated CAPTCHA images provided by the same
source used to obtain the images used for the original anal-
ysis. The attack averaged 84.2 milliseconds to segment each
image which is entirely reasonable for a large scale attack.
This proves that the Microsoft CAPTCHA was vulnerable
to an automated attack based on exploiting its design weak-
nesses.

5. EFFICIENCY AND RECAPTCHA
While solving a CAPTCHA may take the average human

user about 10 seconds, when put into perspective with how
many CAPTCHA images are solved each day worldwide,
this adds up to a significant amount of time lost in order to
protect resources from automated attacks. It is estimated
that over 200 million CAPTCHAs are solved by human users
each day [3], which adds up to more than 500,000 hours of
lost productivity on a daily basis. Although this seems to be
a large price to pay, the alternative could lead to free inter-
net resources becoming virtually unusable due to the sheer
amount of spam and resources lost to unintended automated
consumers.

To combat this problem of lost work, Luis von Ahn, a
pioneer of CAPTCHA technology at Carnegie Mellon Uni-
versity, developed the reCAPTCHA project [6]. The goal of
reCAPTCHA is to utilize the results of solved CAPTCHAs
in a meaningful way so that the effort in solving CAPTCHAs
is not entirely wasted. Von Ahn’s idea is centered around us-
ing the data generated by users solving reCAPTCHA images
to assist OCR software in digitizing books and archives such
as those from the New York Times (see Figure 7). Google
acquired reCAPTCHA in 2009 and has been using it ever
since in the way von Ahn had intended [6].

What makes reCAPTCHA unique is that it contains two
separate CAPTCHA problems. The first is very similar to
traditional CAPTCHAs. It is a known sequence of charac-
ters altered to resist an automated attack. The second is
a scanned word directly from text that OCR software has
failed to recognize. A given word is sent to reCAPTCHA

Figure 7: An example of a reCAPTCHA image
demonstrating how it implements an unknown word
from scanned text (left) and a known control word
(right) [3].

when two separate OCR programs yield different results or
if the result is not a dictionary word. The first CAPTCHA
problem is treated as the control, in that if solved correctly
by the user, the user response to the second CAPTCHA
problem is assumed to be correct as well [3]. Once a given
word has been solved sufficiently many times to create a rea-
sonable confidence interval, reCAPTCHA returns the text
value to the digitization process.

In addition to being a solution to the lost productivity
problem, reCAPTCHA is one of the most user-friendly [8]
and secure CAPTCHA schemes currently being used [2].
Large-scale studies have shown that reCAPTCHA has a
solve rate as high as 97% which clearly puts reCAPTCHA
near the top of the field in terms of usability [8]. With re-
spect to security, reCAPTCHA is similar to many of the
most popular text-based CAPTCHAs in that they share
many of the same anti-segmentation and anti-classification
features. Various generations of reCAPTCHA have demon-
strated distortion, blurring, tilting and waving to resist clas-
sification by OCR software and stray lines, in combination
with collapsing, for anti-segmentation purposes [8, 6]. What
sets reCAPTCHA’s robustness apart is that it uses Adap-
tive Security, a term created by Google. All reCAPTCHA
images are generated by Google’s reCAPTCHA image gen-
eration servers and in the event that an automated process
is able to solve a reCAPTCHA image (usually evidenced by
a spike in spam activity), image alterations can be made in
very little time with nearly instantaneous deployment [3].
This guarantees that even if reCAPTCHA is compromised,
it can recover quickly with no downtime, which makes it one
of the most secure CAPTCHA schemes in use.

While time spent solving CAPTCHAs is still lost at the
level of an individual, the reCAPTCHA project has suc-
ceeded in harnessing that data in order to complete a worth-
while task. It is reported that over 100 million reCAPTCHA
images are solved each day which all contribute to to the
digitization of various forms of print media [6]. It is also im-
portant to note that although reCAPTCHA requires users
to solve two separate CAPTCHA images, it takes no longer
on average than solving other widely-used CAPTCHAs [3].
This ensures that reCAPTCHA doesn’t unnecessarily con-
tribute to the productivity problem it was created to ad-
dress.

6. CONCLUSION
CAPTCHA design is very complex because of the deli-

cate balance of security and usability necessary to create a
successful CAPTCHA. Creating a CAPTCHA that is so se-
cure that no human can solve it, or so user friendly that it
is a trivial task for CAPTCHA breaking software, is very
easy to accomplish. A successful CAPTCHA, by its defi-
nition, is able to tell humans and computers apart. Cre-
ating a CAPTCHA scheme that is unsolvable by the latest
CAPTCHA solving software and is still user friendly requires
an understanding of important CAPTCHA design proper-
ties.

The goal is to add security features whenever possible as
long as they do not significantly or unnecessarily decrease
the accuracy of human solvers. In terms of increasing se-
curity by resisting segmentation, collapsing, and the use of
thick lines tend to be the best options. Both of these proper-
ties make the location of each character much more difficult
to determine for an automated process if implemented cor-



rectly and do not drastically reduce usability. A complex
background may seem to add value, but in nearly all cases
it can be removed in the preprocessing phase of an attack
or it greatly reduces a CAPTCHA scheme’s usability to the
point where it is no longer serving its purpose. Many of
the most effective properties in resisting classification can
also make a CAPTCHA unusable. An unnecessarily large
character set or heavily distorted characters will certainly
increase security, but at an extreme cost to usability. The
best CAPTCHA schemes use smaller character sets without
using characters that look very similar to each other after
collapsing or distortion is applied. Distortion only should
be used lightly as it is effective in disrupting OCR software,
but excessive distortion can lead to usability issues. A solid
CAPTCHA design resists both segmentation and classifi-
cation, but it seems to be the case that it is much easier
to resist segmentation than classification while maintaining
a high level of usability. As CAPTCHA solving software
becomes more powerful, CAPTCHA security will have to
increase as well. It is an ongoing battle between those who
wish to exploit internet resources and those who are pro-
tecting them.

Although at times CAPTCHAs can seem like a nuisance,
they are an extremely important tool in internet security.
The alternative is intolerable amounts of spam and resources
overly consumed by automated processes. Projects like re-
CAPTCHA are attempting to make use of CAPTCHAs in
meaningful ways so the effort put into solving CAPTCHAs
is not entirely lost. CAPTCHAs are a fundamental tool
for protecting internet resources and will remain extremely
important to internet security for the foreseeable future.

7. ACKNOWLEDGMENTS
Thanks to Kristin Lamberty, Elena Machkasova, and Rob

Jansen for their helpful feedback and advice throughout the
process of writing this paper.

8. REFERENCES
[1] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford.

Captcha: using hard ai problems for security. In
Proceedings of the 22nd international conference on
Theory and applications of cryptographic techniques,
EUROCRYPT’03, pages 294–311, Berlin, Heidelberg,
2003. Springer-Verlag.

[2] E. Bursztein, M. Martin, and J. Mitchell. Text-based
captcha strengths and weaknesses. In Proceedings of the
18th ACM conference on Computer and
communications security, CCS ’11, pages 125–138, New
York, NY, USA, 2011. ACM.

[3] Google-ReCAPTCHA. Telling humans and computers
apart automatically.
http://www.google.com/recaptcha/captcha, Mar.
2012.

[4] S. Li, S. A. H. Shah, M. A. U. Khan, S. A. Khayam,
A.-R. Sadeghi, and R. Schmitz. Breaking e-banking
captchas. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC ’10, pages
171–180, New York, NY, USA, 2010. ACM.

[5] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re: Captchas:
understanding captcha-solving services in an economic
context. In Proceedings of the 19th USENIX conference

on Security, USENIX Security’10, pages 28–28,
Berkeley, CA, USA, 2010. USENIX Association.

[6] Wikipedia. Recaptcha — wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.
php?title=Recaptcha&oldid=176827364, 2007.
[Online; accessed 8-March-2012].

[7] J. Yan and A. S. El Ahmad. A low-cost attack on a
microsoft captcha. In Proceedings of the 15th ACM
conference on Computer and communications security,
CCS ’08, pages 543–554, New York, NY, USA, 2008.
ACM.

[8] J. Yan and A. S. El Ahmad. Usability of captchas or
usability issues in captcha design. In Proceedings of the
4th symposium on Usable privacy and security, SOUPS
’08, pages 44–52, New York, NY, USA, 2008. ACM.


