
Applying Genetic Programming to
Bytecode and Assembly

Eric C. Collom
University of Minnesota, Morris
coll0474@morris.umn.edu

ABSTRACT
Traditional genetic programming (GP) is typically not used
to perform unrestricted evolution on entire programs at the
source code level. Instead, only small sections within pro-
grams are usually evolved. Not being able to evolve whole
programs is an issue since it limits the flexibility of what
can be evolved. Evolving programs in either bytecode or as-
sembly language is a method that has been used to perform
unrestricted evolution. This paper provides an overview of
applying genetic programming to Java bytecode and x86 as-
sembly. Two examples of how this method has been imple-
mented will be explored. We will also discuss experimental
results that include evolving recursive functions and auto-
mated bug repair.

Keywords
evolutionary computation, x86 assembly code, Java byte-
code, FINCH, automated bug repair

1. INTRODUCTION
GP is a set of techniques used to automate computer prob-

lem solving. This is done by evolving programs with an
evolutionary algorithm (EA) that imitates natural selection
in order to find a solution. Traditional GP has commonly
been used to evolve specific parts of programs instead of full-
fledged programs. This is because it is very hard to deal with
semantic constrains in source code. Source code is purely
syntactical and does not represent the semantic constraints
of the language. However, if we would deal with these se-
mantic constraints it would allow for unrestricted evolution
and more flexibility in GP. Evolving bytecode and assem-
bly, instead of source code, is a method that allows for this
flexibility. This is possible because bytecode and assembly
languages are less restrictive syntactically than source code.
We discuss this issue further in Section 3.

Orlov and Sipper [5] propose a method for applying GP to
full-fledged programs that requires a program to be in Java
bytecode. Schulte, et al., [7] apply a similar method with

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

both Java bytecode and x86 assembly. Orlov and Sipper [6]
focus on evolving simple programs as a whole while Schulte,
et al., [7] focus on automated bug repair in programs.

This paper is organized as follows: Section 2 covers the
background needed for understanding the application of GP
to bytecode and assembly. It contains information on Evo-
lutionary Computation (EC), Java bytecode, and the Java
Virtual Machine. Section 3 describes the benefits of evolv-
ing assembly and bytecode. Section 4 illustrates how Orlov
and Sipper [6] evolved Java bytecode. Section 5 explores
how Schulte, et al., [7] evolved both x86 assembly and Java
bytecode. Section 6 summarizes some of the experimental
results from [6] and [7]. Section 7 discusses possible future
work and ideas.

2. BACKGROUND
The components of EC and GP will be explored in this

section. Java bytecode and various details of the Java Vir-
tual Machine (JVM) will also be discussed. We will only
address Java bytecode since knowledge of x86 assembly is
not required in order to understand the research done by
Schulte, et al., [7]. Also, throughout the rest of this paper,
the term instruction-level code will be used when referring
to either Java bytecode or x86 assembly.

2.1 Evolutionary Computation
EC is a field of computer science and artificial intelligence

that is loosely based on evolutionary biology. EC imitates
evolution through continuous optimization in order to solve
problems. Optimization in EC is driven by the selection
of more successful individuals. The representation of what
an individual is depends on the problem being solved. For
example, it can be a string of bits, a parse tree, or a struc-
tured object. In this paper, the individuals will be programs
in Java bytecode and x86 assembly.

The EC process is summarized in Figure 1. An initial pop-
ulation of individuals is generated and a selection process is
used to choose the most fit individuals. The selection pro-
cess gives a fitness value, usually numerical, to each individ-
ual which indicates how well it solves the specific problem.
In many cases a higher fitness indicated a fitter individual.
However, in some cases a fitness closer to zero can indicate a
better fit individual. For example, if the fitness is the total
error of a possible solution, the closer the fitness is to zero
the better. The most fit individuals are taken and modified
using genetic operators that imitate mutation and sexual re-
production. A check is then done to see if any individuals
from the new population solve the desired problem. If not,



Initial 
Population

Offspring 
Population

Problem 
Solved?

Return 
Solution

NO

Yes

Selection

Individuals 
Selected For 
Reproduction

Genetic 
Operators

Figure 1: The process of Evolutionary Computation

the process of evolution is repeated until a solution is found
or until a predetermined number of generations is reached.
If the limit of generations is reached then the most fit indi-
vidual is returned.

GP is a tool that uses the EC process to evolve programs.
A fashion in which GP selects individuals, for sexual repro-
duction, is through tournament selection. A certain number
of individuals are chosen for a simulated competition and the
individual with the highest fitness wins. That individual is
then selected to be a parent.

One way sexual reproduction is simulated in GP is through
the genetic operator called crossover. Crossover is the pro-
cess of taking two parent individuals and extracting a section
of code from one and then replacing it with a section from
the other program to form an offspring. Mutation is another
genetic operator that is used to produce offspring. Mutation
performs random changes on a randomly chosen section of
a program.

2.2 Java Bytecode and the JVM
Java bytecode is an “intermediate, platform-independent

representation” [5] of Java source code. However, “imple-
mentors of other languages can turn to the Java Virtual
Machine as a delivery vehicle for their languages” [2]. A few
examples of languages with which this has been done are
Scala, Groovy, Jython, Kawa, JavaFx Script, Clojure, Er-
jang, and JRuby. All these languages can be compiled to
Java bytcode and be evolved at the instruction-level.

The JVM executes bytecode through a stack-based archi-
tecture. Each method has a frame that contains an array
of local variables and its own operand stack. A new frame is
created when a method is invoked. When a method is done
executing, the frame is destroyed [1].

Figure 2 is a simple example of what Java bytecode looks
like and how the stack works. Bytecode consists of operation
codes (opcodes) that perform operations and can manipulate
both the stack and the frame. Each of the opcodes in Figure
2 contain the prefix i which stands for the primitive integer
type. These opcodes can only manipulate integers. The

iload_1
iload_2

iadd
ireturn

Bytecode Frame

... 1 3

After 
iload_1

1

After 
iload_2

1

3

After iadd

4

After 
ireturn

(empty)

Operand Stack

1 20

Before 
iload_1

(empty)

Figure 2: In this example we are assuming that the
frame already contains the local variables 1 and 3 to
retain simplicity. When iload_1 is executed, it takes
the element from the frame at index 1 and pushes
it onto the stack. iload_2 does the same thing but
with index 2. iadd pops two elements from the stack,
which both must be of integer type, adds them and
then pushes the result to the stack. ireturn simply
pops the stack and returns that element.

prefix is followed by the operation to be executed.
The opcodes used in this paper are: iconst_n, istore_n,

iload_n, iadd, isub, and ireturn. iconst_n pushes an
integer value of n on the stack. istore_n pops the stack
and stores that value at index n on the local variable array
on the frame. iload_n takes the value of the element at
index n on the array of local variables and pushes it to the
stack. iadd pops two elements from the stack, adds them
and pushes the result to the stack. Similarly, isub pops
two elements, subtracts the second element from the first
element and pushes the result to the stack. ireturn simply
pops the stack and returns that value.

3. CONSTRAINTS AND BENEFITS
While it would be useful, it is difficult to evolve an en-

tire program in source code due to semantic constraints.
This section will explore why it is difficult to deal with se-
mantic constraints in source code and why it is easier at
the instruction-level. We will discuss some of the benefits
that arise from being able to deal with these constraints and
evolving at the instruction-level.

3.1 Source Code Constraints
There is a high risk of producing a non-compilable pro-

gram when evolving programs at the source code level. This
is due to the fact that high-level programming languages
are designed to simplify reading and writing programs. Most
high-level programming languages are defined by using gram-
mars which are used to represent the syntax of the program-
ming language [1, 7]. The grammar does not represent the
semantic constraints of a program. It does not capture the
language’s type system, variable visibility and accessibility,
or other constraints [6]. The syntax represents the struc-
ture of the language where semantics represent the mean-



float x; int x=7;

int y=7; float y;

if(y>=0){ if(y>=0){

x=y; y=x;

}else{ x=y;

x=-y; }

} System.out.println(z);

System.out.println(x);

(a) (b)

Figure 3: Both (a) and (b) are valid code syntac-
tically however (b) is not valid semantically. This
is because y is uninitialized and then called in the
if statement. Also, assigning a float to an int vio-
lates type constraints and z in the print statement
is undefined. Adapted from [6].

class Robot{

...

double robotSpeed(){

double evolvedVariable = valueFromEA;

return (robot.location + evolvedVariable)/2;

}

...

}

Figure 4: This is a simple example of how tradi-
tional GP typically only evolves small sections of
code. In this example everything before and after
robotSpeed() is already written and is not evolved.
The only thing that the EA modifies is the variable
evolvedVariable which is assigned the value of some
expression evolved by the EA.

ing. For example, the sentence “The sun rises in the west” is
syntactically correct. However, the sentence is semantically
incorrect since the sun rises in the east. The same concept
applies to source code. In Figure 3 both 3(a) and 3(b) com-
ply with the syntactical rules of Java but 3(b) breaks the
semantic rules and thus is illegal code. In 3(b), variable y is
uninitialized before the test in the if statement, assigning y

to x violates a type constraint, and variable z is not defined.
In order to write a program to evolve source code we would
have to deal with all these constraints. While this task is
possible, it would require creating a full-scale compiler to
check for these semantic constraints [6].

Due to the difficulty of dealing with semantic constraints,
in source code, it is frequently easier and less time consuming
to avoid dealing with as many constraints as possible. Be-
cause of this it is common in traditional GP to evolve only
specific areas in a program such as expressions or formulae.
This usually results in most of the program being written
before, and remaining the same after, evolution. Figure 4 is
an example of one way GP typically evolves source code.

3.2 Instruction-Level Code Benefits
Instruction-level code generally consists of a small set of

instructions [7]. For example, Java bytecode consists of two

Line Parent 1 Parent 2 Good Bad
Offspring Offspring

1 iconst 1 iconst 4 iconst 4 iconst 4
2 iconst 3 iconst 2 iconst 2 istore 1
3 istore 1 istore 1 istore 1 istore 2
4 istore 2 istore 2 istore 2 istore 2
5 iload 1 iload 1 iload 2 iload 1
6 iload 2 iload 2 iload 2 iload 2
7 iadd isub isub isub
8 ireturn ireturn ireturn ireturn

Figure 5: This is an example of two possible out-
comes of performing unrestricted crossover on par-
ents 1 and 2. The bold in the good and bad offspring
represent the code from parent 1 replacing code in
parent 2. The bad offspring breaks at istore_2 since
there is nothing on the stack to pop.

hundred and two instructions [2].1 Instruction-level code
is usually simpler syntactically and there are less semantic
constraints to violate. There is a lower risk of producing
a non-executable program during evolution and it is easier
to design an EA that deals with the semantic constraints.
Thus, it is easier to create an EA, at the instruction-level,
that can perform unrestricted evolution on programs.

One of the benefits of performing unrestricted evolution
on a program is that evolution can be performed on the
program as a whole. The EA does not have to focus on a
specific part of the program in order to perform evolution.
When evolving instruction-level code the initial population
of programs do not have to harness a great deal of code
in order to find a solution. An EA can evolve a minimal
amount of code into a full-scale working program.

Also, when an EA is developed for source code, it usu-
ally only works for a single high-level language. However, a
program written in a high-level language can be compiled to
instruction-level code. Then, that program can be evolved at
the instruction-level. Once evolved, the result can be decom-
piled back to its original language. Figure 8 is an example
of this being done with Java source code. There are many
high-level languages that compile into instruction-level code,
such as the ones listed in Section 2.2 that compile to Java
bytecode.

4. FINCH
FINCH is a program developed by Orlov and Sipper [5,

6] that evolves Java bytecode programs through crossover.
It takes two programs A and B and identifies randomly cho-
sen sections α and β respectively. It then takes section α
and inserts it into the previous location of β. The resulting
program is then analyzed to see if it is executable.

4.1 Crossover and Validating Offspring
Evolving Java bytecode reduces but does not remove the

possibility of producing non-executable bytecode. While
Java bytecode has a simpler syntax than source code, it
still continues to have syntactical constraints. Orlov and
Sipper [5] address this issue by checking if an offspring is ex-
ecutable before letting it join the evolved population, thus
ensuring offspring produced through crossover contain valid

1Java bytcode consists of 255 instructions but 53 of them
should not appear in class files.



bytecode. If an illegal offspring is produced, the reproduc-
tion process is repeated, with the same parents, until a good
offspring is produced or a predetermined number of attempts
have been made.

In order to clarify, let α and β be sections of code of two
programs A and B, respectively, on which crossover is being
applied. Semantic constraint checks for stack depth, variable
type, and control flow were done to assure good crossover.
The following is how these checks were made.

The stack and its frame must be type compatible. The
stack must have enough elements on it so that stack under-
flow does not occur. Stack underflow is an attempt to pop
from an empty stack. Stack and frame compatibility is ac-
complished by assuring that stack pops of β have identical
types to the pops in α, and that stack pushes of α have
identical types to stack pushes of β.2

When replacing β with α, variables written before and
after must be compatible with the change. Variables written
by α must have identical types that are read after β. All
variables read after β and not written by α must be written
before β. Finally, all variables read by α must be written
before β.

All jumps within the bytecode should not cause the pro-
gram to break. There must be no jumps into β and no jumps
out of α since there is a high probability that such a jump
would break the code. For example, even though a jump
out of α is assured to go to an existing line of code in A, it
is not assured do go to an existing line of code in B when
replacing β.

Figure 5 is an example of unrestricted crossover resulting
in both a good and a bad offspring. Let α be the opcode
iload_2 from parent 1 and β be iload_1 from parent 2.
Replacing β with α in parent 2 results in a good a crossover.
This is because the value at index 2 on the frame is an integer
which respects the type constraints. Now, let α be lines

istore_1

istore_2

in parent 1 and β be lines

iconst_2

istore_1

in parent 2. In this case, replacing β with α in parent 2
results in a bad offspring. Only one integer is pushed to
the stack followed by two istore calls. The second istore

call at line 3 attempts to pop from an empty stack causing
stack underflow. This offspring would fail the stack depth
constraint.

4.2 Non-Halting Offspring
A problem that arises from evolving unrestricted bytecode

is that the resulting program might enter a non-halting state.
The previously mentioned checks for good offspring, in Sec-
tion 4.1, do not check for this issue. This is because it is
a run time error. This especially becomes a concern when
evolving programs that contain loops and recursion. Orlov
and Sipper [6] deal with this by counting how many calls
are made to each function while running the program. An
exception is thrown if too many calls are made to a function.
The lowest possible fitness is assigned to an individual who
fails this test.

2In [5] the constraints are more sophisticated. See [5] for
more details.

Orlov and Sipper [6] chose to count the calls to each func-
tion to avoid having to either run each program on a separate
thread or set a run time limit. They decided against running
each program on a separate thread because killing a thread
can be unreliable and unsafe for the GP as a whole. They
also decided against setting a time limit due to the difficulty
of defining how long a program should run, since this could
vary greatly depending on the program being run and the
CPU load.

5. AUTOMATED BUG REPAIR
Schulte, et al., [7] focused on evolving x86 assembly and

Java bytecode for the purpose of program repair and debug-
ging. In their tests they took medium to large sized pro-
grams in Java, C, and Haskell that contained a bug. These
bugs were common human errors such as having a for-loop
index off by one.

5.1 Validating Offspring
Schulte, et al., [7] chose not to assure that their offspring

were valid instruction-level code. Instead, they decided to
let all produced offspring into the next generation. This
produced a considerable number of individuals with a fitness
of zero due to being non-executable.

Test cases were used to calculate the fitness of each in-
dividual. The test cases consisted of a set of positive tests
and one negative test. Positive tests were already passing
tests and the negative test was the initially failing test. The
positive tests were used to make sure the program retained
functionality. The negative test was used to check if an
offspring fixed the bug. Each offspring was assembled and
linked to either an executable binary (x86) or a class file
(Java bytecode). If the program failed to assemble or link,
it obtained a fitness of zero. Otherwise, it was run against
the tests. The fitness score was calculated as the weighted
sum of tests passed, with the negative test being worth more
since it represented the bug being repaired.

5.2 Genetic Operators
Schulte, et al., [7] used multiple tournaments consisting of

three individuals to select fit individuals for reproduction.
Mutation was used on 90% of the population and crossover
on the rest to produce the offspring population. A preference
was given to mutation because they found it produced better
results for the type of problems being solved. Since each
bug only required a minor change, such as changing a zero
to a one, using a large amount of crossover or more complex
operators generally lengthened the search time.

Many of the programs being evolved were very large, con-
sisting of thousands of lines of instruction-level code. Be-
cause of this [7] used a weighted path to select what sec-
tions of code to apply mutation and crossover to. Each line
of instruction-level code was given a weight that was calcu-
lated by checking which tests had executed that instruction.
This weight was used to indicate how relevant that line of
code was to the bug. A path weight of 1.0 was assigned if
the instruction was only executed by the negative test case.
A weight of .1 was given if the instruction was executed by
both the negative test case and at least one positive test
case. For all other cases a path weight of 0 was given.

Three mutation operators were used in the experiments:
mutate-insert, mutate-delete, and mutate-swap. Mutate-
insert selected an instruction based on its positive weight.



Mutate-delete selected an instruction based on its negative
weight and deleted it. Mutate-swap selected two instruc-
tions based on their negative weight and swapped them.
The probability of mutation for each path was calculated
by multiplying the mutation rate and the weighted path.
The higher the product, the more likely that path was cho-
sen for mutation. Since paths that were not executed by the
negative test case received a weight of zero, they had a zero
probability of being selected for mutation.

A simple version of crossover was also implemented that
swapped sections from two programs and then created two
new offspring.

5.3 Non-Halting Offspring
Schulte, et al., [7] chose a different approach than that

of Orlov and Sipper [6] when dealing with non-halting off-
spring. They decided not to check for non-halting cases
and instead ran each individual on a virtual machine (VM)
with an eight second timeout on the process. A problem
with programs not responding to termination requests was
noted. This supports Orlov and Sipper’s claim that termi-
nating threads is unreliable. There were also issues with
buffer overflow which occurs when there is an attempt to
write to a memory address outside of a data structure’s le-
gal memory. This can cause the program and system as a
whole to crash. However, since one of the type of bugs that
Schulte, et al., [7] were trying to fix was buffer overflow, this
was expected. Since each individual was ran on a VM, if
buffer overflow did occur, only the VM would crash and not
the entire EA

6. RESULTS
Orlov and Sipper, and Schulte, et al., [6, 7] were able to

evolve programs successfully at the instruction-level. The
different designs of their EAs was due to the type of prob-
lems they were trying to solve. Orlov and Sipper [6] fo-
cused on evolving simple programs that performed a specific
task while Schulte, et al., [7] focused on debugging programs
through evolution.

6.1 FINCH
The five problems that Orlov and Sipper [7] focused on

were symbolic regression, artificial ant, intertwined spirals,
array sum, and tic-tac-toe. We will discuss their results from
the symbolic regression and array sum problems. FINCH
was able to evolve programs that solved each of these prob-
lems.

In each test, FINCH was given a program that had a
zero fitness. The elements included in the programs were
the minimal components needed to successfully evolve and
solve the problem. For example, if the problem consisted of
adding all the elements in an array, then a loop or a recur-
sive call was provided along with one variable of each type
needed. Figure 6 is an example of this. Only one variable
of type double is provided along with a the small function
set of {+, *}.

6.1.1 Symbolic Regression
Symbolic regression is a method of finding a mathemati-

cal function that best fits a finite set of points. Orlov and
Sipper [6] chose to use 20 random points, between −1 and
1, from various polynomials. Fitness was calculated as the
number of points hit by the function. The function set

class SymbolicRegression{

Number symbolicRegression(Number num){

double x = num.doubleValue();

return Double.valueOf((x+x)*x);

}

}

Figure 6: Example of a possible starting program,
before compilation, for a symbolic regression prob-
lem.

int sumlistrec(List list){

int sum = 0;

if(list.isEmpty())

sum *= sumlistrec(list);

else

sum += list.get(0)/2 + sumlistrec(

list.subList(1, list.size()));

return sum;

}

Figure 7: An initial population function, used for
the array sum problem, before being compiled to
Java bytecode to be evolved. This function enters
into infinite recursion in the if statement. Based
on [6].

{+,−, ∗,%, sin, cos, e, ln}3 was used for most of the exper-
iments. This was done in order to mimic previous experi-
mentation [4] and to compare the results to traditional GP.

Each experiment started off with an individual of fitness
zero and usually with a minimal amount of code, such as in
Figure 6. Orlov and Sipper [6] found it possible to evolve
minimalist programs to full-fledged working programs that
solved symbolic regression of up to 9-degree polynomials.
This demonstrates how little content is needed to find a
solution.

In [6], they evolved programs with a 90% chance of crossover
using a simple fitness algorithm. With a maximum of fifty-
one generations, 99% of the time a maximum fitness indi-
vidual was found. With a more complex fitness algorithm,
that allowed for a small margin of error when calculating
each point, an individual with a maximum fitness was al-
ways found.

6.1.2 Array Sum
The array sum problem consists of adding up all the val-

ues in an array. This problem is important because it re-
quires evolving a loop or recursion to find a solution. This
would show that FINCH is capable of evolving more com-
plex programs. FINCH was able to produce a solution to
this problem using both recursion and loops. It was also
demonstrated that FINCH was able to apply evolution to
different list abstractions such as List and ArrayList.

When evolving array sum with recursion the initial popu-
lation consisted of an individual who entered infinite recur-

3e is referred to the function in the java.lang.Math library.
Also, % and ln are protected division and logarithm. This
means that if division by zero or ln(n), where n ≤ 0, occur
the result is set to a pre-selected value such as 1. Orlov and
Sipper [6] do not specify what values they used.



ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 177

Fig. 21. Evolving method of the seed individual for the List version of the
array sum problem. Note that although the new Java 5.0 container iteration
syntax is simple to use, it is translated to sophisticated iterators machinery [9],
as is evident in the best-of-run result in Fig. 22.

Fig. 22. Decompiled ideal individual that appeared in generation 12. Vari-
able names were manually restored for the purpose of clarity, but Java 5.0
syntax features (generic classes, unboxing, and enhanced for) were not
restored.

Fig. 23. Evolving method of the seed individual for the recursive List
version of the array sum problem. The call to the get method returns the first
list element, and subList returns the remainder of the list (the two methods
are known as car and cdr in Lisp). Some of the obstacles evolution must
overcome herein are the invalid stop condition that causes infinite recursion,
and a superfluous operation on the first list element.

were taken modulo array size. FINCH, however, has no such
abstract model of the bytecode (nor does it need one). A for
loop is compiled to a set of conditional branches and variables
comparisons, and array access via an out-of-bound index raises
an exception.

Of course, FINCH is not limited to dealing with integer
arrays—it can easily handle different list abstractions, such as
those that use the types defined in the powerful Java standard
library. Fig. 21 shows the seed method used in a slightly
modified array sum class, where the List abstraction is used
for a list of numbers. Solutions evolve just as readily as in the
integer array approach—see Fig. 22 for one such individual.

Having demonstrated FINCH’s ability to handle loops—
we now turn to recursion. Fig. 23 shows the seed individual

Fig. 24. Decompiled ideal individual for the recursive List array sum
problem version, which appeared in generation 2. Java 5.0 syntax features
were not restored.

Fig. 25. Negamax (node, d, α, β, c): an α-β-pruning variant of the classic
minimax algorithm for zero-sum, two-player games, as formulated at the
Wikipedia site, wherein programmers might find it. The initial call for the
root minimax tree node is d, −∞, ∞, 1. The function Utility returns a
heuristic node value for the player with color c = 1.

used to evolve recursive solutions to the array sum problem.
Note that this method enters a state of infinite recursion
upon reaching the end of the list, a situation which in no
way hinders FINCH, due to its use of the instruction limit-
handling mechanism described in Section II-C. Solutions
evolve readily for the recursive case as well—see Fig. 24 for an
example.

E. Tic-Tac-Toe

Having shown that FINCH can evolve programmatic so-
lutions to hard problems, along the way demonstrating the
system’s ability to handle many complex features of the Java
language, we now take a different stance, that of program
improvement. Specifically, we wish to generate an optimal
program to play the game of tic-tac-toe, based on the negamax
algorithm.3

Fig. 25 shows the negamax algorithm, a variant of the clas-
sic minimax algorithm used to traverse game trees, thus serv-
ing as the heart of many programs for two-player games—such
as tic-tac-toe. Whereas in the previous examples we seeded
FINCH with rather “deplorable” seeds, programs whose main
purpose was to inject the basic evolutionary ingredients, herein
our seed is a highly functional—yet imperfect program.

We first implemented the negamax algorithm, creating an
optimal tic-tac-toe strategy, i.e., one that never loses. We
then seeded FINCH with four imperfect versions thereof,

3Tic-tac-toe is a simple noughts and crosses game, played on a 3×3 grid,
where the two players X (who plays first) and O strive to place three marks
in a horizontal, vertical, or diagonal row.

Figure 8: One of FINCH’s decompiled solutions to
the array sum problem. Taken from [6].

sion as shown in Figure 7. Due to the way FINCH deals with
non-halting programs, this was not a problem and evolution
ensued. One of the resulting solutions is shown in Figure 8.

6.2 Automated Bug Repair
Schulte, et al., [7] were able to demonstrate that it is possi-

ble to fix human programming errors by evolving instruction-
level code. They were able to successfully debug various
programs containing bugs such as infinite loops and buffer
overflow. The interesting thing about these experiments was
that they were performed on programs written by software
developers and at times the programs consisted of thousands
of lines of code. Some bugs that were fixed through the evo-
lution of instruction-level code were not possible in their
previous work [3] with source code. For example, their EA
in their previous work was not capable of fixing incorrect
type declarations or incorrect variable assignments. This
suggests that it is easier to repair a wider array of bugs by
evolving instruction-level code.

Although a considerable number of offspring with a fit-
ness of zero were produced, this did not seem to damage the
result. The average number of fitness evaluations required
to produce an offspring that passed all the tests was 74.4
for assembly compared to 63.6 for C from previous work [3].
This indicates that computational work needed to evolve re-
pairs in assembly is comparable to that of source code. Even
programs that contained thousands of lines of code only re-
quired relatively few generations. Thus, using instruction-
level evolution to automate bug repair is feasible.

7. FUTURE WORK AND CONCLUSIONS
Future work may include evolving programs whose solu-

tions are much longer and more complicated. Orlov and
Sipper [6] proved that, by applying GP to bytecode, it is
possible to solve many simple problems. However, most of
the solutions only consisted of a small number of lines of
code. It would be exciting to see something more complex
be evolved. Also, as shown in Figure 8, a solution given by
FINCH might not be clearly legible once decompiled back
to source code. Refactoring would have to be done to make
the code more readable and maintainable.

An extension of future work, using the research in [7],
could include debugging on less focused areas, such as at-
tempting to fix bugs that require multiple fixes throughout
the code rather than simply altering one line. Also, there
is the question of how applicable automated bug repair is
in a real world situation. In most real world scenarios, test
coverage is very minimal and would rarely cover the entire

code base. Some changes to a program could cause it to
break. If test cases do not cover that case, then a fix to the
original bug could contain a different bug.

Evolving entire programs at the instruction-level is pos-
sible and feasible. It is easier to deal with semantic con-
straints than at the source code level and as a result easier
to perform unrestricted evolution on whole programs. Orlov
and Sipper, and Schulte, et al., [6, 7] showed that evolving
instruction-level code is just as viable as source code and
at times better, such as for debugging incorrect type dec-
larations. In conclusion, evolving instruction-level code is
exciting for the field of EC. It opens up many possibilities
that were once unavailable.

Acknowledgments
A special acknowledgment to Nic McPhee and Elena Machka-
sova for their time and assistance. Also, thanks to Debra
Dogotch, Chris Thomas, Peter Dolan, and Tim Snyder.

8. REFERENCES
[1] The Java Language Specification. Oracles America, Inc.

and/or affiliates, 500 Oracle Parkway, Redwood City,
California 94065, U.S.A., 2013.

[2] The Java Virtual Machine Spefication. Oracles
America, Inc. and/or affiliates, 500 Oracle Parkway,
Redwood City, California 94065, U.S.A., 2013.

[3] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A
Genetic Programming Approach to Automated
Software Repair. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’09, pages 947–954, New York, NY, USA,
2009. ACM.

[4] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. A
Bradford book. Bradford, 1992.

[5] M. Orlov and M. Sipper. Genetic Programming in the
Wild: Evolving Unrestricted Bytecode. In Proceedings
of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, pages
1043–1050, New York, NY, USA, 2009. ACM.

[6] M. Orlov and M. Sipper. Flight of the FINCH Through
the Java Wilderness. Evolutionary Computation, IEEE
Transactions on, 15(2):166–182, April 2011.

[7] E. Schulte, S. Forrest, and W. Weimer. Automated
Program Repair Through the Evolution of Assembly
Code. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 313–316, New York, NY, USA, 2010. ACM.


