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Evolutionary Computation

What is Evolutionary Computation?

Evolutionary Computation (EC) is
a technique that is used to
automate computer problem
solving.
Loosely emulates evolutionary
biology

Charles Darwin
http://tinyurl.com/lqwj3wt

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

http://tinyurl.com/lqwj3wt


Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Evolutionary Computation

How does it work?

Continuous optimization
Selection is driven by the fitness
of individuals
Genetic operators mimic sexual
reproduction and mutation
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Genetic Programming

Genetic Programming

Genetic programming (GP)
uses the EC process to
evolve programs
This done by using an
Evolutionary Algorithm
(EA)

Initial 
Population

Offspring 
Population

Problem 
Solved?

Return 
Solution

NO

Yes

Selection

Individuals 
Selected For 
Reproduction

Genetic 
Operators

Seed
Programs

Selection

Programs 
Selected For 
Reproduction

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly



Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Genetic Programming

Genetic Programming

Two genetic operators used in
GP are crossover and mutation
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Genetic Programming

Crossover
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Genetic Programming

Mutation
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Difficulties With Source Code

Source Code Semantic Constraints

It is difficult to apply evolution to an entire program in
source code

Source code is made to simplify reading and writing
programs
Source code does not represent the semantic constraints of
the program.
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Difficulties With Source Code

Syntax vs Semantics

Syntax represents structure
Semantics represent meaning

Semantically Wrong: The sun rises in the West.
Semantically Correct: The sun rises in the East.
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Difficulties With Source Code

Syntax vs Semantics

Both (a) and (b) are valid syntactically. However, (b) is invalid
semantically.

float x; int y = 7;
if(y>= 0){
    x=y;
}else{
    x= -y;
}
System.out.println(x);

float y; int x = 7;
if(y>= 0){
    y=x;    
    x=y;
}
System.out.println(z);

(a) (b)
Eric Collom University of Minnesota, Morris
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Instruction-Level Code

Instruction-Level Code Constraints

Consists of smaller alphabets
Simpler syntactically
Fewer semantic constraints to violate
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Java Virtual Machine

A frame stores data and
partial results as well as
return values for methods
Each method call has a
frame
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Java bytecode and Frames

Opcodes
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How it works

What is FINCH?

FINCH is an EA developed by Orlov and Sipper
It evolves Java bytecode
It deals with semantic constraints

Eric Collom University of Minnesota, Morris
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How it works

Dealing With Semantic Constraints

The semantic constraints that are checked for are

Stack and Frame Depth
Variable Types
Control Flow

Eric Collom University of Minnesota, Morris
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How it works

Dealing With Semantic Constraints

1 Apply crossover to two parents
2 Check if the offspring complies to semantic constraints
3 If the program passes the constraint test then it proceeds

to offspring generation
4 If it fails the constraint check then another attempt is made

with the same parents
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How it works
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How it works

Good Crossover
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The Array Sum Problem

Array Sum

The array sum problem

Started with a worst
case fitness seed
program
Counted function calls to
check for a non-halting
state

int sumlistrec(List list) {
    int sum = 0;
   if(list.isEmpty())
       sum *= sumlistrec(list);
   else
       sum += list.get(0)/2 + sumlistrec(
               list.subList(1, list.size()));
 
   return sum;
}
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The Array Sum Problem

Array Sum

Decompiled Solution

int sumlistrec(List list) {
    int sum = 0;
   if(list.isEmpty())
       sum = sum;
   else
       sum += ((Integer) list.get(0)).intValue() +
               sumlistrec(list.subList(1,list.size()));
   
   return sum;
}
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How it Works

Automating Bug Repair

Schulte, et al., automated bug repair by evolving Java
bytecode and x86 assembly
Fixed bugs in real code
Did not check for semantic constraints

Eric Collom University of Minnesota, Morris
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How it Works

Weighted Path

Programs at times consist of thousands of lines of code
Uses a weighted path due to size of programs
The weight of a path was determined by the instructions
that were executed by tests

Eric Collom University of Minnesota, Morris
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How it Works

Weighted Path

Test were provided that consisted of one negative test and
multiple positive tests
The negative test was used to represent the bug and check
if individuals found a solution
The positive tests were used to retain functionality

Eric Collom University of Minnesota, Morris
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How it Works

Instruction Weight

Each instruction executed only by the negative test was
given a weight of 1.0
An instruction executed by the negative test and atleast
one positive was given a weight of 0.1
If an instruction was not executed by the negative test case
a weight of 0 was assigned
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Results

What was debugged?

Schulte et al., were able to debug:
Infinite loops
Buffer overflows
Incorrect type declarations
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Conclusions

It is difficult to evolve entire programs in source code due
to semantic constraints
It is easier to deal with semantic constraints with
instruction-level code
It is feasible to not deal with semantic constraints in some
situations
It is possible to evolve small programs and fix simple bugs
using instruction level code
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coll0474@morris.umn.edu

Questions?
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