
Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Applying Genetic Programming to
Bytecode and Assembly

Eric Collom

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

29 April ’14,
UMM Senior Seminar

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation
What is it?
How does it work?
Genetic Programming

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Evolutionary Computation

What is Evolutionary Computation?

Evolutionary Computation (EC) is
a technique that is used to
automate computer problem
solving.
Loosely emulates evolutionary
biology

Charles Darwin
http://tinyurl.com/lqwj3wt

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

http://tinyurl.com/lqwj3wt

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Evolutionary Computation

How does it work?

Continuous optimization
Selection is driven by the fitness
of individuals
Genetic operators mimic sexual
reproduction and mutation

Initial
Population

Offspring
Population

Problem
Solved?

Return
Solution

NO

Yes

Selection

Individuals
Selected For
Reproduction

Genetic
Operators

The Evolutionary Computation ProcessEric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Genetic Programming

Genetic Programming

Genetic programming (GP)
uses the EC process to
evolve programs
This done by using an
Evolutionary Algorithm
(EA)

Initial
Population

Offspring
Population

Problem
Solved?

Return
Solution

NO

Yes

Selection

Individuals
Selected For
Reproduction

Genetic
Operators

Seed
Programs

Selection

Programs
Selected For
Reproduction

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Genetic Programming

Genetic Programming

Two genetic operators used in
GP are crossover and mutation

Seed
Programs

Selection

Programs
Selected For
Reproduction

Crossover
& Mutation

Offspring
Programs

Problem
Solved?

Return
Solution

NO

Yes

Initial
Population

Offspring
Population

Problem
Solved?

Return
Solution

NO

Yes

Selection

Individuals
Selected For
Reproduction

Genetic
Operators

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Genetic Programming

Crossover

iconst_1
iconst_3
istore_1
istore_2
iload_1
iload_2
iadd
ireturn

iconst_3
iconst_4
iconst_2
istore_1
istore_2
iload_1
iload_2
isub
ireturn

iload_1
iload_2

iconst_4
iconst_2
istore_1
istore_2
iconst_3
isub
ireturn

Parent 1 Parent 2 Offspring

iload_1
iload_2

Crossover with Java Bytecode

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Genetic Programming

Mutation

iconst_1
iconst_3
istore_1
istore_2
iload_1
iload_2
iadd
ireturn

iconst_3
istore_1

Parent 1

iconst_1
iconst_3
istore_2
iload_1
iload_2
iadd
ireturn

iconst_4

Offsrping

Mutation

Mutation with Java Bytecode

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?
Difficulties With Source Code
Instruction-Level Code

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions
Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Difficulties With Source Code

Source Code Semantic Constraints

It is difficult to apply evolution to an entire program in
source code

Source code is made to simplify reading and writing
programs
Source code does not represent the semantic constraints of
the program.

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Difficulties With Source Code

Syntax vs Semantics

Syntax represents structure
Semantics represent meaning

Semantically Wrong: The sun rises in the West.
Semantically Correct: The sun rises in the East.

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Difficulties With Source Code

Syntax vs Semantics

Both (a) and (b) are valid syntactically. However, (b) is invalid
semantically.

float x; int y = 7;
if(y>= 0){
 x=y;
}else{
 x= -y;
}
System.out.println(x);

float y; int x = 7;
if(y>= 0){
 y=x;
 x=y;
}
System.out.println(z);

(a) (b)
Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Instruction-Level Code

Instruction-Level Code Constraints

Consists of smaller alphabets
Simpler syntactically
Fewer semantic constraints to violate

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Java Virtual Machine

A frame stores data and
partial results as well as
return values for methods
Each method call has a
frame

Frame

... 3 2 4 ...
0 1 2 3

Local Variable
Array

1
1
2

Operand Stack

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Java bytecode and Frames

Opcodes
The prefix indicates type

iconst_3
iconst_2
istore_1
istore_2
iload_1
iload_2
iadd
ireturn

Bytecode Frame Local
Variable Array

... 2 3

After
iload_1

2

After
iload_2

2

3

After
iadd

5

After
ireturn

(empty)

Operand Stack

1 20

Before
iconst_3

(empty)

... 2 (empty)

1 20

3 3

2

After
iconst_3

After
iconst_2

After
istore_2

3

After
istore_1

(empty)

istore_2

istore_1

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode
How it Works
The Array Sum Problem

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions
Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it works

What is FINCH?

FINCH is an EA developed by Orlov and Sipper
It evolves Java bytecode
It deals with semantic constraints

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it works

Dealing With Semantic Constraints

The semantic constraints that are checked for are

Stack and Frame Depth
Variable Types
Control Flow

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it works

Dealing With Semantic Constraints

1 Apply crossover to two parents
2 Check if the offspring complies to semantic constraints
3 If the program passes the constraint test then it proceeds

to offspring generation
4 If it fails the constraint check then another attempt is made

with the same parents

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it works

Bad Crossover

Bad
Offspring
iconst_4
istore_1
istore_2
iload_1
istore_2
iload_1
iload_2
isub
ireturn

Parent 1

iconst_1
iconst_3
istore_1
istore_2
iload_1
iload_2
iadd
ireturn

Parent 2

iconst_4
iconst_2
istore_1
istore_2
iload_1
iload_2
isub
ireturn

istore_1
istore_2
iload_1

iconst_2
istore_1

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it works

Good Crossover

Parent 1

iconst_1
iconst_3
istore_1
istore_2
iload_1
iload_2
iadd
ireturn

Parent 2

iconst_4
iconst_2
istore_1
istore_2
iload_1
iload_2
isub
ireturn

Good
Offspring
iconst_4
iconst_2
istore_1
istore_2
iload_2
iload_2
isub
ireturn

iload_2
iload_1

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

The Array Sum Problem

Array Sum

The array sum problem

Started with a worst
case fitness seed
program
Counted function calls to
check for a non-halting
state

int sumlistrec(List list) {
 int sum = 0;
 if(list.isEmpty())
 sum *= sumlistrec(list);
 else
 sum += list.get(0)/2 + sumlistrec(
 list.subList(1, list.size()));

 return sum;
}

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

The Array Sum Problem

Array Sum

Decompiled Solution

int sumlistrec(List list) {
 int sum = 0;
 if(list.isEmpty())
 sum = sum;
 else
 sum += ((Integer) list.get(0)).intValue() +
 sumlistrec(list.subList(1,list.size()));

 return sum;
}

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair
How it Works
Results

6 Conclusions
Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it Works

Automating Bug Repair

Schulte, et al., automated bug repair by evolving Java
bytecode and x86 assembly
Fixed bugs in real code
Did not check for semantic constraints

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it Works

Weighted Path

Programs at times consist of thousands of lines of code
Uses a weighted path due to size of programs
The weight of a path was determined by the instructions
that were executed by tests

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it Works

Weighted Path

Test were provided that consisted of one negative test and
multiple positive tests
The negative test was used to represent the bug and check
if individuals found a solution
The positive tests were used to retain functionality

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

How it Works

Instruction Weight

Each instruction executed only by the negative test was
given a weight of 1.0
An instruction executed by the negative test and atleast
one positive was given a weight of 0.1
If an instruction was not executed by the negative test case
a weight of 0 was assigned

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Results

What was debugged?

Schulte et al., were able to debug:
Infinite loops
Buffer overflows
Incorrect type declarations

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Outline

1 Evolutionary Computation

2 Why Evolve Bytecode and Assembly?

3 Java bytecode and the JVM

4 FINCH:Evolving Java Bytecode

5 Using Instruction-level Code to Automate Bug Repair

6 Conclusions

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

Conclusions

It is difficult to evolve entire programs in source code due
to semantic constraints
It is easier to deal with semantic constraints with
instruction-level code
It is feasible to not deal with semantic constraints in some
situations
It is possible to evolve small programs and fix simple bugs
using instruction level code

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

[1] [2]

coll0474@morris.umn.edu

Questions?

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

Overview Background Why Bytecode and Assembly FINCH Evolving Assembly Conclusions References

References

M. Orlov and M. Sipper.
Flight of the FINCH Through the Java Wilderness.
Evolutionary Computation, IEEE Transactions on,
15(2):166–182, April 2011.

E. Schulte, S. Forrest, and W. Weimer.
Automated Program Repair Through the Evolution of
Assembly Code.
In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, ASE ’10, pages
313–316, New York, NY, USA, 2010. ACM.

Eric Collom University of Minnesota, Morris

Applying Genetic Programming to Bytecode and Assembly

	Evolutionary Computation
	What is it?
	How does it work?
	Genetic Programming

	Why Evolve Bytecode and Assembly?
	Difficulties With Source Code
	Instruction-Level Code

	Java bytecode and the JVM
	FINCH:Evolving Java Bytecode
	How it Works
	The Array Sum Problem

	Using Instruction-level Code to Automate Bug Repair
	How it Works
	Results

	Conclusions

