Morphological Operations Applied to Digital Art Restoration

M. Kirbie Dramdahl

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

29 April 2014 UMM CSci Senior Seminar Conference University of Minnesota, Morris

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen, Sem., UMM 1 / 32

Why?

Art restoration preserves objects of artistic, cultural, or historical value. However, this process demands many resources.

Digital art restoration provides:

- a comparatively inexpensive alternative.
- a nondestructive tool, and
- an approximation of the initial ۲ appearance.

Cornelis et al

- 2 Morphological Operations
- 3 Methods of Crack Detection
- Inpainting

3

Edge Detection

- 2 Morphological Operations
- 3 Methods of Crack Detection
- Inpainting
- 5 Results

6) Conclusions

э

Criteria

Terms

Edge boundaries between areas of varying intensity Intensity brightness or dullness of a color

- 1 Accuracy low error rate
- 2 Localization minimal distance between detected and actual edge
- 3 Uniqueness only one response to a single edge

イロン イ団と イヨン 一

Canny Algorithm I

- 1 Smooth image.
- 2 Find jumps in intensity.
- 3 Search regions for local maximum.

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

Canny Algorithm II

4 Compare intensity of remaining pixels to thresholds. Original Image Edge Mask

Edge Detection

2 Morphological Operations

- Erosion
- Dilation
- Opening
- Closing
- 3 Methods of Crack Detection

Inpainting

B Results

Dramdahl (U of Minn, Morris)

Morphological Operations

Morphological Operations

Binary and Greyscale Images

Two Inputs:

- Original Image
- Structuring Element

Erosion

Erosion

Erosion removes foreground pixels.

 $g = f \ominus s$

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 10/32

Dilation

Dilation

Dilation adds foreground pixels.

 $g = f \oplus s$

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 11/32

э

Opening

Opening

Opening removes foreground pixels... neatly.

$$g = f \circ s = (f \ominus s) \oplus s$$

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 12/32

Closing

Closing

Closing adds foreground pixels... neatly.

$$g = f \bullet s = (f \oplus s) \ominus s$$

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 13/32

(a)

Edge Detection

- 2 Morphological Operations
- Methods of Crack Detection
 Top-Hat Transform
 Alternative Method

Inpainting

Conclusions

Top-Hat Transform

Top-Hat Algorithm

Black Top-Hat darker details on lighter background $BTH = (f \bullet s) - f$

White Top-Hat lighter details on darker background $WTH = f - (f \circ s)$

Spagnolo and Somma

Spagnolo and Somma

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 15 / 32

Alternative Method

Alternative Method I

- 1 Compare pixels to threshold.
- 2 Apply closing.

Alternative Method

Alternative Method II

- 3 Apply edge detection.
- 4 Apply dilation.

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 17 / 32

Alternative Method

Alternative Method III

- 5 Join to form binary mask.
- 6 Apply erosion.

- Edge Detection
- 2 Morphological Operations
- 3 Methods of Crack Detection
- Inpainting
- 5 Results

6 Conclusions

э

Inpainting Process I

The image is broken down.

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 20

イロト イヨト イヨト イヨト

20/32

э

Inpainting Process II

For each defective pixel *i*:

- 1 Find the context of *i*.
- 2 Find most similar neighborhood in region.

3

Inpainting Process III

 Replace all defective pixels in the neighborhood of *i* with corresponding pixels from most similar neighborhood.

3 Replace pixel *i* with the median value of all non-defective pixels within its neighborhood.

< 同 ト < 三 ト < 三 ト

- Edge Detection
- 2 Morphological Operations
- 3 Methods of Crack Detection
- Inpainting

6 Conclusions

Dramdahl (U of Minn, Morris)

э

Definitions

Categories:

- true positives (tp)
- false positives (fp)
- true negatives (tn)
- false negatives (fn)

			Actual Value					
			Crack	No Crack				
	Predicted Value	Crack	True Positive	False Positive				
		No Crack	False Negative	True Negative				

Equations:

False and True Positive Rate

$$FP = fp/(fp + tn)$$

$$TP = tp/(tp + fn)$$

Precision and Recall

$$P = tp/(tp + fp)$$
$$R = tp/(tp + fn)$$

(a) < (a) < (b) < (b)

Results

Statistics I

Method	Classification	tp	fn	tn	fp	<i>TP</i> (or <i>R</i>)	FP	Р
	Crack Thickness - Thin	220	30	230	20	0.880	0.080	0.917
	Crack Thickness - Medium	232	18	231	19	0.928	0.076	0.924
	Crack Thickness - Thick	235	15	238	12	0.940	0.048	0.951
Top Hat Transform	Number of Cracks - Few	242	8	245	5	0.968	0.020	0.980
iop-mai mansionni	Number of Cracks - Medium	245	5	241	9	0.980	0.036	0.965
	Number of Cracks - Many	243	7	243	7	0.972	0.028	0.972
	Crack Connectivity - Low	215	35	219	31	0.860	0.124	0.874
	Crack Connectivity - High	218	32	221	29	0.872	0.116	0.883
	Edge Information Lost - 1%	-	-	-	-	0.932	-	0.497
Alternative Method	Edge Information Lost - 30%	-	-	-	-	0.857	-	0.594
	Edge Information Lost - 70%	-	-	-	-	0.530	-	0.704

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

25/32

æ

Results

Statistics II

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen, Sem., UMM

・ロト ・ 四ト ・ ヨト ・ ヨト

26/32

э

Results

Results

Original Image

Restored Image

Cornelis et al

Cornelis et al

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 27

27/32

э

- Edge Detection
- 2 Morphological Operations
- 3 Methods of Crack Detection
- Inpainting
- 5 Results

э

Conclusions

The top-hat transform has been demonstrated to outperform the alternative examined here.

Further Work:

- Implement other methods of crack detection.
- Examine effects of various forms of edge detection and inpainting.
- Study the detection and removal of other defects.

Conclusions

Thanks!

Contact: dramd002@morris.umn.edu

Questions?

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 30 / 32

э

イロト イポト イヨト イヨト

References

References I

Morphological image processing.

Available at https://www.cs.auckland.ac.nz/courses/compsci773s1c /lectures/ImageProcessing-html/topic4.htm.

J. Canny.

A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–698, Nov 1986.

B. Cornelis, T. Ružić, E. Gezels, A. Dooms, A. Pižurica, L. Platiša, J. Cornelis, M. Martens, M. D. Mey, and I. Daubechies. Crack detection and inpainting for virtual restoration of paintings: The case of the ghent altarpiece. *Signal Processing*, 93(3):605 – 619, 2013. Image Processing for Digital Art Work.

S. Desai, K. Horadi, P. Navaneet, B. Niriksha, and V. Siddeshvar.

Detection and removal of cracks from digitized paintings and images by user intervention.

In Advanced Computing, Networking and Security (ADCONS), 2013 2nd International Conference on, pages 51–55, Dec 2013.

N. Efford.

Digital image processing: a practical introduction using Java. Addison-Wesley, 2000.

B. Green.

Canny edge detection tutorial.

Available at http://dasl.mem.drexel.edu/alumni/bGreen /www.pages.drexel.edu/_weg22/can_tut.html.

Image analysis using mathematical morphology.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-9(4):532–550, July 1987.

Dramdahl (U of Minn, Morris)

Morphology in Art Restoration

April '14, Sen. Sem., UMM 31 / 32

3

< 日 > < 同 > < 回 > < 回 > < □ > <

References II

N. Karianakis and P. Maragos.

An integrated system for digital restoration of prehistoric theran wall paintings. In Digital Signal Processing (DSP), 2013 18th International Conference on, pages 1–6, July 2013.

A. W. R. Fisher, S. Perkins and E. Wolfart.

Morphology.

Available at http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm.

Virtual restoration of cracks in digitized image of paintings. Journal of Physics: Conference Series, 249(1):012059, 2010.