
Using Video Games to Teach Introductory Computer
Science Classes

Alexander Gunness
University of Minnesota, Morris

gunn0056@morris.umn.edu

ABSTRACT
Teaching introductory computer science is a notoriously dif-
ficult task. One proposed alternate method is to have stu-
dents play video games. While implementation research is
inconclusive, Applied-Behavior Analysis guidelines exist on
how to create games for this purpose, and are used to ana-
lyze three examples that cover recursion circuitry.

Keywords
Teaching, Introduction Courses, Video Games, Recursion

1. INTRODUCTION
Teaching introductory computer science is a notoriously

difficult task, and it is primarily during the these courses
that students leave the Computer Science major, upwards
of 40% [1]. Because of this, alternate methods of teaching
have been looked into, and one method is having students
play video games to learn concepts. Most of the research
in the field has been inconclusive in showing benefits of this
approach [2]. Even so, there are still some examples worth
mentioning. Two sets of guidelines exist on how to make
a video game as a teaching tool: one following successful
game characteristics, and the other uses Applied Behavior
Analysis [2].

2. BACKGROUND
The goals of introductory computer science classes are

largely straightforward. The first and foremost goal is that
introductory classes should set students up for classes later
in the curriculum. Specifically, the classes should include
some form of recursion or non-recursive iteration, basic meth-
ods on how to go about solving problems, an introduction
to some kind of coding syntax is often included, and other
basic concepts (like variables). The classes also should spark
an interest of later Computer Science topics in the students
while giving them a scope of what it has to offer.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

Specifically how one goes about introducing concepts is a
matter of debate, as is seen in ACM’s document for guide-
lines on teaching introductory classes. There is no consen-
sus on how introductory concepts should be taught, as some
think teaching functional before object-oriented is better,
while others think the opposite. Some think it is better
for students to learn on non-standard devices like the Rasp-
berry Pi, mobile devices, game devices, and others. What
this means in regards to video games is that because there
is no method recognized as being better than others, they
can be used and still adhere to the ACM standards. [3]

2.1 Difficulties in Learning Recursion
One of the important topics to learn in an introductory

class is recursion, a notoriously difficult topic to teach [1, 5].
Part of the issue is that to understand recursion one needs
to understand how the program stack works. It is also easy
to confuse recursion with non-recursive iteration, as in many
simple examples both can appear to essentially be the same
[5].

A series of examples of this issue can be seen in the fol-
lowing code snippits (modified from [5]). Imagine an intro-
ductory student is trying to comprehend R1.

public void R1(int x) {

if (x > 0){

System.out.print(x);

R1(x - 1);

}

}

This hypothetical student could think R1 is the exact
same as I1.

public void I1(int x) {

for(int i = x; i > 0; i--){

System.out.print(i);

}

}

I1 gives the same output as R1, but is using iteration
instead of recursion. Both of these, in some sense, say“Print
x, then print x-1 until x=0”. Due to this it can be hard
to conceptually understand what is different between the
two (such that recursion can cause a stack overflow while
iteration cannot, as an example).

Without fully understanding the program stack R2 could
appear to be the same as R1.

public void R2(int x) {

if (x > 0){

R2(x - 1);

System.out.print (x);

}

}

While this is also recursion, the output is in the opposite
order than R1’s output. If the student does not fully un-
derstand that the print occurs while the stack is emptying
itself they might think it prints prior to the recursive call
finishing.

Without understanding the differences between R1, I1 and
R2, the more complicated examples, such as working with
binary trees, are much harder to understand.

2.2 Why Video Games
Video games are a unique kind of entertainment. In or-

der to play a game well one must learn the game’s system
and figure out what limited actions are possible within the
system while succeeding in challenges brought forth by the
game. This means that they inherently require the player
to learn concepts and ways of thinking in order to succeed.
[2]

One example of this is from the popular games Portal and
Portal 2, where a common phrase is “now you’re thinking
with portals”. In those games one is given a device that
creates two portals that effectively teleport the player from
one portal to the other. The portals are used in a myriad
of ways to solve puzzles (such as putting one portal on the
ground beneath the other, which is on the ceiling, in order to
get a large amount of velocity from gravity). In these games
one has to wrap their mind around this special ability and
its limitations in order to get to the exit of each level.

This is notably similar to learning Computer Science. One
must learn how a language works and use available com-
mands to their advantage to overcome coding problems. If a
video game is structured correctly (more on that in the next
section) it can theoretically be a decent vehicle for learning
Computer Science.

Video games have a second compelling rationale: they are
inherently motivating [1, 2]. The reason the video game
market is succeeding is that they are made to be fun and
enjoyable.

Since video games inherently educate and motivate while
being able to invoke Computer Science-style thinking they
are theoretically a good tool for teaching computer science
[2].

3. DESIGNING A GAME FOR TEACHING
Games should theoretically have better inherent motiva-

tion than standard lesson methods. But there is more to it
than “student plays video game, student learns topic”.

There are notions that “fun, flow, engagement, feedback,
goals, problem solving, game balance and pacing, interesting
choices, and fantasy narrative, among many others” are all
needed in order for a video game to be successful, and by
extension, facilitate learning [2].

There is one tested element a video game needs in order to
be educational. This one element is intuitive: if tasks in the
game are completable without the player learning anything
then the game taught the player nothing. This same element
also makes players more motivated to keep playing. [2]

One thing to keep note of is that while the goal of an

educational video game is to make it educational, it is a
mistake to let the educational aspect hurt the gameplay.
That said, the learning aspect must be integral to a game’s
mechanics rather than being an afterthought. [2]

[2] has a list of seven common traits of successful commer-
cial games (though this list is not exhaustive).

• Short, medium, and long-term goals are present through-
out the game

• Decision-making is usually required in order to meet
said goals

• Games provide “immediate, appropriate, and specific
feedback to players”

• There is a complex way of giving rewards

• Long tasks are usually broken into shorter ones. The
shorter tasks are each taught separately before they
are used together

• A player is required to be good at a specific task before
being allowed to attempt harder tasks

• There are multiple ways to solve a problem and none
of them are obvious, while there are obviously wrong
methods

While these seven traits are needed to make a commercial
game successful they are also what are needed to make a
game enjoyable. The motivational nature of video games is
directly related to their joy factor, so this list should also be
adhered to when making an educational game.

3.1 Applied Behavior Analysis (ABA)
Of the seven successful commercial game traits the most

important is the immediate and specific feedback video games
have to offer and their ability to change feedback on a per-
player basis. Applied Behavior Analysis (ABA) is an edu-
cational framework based on this concept, so it is a useful
framework to work from when designing educational games.
ABA and video games also share the trait that the stu-
dents/players have specific goals to achieve, time constraints,
rewards for meeting said goals, and are given constant feed-
back.

ABA is a teaching style in which the lecture format is
rejected, and instead the teacher works with each student
individually. Feedback is given often and per-person, and a
student is supposed to continue at a topic until they have at
least a 90% understanding [2].

ABA has been very successful wherever it has been im-
plemented (ranging from elementary school to high school).
However, ABA has recurring problems that make it hard
to implement. First, it requires a teacher put in a large
amount of time training and planning. Second, there of a
bias against having students constantly repeat efforts on the
same topic. [2].

Video games can stick to ABA standards and get around
the issues ABA is normally plagued by. Far less is required
of the teacher because video games can teach players on their
own. Players are also more likely to keep at a problem until
they understand it, as games are motivating.

3.2 ABA Steps to Designing an Educational
Game

[2] lays out three main steps to designing a game to adhere
to ABA standards: defining/measuring desired behavior,
recording/analyzing changes in behavior, and giving feed-
back. These three steps then need to be adapted to each
student.

The first step when designing a game is to define what
skill/behavior is supposed to be improved. Those skills
should be the same as the skills used in the gameplay, not
just similar ones. Measuring a student’s understanding should
incorporate both their accuracy and speed of finding correct
answers.

The second step regards changes in behavior. Behavior
should be recorded by logging actions the player takes that
fall within the important skill’s scope. For example, one
would not record the player’s choice of hair color if the goal
is to get the player to understand recursion. The correct-
ness/speed of relevant behavior would be automatically an-
alyzed by the game.

The third step is feedback. Different kinds of feedback,
derived from the analysis of the player’s actions, would be
given to each player. Role playing games are a good ex-
ample, as experience points are rewarded for “correct” ac-
tions (thus positive reinforcement) or items/experience can
be taken away upon failing (typically dying).

Each person is different, and different kinds of feedback
motivate different kinds of people. Ideally the game would
detect what motivates a player and act accordingly. This
requires recording the tasks the player spends more time on
and what kind of rewards those tasks give. When and how
rewards are given out is also an issue, as they cannot simply
be given out after each task is complete. Usually the rewards
have variable triggers and variable difficulty in acquiring and
typically rewards come less frequent as the game progresses.
This can be seen in most MMOs (massive multiplayer online
games) and Facebook/mobile games.

The overall difficulty should also be variable, as to allow
players to start where they are comfortable and grow from
where is natural for them.

4. RESEARCH EXAMPLES
Most of the research done in this topic stems from good

ideas but often lack concrete evidence that their approaches
are actually working [2]. That said, it would be useful to look
at some examples of research that has been done. Below are
three examples of research in the area.

4.1 Circuitry
The driving force behind the study presented in [4] was

the noted drop in students’ ability to pay attention and will-
ingness to complete assigned readings.

The game (currently unnamed) takes place in a 3D en-
vironment. The end goal is to reach the exit via opening
doors and unlocking skill upgrades. Each door can only
be unlocked by solving a logic gate problem, and the game
switches to a 2D environment when attempting to do so (see
Figure 1). The player is provided something equivalent to a
truth table (see the top of Figure 1), along with inputs on
the left-hand side and the outputs on the right. The puz-
zles are solved by drag and dropping gates onto the board
and wiring inputs, gates, and outputs together via mouse

Figure 1: The circuit game’s 2D interface, [4]

clicks. The answer is constantly evaluated and correctness
is displayed just beneath the truth table. Players have the
option to toggle the inputs on and off so that they are ca-
pable of debugging their answer and figuring out the correct
one. The two skill upgrades are unlocked via a puzzle of
this same style. As per normal game standards, the circuits
start off easy and progress in difficulty.

The target group for the game was students who were
previously or currently enrolled in an introductory class that
covered circuitry/truth tables.

In 2007 the preliminary test was conducted using thirteen
students from the target group. The study primarily was
concerned with feedback on the 2D interface and what stu-
dents thought of using video games to learn. More than 60%
preferred video games over paper problems [4].

In 2008 a pilot test took place involving nine students
from the target group and four students who were not. In
this study the students were capped at 75 minutes of play-
time. After playing they took a survey that assessed their
opinions of the game and demographic details. The feedback
was generally positive and students appeared to enjoy the
game. Some of them opted to continue playing beyond the
capped time in order to reach the exit. Students appeared
to enjoy the sense of achievement, ability to have immediate
feedback, and that the game was generally fun.

Before and after playing the nine test students were given
a conceptual test of two circuit problems to solve. On the
pretest eight of them got 0% while one got 100%. While the
students played it was noticed that they had more of a guess-
and-check tactic while later on they were more methodologi-
cal. On the post-test, of the eight who originally scored 0%,
four of them still scored 0% while four got a higher score
(exact numbers were not listed).

Though the test group’s improvement seemed small the
authors felt that, given how short the test was, it was still
promising. They also noted that students had last seen the
topic either a month or semester prior, and only for 1.5
weeks. In the future the authors plan to conduct a larger
study, add a plot, more variety to the puzzles, a tutorial,
and a system to hand out context-sensitive hints to players
who are stuck on problems. [4]

Of the seven traits from [2] this game was successful at
having a long-term goal, “immediate, appropriate, and spe-

Figure 2: Commercial Cargo-Bot’s GUI, [5]

cific feedback”, and being required to complete easier tasks
before harder ones. It was also successful at knowing what
behavior was desired. The future work proposed will help
the game give feedback on a per-player basis, based on the
actions the players are taking. With the proposed updates
the game will better match the ABA guidelines given in [2]’s.

4.2 Recursion with CargoBot
Recursion is notoriously difficult to teach, and is a fun-

damental concept that is necessary to understand in order
to do well in Computer Science. One issue with teaching
recursion is that concepts are easier to understand if they
can be likened back to past knowledge, and there are few
instances of recursion in everyday life [5]. This was the line
of thinking behind this study.

Cargo-Bot is a commercially available game for Apple’s
iPad and was not designed with education in mind. The
authors of this study used it with permission. In the game,
players use a simple visual language in order to issue com-
mands to a robotic arm. The goal is to take a given start
state and transform it into an end state by moving the col-
ored boxes around. The game supports a construct very
akin to recursion but does not support looping in any other
fashion. In the game players are allowed to define four pro-
cedures, which carry out a set of commands. The first three
are allowed eight commands while the last is only granted
five. The commands available are down (which places/picks
up boxes), left, right, procedure 1, procedure 2, procedure
3 and procedure 4. If clauses that check whether a box is
currently in the arm or the color of the box are also avail-
able. When the player hits the start button procedure 1 is
carried out, and the other ones are only run when called

by the appropriate command. The play button turns into
a stop button that resets the state of the game (saving the
commands within the procedures), which allows players to
change their procedures to re-attempt the puzzle. This ba-
sic language fully supports self-referencing, each successive
recursive call does act to get the state of the game closer to
the end state, and supports something akin to a base case
(the end state).

For the study Cargo-Bot was modified to allow players to
attempt levels at will instead of the linear fashion originally
intended by the game’s creators.

The experiment had two groups: the “control” group (21
students) and the “experimental” group (26 students). The
students involved in the two groups were all from the same
school taking the same AP Computer Science class (differ-
ent sections). Both classes followed the same schedule and
neither had been introduced to recursion prior to the study.

Each group played Cargo-Bot, had a lecture, and had
three tests. The ordering for these events was different for
the two groups. The control group had a 20 minute pre-
test, 50 minute lecture, and a 15 minute mid-test on day
one. Day two included playing Cargo-Bot for 90 minutes
and a 20 minute post-test. The experimental group had the
pre-test and played Cargo-Bot on day one, while taking the
mid-test, lecture, and post-test day two.

The lecture covered defining recursion, the stack, and in-
cluded examples of recursion. Some of the examples mim-
icked Cargo-Bot style puzzles.

Each of the tests included both trying to understand a
recursive function and writing their own. Their understand-
ing of existing recursive functions was done by being asked
what a specific call of it returns (such as Fibonacci(10)).
The given function and the one they had to write became
harder on each successive test.

For the portion where students wrote their own recursive
functions the control group had a drop in test scores after
the lecture, but had a large increase after playing Cargo-Bot.
The experimental group had a large increase after playing
Cargo-Bot but only a small increase after the lecture. For
the portion where students looked at existing recursive func-
tions both groups did worse on the mid-test than the pre-
test, then did better on the post-test than the pre-test. This
showed that while playing Cargo-Bot did increase their abil-
ity to write recursive functions, it did not help their ability
to understand existing recursive functions. The authors note
that this makes complete sense as Cargo-Bot only has play-
ers creating procedures.

The authors originally theorized that having a context for
recursion makes understanding it easier. This study did not
prove that, but it did show that it is preferable to have the
exploration take place prior to the lecture.

In the future the authors plan to test this method of teach-
ing recursion with college students, and plan to change how
the game represents carrying out procedures to help stu-
dents better understand how to follow a recursive function.
They also plan on looking into using games to teach other
topics such as threading. [5]

Of the seven traits from [2] the game did provide“immedi-
ate, appropriate, and specific feedback” to players. Players
had the ability to jump around and do problems at-will,
which directly goes against requiring players to be good at
a specific task prior to advancing. Of the ABA guidelines
it was capable of giving feedback in the form of immedi-

class Test {

public void TreeTraversal() {

Tree myTree = new Tree();

depthFirstSearch(myTree.root);

}

public void depthFirstSearch(Node node) {

Thought.moveTo(node);

// Check for Base Case

if ((node.returnRight() == null)

&& (node.returnLeft() == null)) {

return;

} else { // Recursive calls

// Travel to node’s right child

if (node.returnRight() != null) {

depthFirstSearch(node.returnRight());

Thought.moveTo(node);

}

// Travel to node’s left child

if ([YOUR_CODE] != null) {

[YOUR_CODE]

}

}

return;

}

}

Figure 3: Modified scaffolding code from EleMen-
tal’s level 2, [1]

ately showing players what their procedures did correctly
or incorrectly. The proposed improvements will help teach
players recursion better, but will not help it follow any of
the guidelines from [2].

4.3 Recursion with EleMental
EleMental is a cross between coding and playing a game

that attempts to help teach recursion. This example focuses
more on direct experience than an abstraction of recursion
like CargoBot [1].

The game had three levels. The first had two simple tasks.
Players wrote a “Hello World” script and manually walked
their character through a binary tree in a depth-first search
pattern. The game would give hints on how to correctly
walk their character through the tree.

In the second level players were given most of the code
for depth-first search (Figure 3) and were asked to finish the
code. The only missing bit was how to handle traversing
through the left-hand side. The scaffolding code was kept
shorter to avoid code that was too complex for introduc-
tory students. At UNCC they taught C++ and Java but
the game engine was written in C#, which is very similar
to the other two, so the scaffolding code also included C#
specific quirks that were not shared with C++ or Java. This
allowed students to code without knowing C# specifically,
except that Console.WriteLine was needed instead of cout
or System.out.println in the “Hello World” level.

If the student wrote code that did not compile, an error
message popped up that included what line caused the er-
ror. If the code did compile but did not match the intended
pattern a custom error message popped up explaining where
the inaccuracy was.

6. RESULTS & DISCUSSION
The study was conducted with 43 participants. The first twenty-
seven took only a post-test, while the final 16 participants took
both the pre-test and post-test. In this discussion we focus on the
pre- and post-test group. Of these 16, 13 were 18-25 years old
and 3 were 25-30. Thirteen were male and three were female.
Two of the students were of Asian descent, 2 were African
American, 2 were Hispanic, 9 were Caucasian, and one preferred
not to respond. We had 1 freshman, 1 sophomore, 10 juniors, 3
seniors, and 1 post Baccalaureate student. Fourteen were in
computer science-related majors, 1 was in computer engineering,
and 1 was in graphic design with a minor in computer science.
The students were also asked what programming languages that
they had used previously. As Java and C++ are taught in our first
series of programming courses at UNCC, it comes as no surprise
that these were the dominant languages among the students.

We also asked the students what types of games they like to play
when they have the time. Interestingly enough for our project, 8
of the students like first person shooters, which is what the
DarkWynter game engine was originally, and 8 of the students
like RPGs, which is what the engine has become.
Three of the students never play video games while most play less
than 3 hours a week, 1 plays 3-10 hours a week, 2 play 11-20
hours a week and 2 play more than 20 hours a week. Four of the
students reported being hardcore gamers, 5 reported being casual
gamers, and the rest said they were neither. Because of the small
sample size, we did not perform comparisons among the
subgroups; however, as we add participants, we will look at the
subgroups to determine differences, if there are any.

6.1 Quantitative Results
We conducted a pre- to posttest comparison for students taking
both tests (N=16), and the average scores for each question on
these tests is shown in Table 2. We note that all scores increased
except for Q3. We suspect this may be a result of students
assuming the pre- and posttest questions were identical. We can
mitigate the “answer the same multiple choice answer” by
randomizing the placement of the answers by student. Posttest
scores are significantly higher (M = 1.9375, SD = 1.12361) than
the pretest scores (M =3.1250, SD = 1.82117; t(15) = -3.048, p <
.05). With a p value of approximately 0.008, we can show there is
a significant improvement in the posttest scores compared to the
pretest scores. The effect size, using Cohen’s d, is .78, which is a
large effect size, with an α error rate of .05 and a power of .95.
On average, the posttest scores were approximately .78 standard
deviations higher than the pretest.

Table 2: Pre and posttest results (N= 16)

Figure 5 shows the pretest and posttest results, with participants,
ordered by increasing post-test scores, on the x axis and scores
(out of 5 points) on the y. Each participant has two columns in
the chart – the light blue column representing their pretest score
and the purple representing their posttest score.

Figure 4: Pre and Posttest Scores per Participant

Since some students did not take the pretest, our study became an
abbreviated Solomon’s research design that controls for test
effects that cause learning from a pretest to the posttest. This 4-
group design contains a treatment and control group with both
pretests and posttests and has treatment and control groups with
posttests only. In our case, we have two treatment groups, Group
P with a pretest and posttest and Group NP with just a posttest
(N=27). Since our purpose is learning, we have omitted both
groups where there is no treatment. We ran an independent
samples t-test across the two groups, the ones that took the pre
and posttests (P) and the no-pretest (NP) group. The means and
standard deviations of the two groups were very close to one
another, P (M = 3.23, SD = 1.83275) and NP (M = 3.25, SD =
1.45213), indicating that there was probably not an interaction for
the P group stemming from taking the pretest before the posttest.

Table 3 shows the averages and standard deviations over the game
logs for each student in group P, which include the overall time
spent (minutes: seconds) on the game, as well as the times and the
number of tries students took on each challenge. On average,
students spent 75% of their game time actually working on code
challenges. There were no significant correlations between time
spent in the game and posttest scores. For 6 of the 11 students
with valid logs, their time to solve DFS 2 decreased as compared
to that for DFS 1, and for 2 students the time was very similar.
While the number of tries to complete DFS2 went up, we believe
the decrease in time indicates some learning, since DFS 2 was
more challenging. In the future, we plan to do a more detailed
analysis of learning times and tries for all study participants.

Table 3: Game Log Averages

Challenge Average Standard Dev.

Game Time 32:28 15:02

Hello World 6:57 4:53

HW Tries 1.23 0.44

DFS1 Time 10:02 4:10

DFS1 Tries 2.46 2.26

DFS2 Time 10:32 10:41

DFS2 Tries 4.00 24.68

Figure 6 shows the results of our analysis of the 11 complete log
files for a correlation between time spent playing the game and
code attempts with their test scores. The x-axis lists the total time
time for each student, with three bars for each student whose

 Q1 Q2 Q3 Q4 Q5 Total %

Pretest 0 .5 .63 .38 .44 1.94 of 5 38%
Posttest .63 .63 .56 .5 .81 3.13 of 5 63%

83

Figure 4: Pre- and post-test EleMental scores, [1]

After level 2 was solved the game showed a character
walking through the tree and explained what was happening
without mentioning the program stack, but spoke about how
their character would not go backwards on the tree without
first having “talked” to both of the current node’s children.

Level 3 finally introduced the program stack. Students
again were given scaffolding code, but this time were re-
quired to write the left and right-hand side of depth-first
search. The reasoning behind using the same exact code
(minus a few lines) from level 2 was never given. The pos-
sibility of students simply copying from memory what they
had seen not a few minutes prior without really understand-
ing it was also never discussed. After level 3 was solved
students had to walk through the tree “using the keyboard
and mouse”(how this is different from what was done in level
1 is not explained) while the game gave a visual metaphor
for the stack.

There was also a metaphor using telephones during level
3. The example, in brief, went “A asks B a question, B asks
C, C asks D, then E. D and E each give C an answer, who
tells B, who then tells A.” This was intended to help explain
how the program stack and recursion work.

There was a single playtest of EleMental. Prior to playing
a pretest was given judging how well players knew recur-
sion going in, while a post-test was given afterwards. There
were 43 participants that took the post-test, but only 16 of
them took the pre-test. Of the 16 there was “1 freshman, 1
sophomore, 10 juniors, 3 seniors, and 1 post Baccalaureate
student. Fourteen were in computer science-related majors,
1 was in computer engineering, and 1 was in graphic design
with a minor in computer science.” The participants all had
already completed or were enrolled in Data Structures and
Algorithms. They also noted how many hours a day each
person played video games and what type of gamer they
considered themselves, but due to the small test size this
information was not used.

Figure 4 shows the pre- and post-test scores for the 16
students. In [1] statistical analysis was done that showed
a significant increase in test scores after playing EleMental.
Notably, there were no significant correlations between time
spent in the game and post-test scores.

All 43 students also completed a survey of the game.
Many questions were answered with one of five options rang-
ing from “strongly agree” to “strongly disagree”.

• 34“strongly agreed or agreed that they enjoyed playing
the game.”

• 35 “agreed that they enjoyed creating and compiling

Response Categories By respondents By categories
In-Game Coding 29% (12 of 42) 18% (12 of 67)
Visualization 62% (26 of 42) 39% (26 of 67)
Education 38% (16 of 42) 24% (16 of 67)
Hints 19% (8 of 42) 12% (8 of 67)
Game Play 11% (5 of 42) 7% (5 of 67)

Figure 5: Participant’s favored aspects of EleMen-
tal, [1]

their own code inside the game”

• 34 “agreed the game was helpful in learning computer
science concepts”

• 34 “students agreed that the second level with the AI
walkthrough was more helpful in learning depth-first
search than the other two levels”

The players were also asked what they liked most about
the game, and were allowed to select multiple options. The
visualization of recursion was the overall favorite.

In the future the research group plans on showing the
advantages of using recursion. Part of this will be by re-
placing level 1’s “Hello World” with a “brute-force program
to perform tree traversal”. Each level will also show what
incorrect compilable code does, as to better allow players to
understand what they are doing wrong. Level 3’s stack and
telephone metaphors will be improved as the UNCC pro-
fessor who teaches Data Structures and Algorithms noted
this was the hardest part for students taking the class to
understand.

They also plan on adding an experience point (XP) sys-
tem to the game to add further motivation to the game.
This is something many games implement to get players to
play longer. Interestingly, this works even if the XP does
absolutely nothing, as gamers simply like getting to higher
levels and getting more XP.

UNCC also plans on integrating EleMental into their Data
Structures and Algorithms class to get further testing and
to allow their students “the benefit of an alternative form of
learning” [1].

The game was designed to teach recursion, though among
the testers was 10 juniors, 3 seniors, and a post Baccalau-
reate student. This means that either UNCC did not teach
recursion prior or the test was done on studnets who already
knew recursion. In the latter case the results do not mean
that EleMental is “good” at teaching recursion, but rather
is good as a refresher.

Of the seven successful game traits from [2] EleMental had
some level of“immediate, appropriate, and specific feedback”
and being required to complete easier tasks before harder
ones. The game was also designed knowing what behavior
was desired. The future work proposed will help the game
give better feedback for understanding why incorrect code
is incorrect. EleMental does go against one of the seven suc-
cessful game traits, however, as there was only one correct
way to solve a problem.

5. CONCLUSIONS
It is still debatable whether or not there is room for video

games within introductory computer science education. There

is no conclusive research showing video games are a better
or equal alternative to traditional teaching methods. In-
terestingly, even though there are guidelines for creating
successful educational games, commercial games can poten-
tially be tapped as a resource as well. The ABA guidelines
for designing a game are as follows: the game needs a way
of defining/measuring desired behavior, recording/analyzing
changes in behavior, giving feedback, and changing to be
player skill dependent [2]. The three examples shown did
not have a way of satisfying the second or fourth guidelines.

Ultimately this means that much more research needs to
be done on the actual effectiveness of video games in teach-
ing computer science.

6. FUTURE WORK
As mentioned most of the research in this field is sub-par.

This is because there is little research in using video games in
this manner (as most video game-related computer science
teaching is done through students creating their own games).
There is also no conclusive research on whether or not video
games are actually better than usual teaching styles, only
that video games can work [2].

In light of this what needs to happen is games need to
be designed as per [2]’s two sets of guidelines, and better
research needs to be done. The research should compare
teaching using video games to not using video games, and
the sample sizes should be larger than the current ones. This
will help decide whether or not video games are actually
more helpful, or if they are helpful at all.

7. REFERENCES
[1] A. Chaffin, K. Doran, D. Hicks, and T. Barnes.

Experimental evaluation of teaching recursion in a
video game. In Proceedings of the 2009 ACM
SIGGRAPH Symposium on Video Games, Sandbox ’09,
pages 79–86, New York, NY, USA, 2009. ACM.

[2] C. Linehan, B. Kirman, S. Lawson, and G. Chan.
Practical, appropriate, empirically-validated guidelines
for designing educational games. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, pages 1979–1988, New York, NY,
USA, 2011. ACM.

[3] M. Sahami, A. Danyluk, S. Fincher, K. Fisher,
D. Grossman, E. Hawthorne, R. Katz, R. LeBlanc,
D. Reed, S. Roach, E. Caudros-Vargas, R. Dodge,
R. France, A. Kumar, B. Robinson, R. Seker, and
A. Thompson. Introductory courses. In Computer
Science Curricula 2013, Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science,
pages 39–45. ACM and IEEE, 2013.

[4] V. Srinivasan, K. Butler-Purry, and S. Pedersen. Using
video games to enhance learning in digital systems. In
Proceedings of the 2008 Conference on Future Play:
Research, Play, Share, Future Play ’08, pages 196–199,
New York, NY, USA, 2008. ACM.

[5] J. Tessler, B. Beth, and C. Lin. Using cargo-bot to
provide contextualized learning of recursion. In
Proceedings of the Ninth Annual International ACM
Conference on International Computing Education
Research, ICER ’13, pages 161–168, New York, NY,
USA, 2013. ACM.

