
Interoperability

Interoperability in Programming Languages

Todd Malone

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

28 April 2014
Senior Seminar

Interoperability

Introduction

Defining Interoperability

What is interop?

Interoperability: The ability for two systems to interact.
Often shortened to interop.
In programming languages: The ability of a language to
call on code from another language.

Interoperability

Introduction

The Importance of Interop

Why is interop important?

Developer time and effort:
Existing and working code
is easier to use as-is.
Legacy systems: extensive
or little-understood code
base.
Third-party systems:
source code is unavailable

Language Strength:
Explicit memory access (C)
Parallel or distributed systems
(Clojure, Erlang)
Statistics (R)

Interoperability

Introduction

Outline

Outline

1 Common difficulties in interop

2 Concepts in interoperability

3 Tools used in achieving interoperability

4 Conclusions

Interoperability

Difficulties

Outline

1 Common difficulties in interop
Type systems
Data structures
Data processing

2 Concepts in interoperability

3 Tools used in achieving interoperability

4 Conclusions

Interoperability

Difficulties

Type systems

Differences in type systems

Languages represent data in
different ways
Statically-typed languages assign
types as soon as data is
collected.
Dynamically-typed languages
only deal with types when
evaluating data.

Class Person

string name = "Cliff"

date dateOfBirth = 4/16/1978

int height = 74

double weight = 212

end

Figure 3: A Person class strongly-typed language

Class Person

var name = "Cliff"

var dateOfBirth = 4/16/1978

var height = 74

var weight = 212

end

Figure 4: A Person class in an untyped language

what the data can by itself. In the case of strongly-typed
languages, the type information included as part of a vari-
able declaration is a kind of metadata, as in Figure 3. There
we can see that there is a di↵erence in the representation of
the height and weight fields, despite both fields being a
number.

VMs and metadata
There are two primary ways virtual machines handle meta-
data: language type specifications and metadata files. Both
of these are handled by a compiler at compile time. Once
the system has been compiled to the intermediate language,
there should be no syntactic di↵erence between the di↵erent
parts, as they are now all the same language.

As mentioned above, the explicit type information in
strongly-typed languages, like Java or C# is a kind of meta-
data. This metadata is entirely for use by their compil-
ers, to assist with translation to the intermediate language.
In weakly or dynamically typed languages like Ruby and
Groovy, this metadata does not exist (Figure 4). Since these
languages perform run-time type checks instead of at com-
pilation time, significantly more code is generated by their
compilers to handle type checking, and they cannot take ad-
vantage of the intermediate language’s primitive type system
(everything must be assumed to be an Object-type object)4.
I need to confirm this is true for Groovy

Compilers for both the JVM and CLR also generate meta-
data along side the intermediate code. The JVM stores this
metadata in the same file as the code, while the CLR stores
it in a separate file in the same location. This metadata is
used by the run-time interpreter for type checking and to
assist with JIT optimization, but can also be accessed by
other tools.

MLs and metadata
Metadata is the strong point of markup languages, as they
are designed around the same concept of describing data.
Essentially, the fields in a markup language (tags, in the
case of XML-based languages) act as metadata for the data
they are attached to.

4While this does have performance implications [6], they do
not outweigh the gains from utilizing the VM

<Person>

<name> Cliff </name>

<birthdate> 4/16/1978 </birthdate>

<height> 74 </height>

<weight> 212 </weight>

</Person>

Figure 5: An XML description of a person

When translating into an object for another programming
language,

The real metadata in a markup language can be stored
in many ways. In Starlink’s MDLs, for example, the type
information of fields is stored in a <type> tag before the
definition of the fields begins, as can be seen in Figure 2
[2]. In other cases, the type information is stored in-line
with specifications for correct formatting, as in XML schema
(discussed in Section 5.2).

5.2 Standards and Interfaces
Metadata is the core of successful interoperability. But

if two systems attempting to communicate are expecting
di↵erently tagged data, they will still fail to interoperate.
Metadata alone is not enough.

There are two aspects to standards. One is agreement on
similar data types, the other is the reaction to or approach to
handling those types once received. Ide and Pustejovsky [5]
refer to this di↵erence as syntactic interoperability (agree-
ment on data type and communication protocols) and se-
mantic interoperability (the ability to act on data received
in a way unsurprising to other components of a system).
While syntactic interop can be handled in part by metadata,
semantic interop can require knowledge of more detailed as-
pects of the components in a system.

Shetty and Vadivel [7] demonstrate an example of a fail-
ure in semantic interoperability even while retaining some
(though not all) syntactic interoperability between Java and
.NET (CLR languages) web services. While they found sev-
eral syntactic mismatches, such as the lack of unsigned num-
bers in Java, there were issues even where the systems sup-
ported the same types. In particular, Shetty and Vadivel
noted that null values were handled in largely incompatible
ways. When given an array with a null element, Java inter-
preted as a null object, and printed null when that element
was requested. In contrast, .NET interpreted the element
as empty, and printed an empty string when the element
was requested. Additionally, they found that precision of
decimal, double, and float types di↵ered between platforms.
When asked to add and display 4.111111 and 8.999999, the
Java client returned 12.999999 with full precision, while the
.NET client returned 13.

Though these two services were handling the same data,
represented by the same types, they behaved di↵erently
when asked to act upon that data. As Shetty and Vadivel
point out, this has implications for clients who don’t know
which service architecture they will be interacting with[7].

VMs and Standardization
Although the above study found issues between virtual ma-
chines, systems run on homogeneous virtual machines archi-
tecture actually have an advantage. Systems on a virtual
machine already have a standard implemented in the form

statically-typed person

Class Person

string name = "Cliff"

date dateOfBirth = 4/16/1978

int height = 74

double weight = 212

end

Figure 3: A Person class strongly-typed language

Class Person

var name = "Cliff"

var dateOfBirth = 4/16/1978

var height = 74

var weight = 212

end

Figure 4: A Person class in an untyped language

what the data can by itself. In the case of strongly-typed
languages, the type information included as part of a vari-
able declaration is a kind of metadata, as in Figure 3. There
we can see that there is a di↵erence in the representation of
the height and weight fields, despite both fields being a
number.

VMs and metadata
There are two primary ways virtual machines handle meta-
data: language type specifications and metadata files. Both
of these are handled by a compiler at compile time. Once
the system has been compiled to the intermediate language,
there should be no syntactic di↵erence between the di↵erent
parts, as they are now all the same language.

As mentioned above, the explicit type information in
strongly-typed languages, like Java or C# is a kind of meta-
data. This metadata is entirely for use by their compil-
ers, to assist with translation to the intermediate language.
In weakly or dynamically typed languages like Ruby and
Groovy, this metadata does not exist (Figure 4). Since these
languages perform run-time type checks instead of at com-
pilation time, significantly more code is generated by their
compilers to handle type checking, and they cannot take ad-
vantage of the intermediate language’s primitive type system
(everything must be assumed to be an Object-type object)4.
I need to confirm this is true for Groovy

Compilers for both the JVM and CLR also generate meta-
data along side the intermediate code. The JVM stores this
metadata in the same file as the code, while the CLR stores
it in a separate file in the same location. This metadata is
used by the run-time interpreter for type checking and to
assist with JIT optimization, but can also be accessed by
other tools.

MLs and metadata
Metadata is the strong point of markup languages, as they
are designed around the same concept of describing data.
Essentially, the fields in a markup language (tags, in the
case of XML-based languages) act as metadata for the data
they are attached to.

4While this does have performance implications [6], they do
not outweigh the gains from utilizing the VM

<Person>

<name> Cliff </name>

<birthdate> 4/16/1978 </birthdate>

<height> 74 </height>

<weight> 212 </weight>

</Person>

Figure 5: An XML description of a person

When translating into an object for another programming
language,

The real metadata in a markup language can be stored
in many ways. In Starlink’s MDLs, for example, the type
information of fields is stored in a <type> tag before the
definition of the fields begins, as can be seen in Figure 2
[2]. In other cases, the type information is stored in-line
with specifications for correct formatting, as in XML schema
(discussed in Section 5.2).

5.2 Standards and Interfaces
Metadata is the core of successful interoperability. But

if two systems attempting to communicate are expecting
di↵erently tagged data, they will still fail to interoperate.
Metadata alone is not enough.

There are two aspects to standards. One is agreement on
similar data types, the other is the reaction to or approach to
handling those types once received. Ide and Pustejovsky [5]
refer to this di↵erence as syntactic interoperability (agree-
ment on data type and communication protocols) and se-
mantic interoperability (the ability to act on data received
in a way unsurprising to other components of a system).
While syntactic interop can be handled in part by metadata,
semantic interop can require knowledge of more detailed as-
pects of the components in a system.

Shetty and Vadivel [7] demonstrate an example of a fail-
ure in semantic interoperability even while retaining some
(though not all) syntactic interoperability between Java and
.NET (CLR languages) web services. While they found sev-
eral syntactic mismatches, such as the lack of unsigned num-
bers in Java, there were issues even where the systems sup-
ported the same types. In particular, Shetty and Vadivel
noted that null values were handled in largely incompatible
ways. When given an array with a null element, Java inter-
preted as a null object, and printed null when that element
was requested. In contrast, .NET interpreted the element
as empty, and printed an empty string when the element
was requested. Additionally, they found that precision of
decimal, double, and float types di↵ered between platforms.
When asked to add and display 4.111111 and 8.999999, the
Java client returned 12.999999 with full precision, while the
.NET client returned 13.

Though these two services were handling the same data,
represented by the same types, they behaved di↵erently
when asked to act upon that data. As Shetty and Vadivel
point out, this has implications for clients who don’t know
which service architecture they will be interacting with[7].

VMs and Standardization
Although the above study found issues between virtual ma-
chines, systems run on homogeneous virtual machines archi-
tecture actually have an advantage. Systems on a virtual
machine already have a standard implemented in the form

dynamically-typed person

Interoperability

Difficulties

Data structures

Types in data structures

Untyped lists can contain
different types,
Strongly typed lists can
only contain the type given
by the list.

[23, v, "hello", True]
An untyped list

[1, 53, 13, 100]
a typed list

Object[] = [?, ?, ?, ?]
A Java list of Objects

Interoperability

Difficulties

Data structures

Missing data structures

A data structure in one
language may be absent in
another.
Any language can build
any data structure, but it
may be more difficult in
certain languages.
Building a non-native data
structure takes time and
effort.

{:name "Cliff", :age 32}
Maps are common data structures,
but absent in C.

Interoperability

Difficulties

Data processing

Handling data

Languages act on data in
different ways.
Handling NULL or NIL
objects.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

163

among vendors presents a difficult challenge for
Web services interoperability.

x Weakly-typed collection objects, arrays
containing null elements, and certain native data
types all pose special problems for
interoperability. Specifically:

o It is impossible for vendor tools to
accurately interpret XML Schemas
representing weakly-typed collection
objects and map them to the correct
native data types.

o The XML representations of an array
with null elements differ between .NET
and WebSphere.

o Because native data types and XSD data
types do not share a one-to-one
mapping, information or precision can
be lost during the translation.

x Different naming conventions in .NET and Java
technology can result in namespace conflicts, as
can the use of relative URI references [9].

4. Test Results

Results seen in implementation of
Interoperability Issues

Web services exchange data by exchanging XML documents.
As soon as data objects are pushed into the Web service stack
they are represented as XML documents. Thus, the Web
service stack on the receiving end should know how to
interpret the XML document sent by the sender. The XML
Schema, which provides an outline of the XML document,
helps the receiver to map the data which is represented in
XML. But the implementation difference in the underlying
technologies of J2EE and .NET results in different mappings
between the schema and native data types on both the
platforms. This may lead to information distortion and de-
serialization failure. [10]

We have tested interoperability issues by creating a reliable
web service in Java using Netbeans 6.5 and deploying it on
Glassfish server (v2). We than create a C# client in .NET and
a Java web client, in order to compare the performance of a
Java web service and a Java client and a Java web service and
a .NET client we allow the client to invoke the web service
and pass data to the web service the web service processes this
data and sends it back to the client. We shall see the output for
various cases like primitive data types, arrays with null
elements, and complex data types. We can check the
communication between the web service and the client by the
exchange of SOAP messages using the TCP Monitor.

4.1. An Array with Null Elements

The XML representations of an array with null elements
are different between .NET and Java. Consider a Java
web service which returns an array with a null element.
A java client can correctly interpret the null string in an
array. However, a .NET client interprets the null string
as a string of length zero or an empty string. Empty and
null strings are completely different from each other in
object oriented programming language[11].

Output from Java and .NET clients

The screenshots below show the difference in the
interpretation of null values by Java and .NET clients.
The output of the Java client is Disha, null, Vinita.
Hence, we infer that Java clients infer the null values
correctly. Whereas the .NET client displays null as an
empty string and cannot deseialize null values correctly.

Fig.1. Output of an array with null element when
invoked by a Java client

Fig.2. Output of an array with null element when
invoked by a .NET client

4.2. Primitive Types

Primitive data types can cause trouble. Each
programming language has a set of native data types. A
one-to-one mapping is not available between native data
types and XSD data types. Therefore, information can
be lost during the translation, or the receiver is not able
to do the mappings for certain native data types[11].

Result = [Disha, null, Vinita]

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

163

among vendors presents a difficult challenge for
Web services interoperability.

x Weakly-typed collection objects, arrays
containing null elements, and certain native data
types all pose special problems for
interoperability. Specifically:

o It is impossible for vendor tools to
accurately interpret XML Schemas
representing weakly-typed collection
objects and map them to the correct
native data types.

o The XML representations of an array
with null elements differ between .NET
and WebSphere.

o Because native data types and XSD data
types do not share a one-to-one
mapping, information or precision can
be lost during the translation.

x Different naming conventions in .NET and Java
technology can result in namespace conflicts, as
can the use of relative URI references [9].

4. Test Results

Results seen in implementation of
Interoperability Issues

Web services exchange data by exchanging XML documents.
As soon as data objects are pushed into the Web service stack
they are represented as XML documents. Thus, the Web
service stack on the receiving end should know how to
interpret the XML document sent by the sender. The XML
Schema, which provides an outline of the XML document,
helps the receiver to map the data which is represented in
XML. But the implementation difference in the underlying
technologies of J2EE and .NET results in different mappings
between the schema and native data types on both the
platforms. This may lead to information distortion and de-
serialization failure. [10]

We have tested interoperability issues by creating a reliable
web service in Java using Netbeans 6.5 and deploying it on
Glassfish server (v2). We than create a C# client in .NET and
a Java web client, in order to compare the performance of a
Java web service and a Java client and a Java web service and
a .NET client we allow the client to invoke the web service
and pass data to the web service the web service processes this
data and sends it back to the client. We shall see the output for
various cases like primitive data types, arrays with null
elements, and complex data types. We can check the
communication between the web service and the client by the
exchange of SOAP messages using the TCP Monitor.

4.1. An Array with Null Elements

The XML representations of an array with null elements
are different between .NET and Java. Consider a Java
web service which returns an array with a null element.
A java client can correctly interpret the null string in an
array. However, a .NET client interprets the null string
as a string of length zero or an empty string. Empty and
null strings are completely different from each other in
object oriented programming language[11].

Output from Java and .NET clients

The screenshots below show the difference in the
interpretation of null values by Java and .NET clients.
The output of the Java client is Disha, null, Vinita.
Hence, we infer that Java clients infer the null values
correctly. Whereas the .NET client displays null as an
empty string and cannot deseialize null values correctly.

Fig.1. Output of an array with null element when
invoked by a Java client

Fig.2. Output of an array with null element when
invoked by a .NET client

4.2. Primitive Types

Primitive data types can cause trouble. Each
programming language has a set of native data types. A
one-to-one mapping is not available between native data
types and XSD data types. Therefore, information can
be lost during the translation, or the receiver is not able
to do the mappings for certain native data types[11].

images based on Shetty and Vadivel[2]

Interoperability

Concepts

Outline

1 Common difficulties in interop

2 Concepts in interoperability
Metadata
Standards

3 Tools used in achieving interoperability

4 Conclusions

Interoperability

Concepts

Metadata

Metadata and type conversion

Metadata: Data about data
or: Information beyond what the data itself can convey
(def mylist [1, 2, 3, 4])
(with-meta mylist {:length 4, :type Integer})

In Clojure:
lists are untyped; can contain entries of different types.
metadata use and checking is up to the programmer.

Interoperability

Concepts

Metadata

Metadata and type conversion

no metadata

[1, 2, 3, 4] [?, ?, ?, ?]

{:type Integer}

[1, 2, 3, 4] [1, 2, 3, 4]

Interoperability

Concepts

Standards

Metadata and standards

{:type number}

[1, 2, 3, 4] [?, ?, ?, ?]

{:type number}

[1, 2, 3, 4] [1, 2, 3, 4]

{:type Integer}

{:type number}

Interoperability

Concepts

Standards

The importance of standards

Standards are meant to ensure:
Agreement on what metadata is
being used, and how.
All involved parties know how
data will be represented.
Future parties will know how data
is represented.
In general, that correct
communication happens.

noted that null values were handled in largely incompatible
ways. When given an array with a null element, Java inter-
preted as a null object, and printed null when that element
was requested. In contrast, .NET interpreted the element
as empty, and printed an empty string when the element
was requested. Additionally, they found that precision of
decimal, double, and float types di↵ered between platforms.
When asked to add and display 4.111111 and 8.999999, the
Java client returned 12.999999 with full precision, while the
.NET client returned 13.

Though these two services were handling the same data,
represented by the same types, they behaved di↵erently
when asked to act upon that data. As Shetty and Vadivel
point out, this has implications for clients who don’t know
which service architecture they will be interacting with[7].

VMs and Standardization
Although the above study found issues between virtual ma-
chines, systems run on homogeneous virtual machines archi-
tecture actually have an advantage. Systems on a virtual
machine already have a standard implemented in the form
of the intermediate language. Because the intermediate lan-
guage has a full language specification, including both a type
system and data interpretation behavior, it can act as a de-
scription for required behavior. Moreover, once a system has
been compiled into the intermediate language, the behavior
of the di↵erent components is constrained by that virtual
machine’s behavior.

This is not a perfect solution however, as it still requires
that the high-level languages have conventions for accessing
other high-level language components. These conventions
are tied to compilers at least, so grammar for calling other
languages on a particular VM can be included as part of
a new compiler specification without a↵ecting other imple-
mentations of that language.

As an example of this, Java was not initially intended to
call other languages, and making calls to non-Java languages
can be a di�cult proposition [3]. However, new JVM lan-
guages like Clojure and JRuby inherently provide support
for accessing Java classes. would this benefit from an explicit
example?

MLs and Standardization
Semantic interop is somewhat more straight-forward to at-
tain with markup languages. Although not built in, many
markup languages have a notion of schema, such as in Fig. 8,
which can be used to regulate correct formatting. Messages
sent in the markup language can be checked against these
schema to ensure both that they contain the right fields in
the right places (ie, a nested field is contained by the correct
super field), as well as that those fields contain the correct
type of data. As Figure 8 shows, type metadata can be
stored within the schema specifications.

It should be noted that schema and similar mechanisms
are themselves simply a standard, and are not expressly en-
forced or singular. XML has several schema languages asso-
ciated with it. Figure 8 is an example of the W3C5 recom-
mended standard.

6. PERFORMANCE
5World Wide Web Consortium

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Person">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="birthdate" type="xs:date" />

<xs:element name="height" type="xs:double" />

<xs:element name="weight" type="xs:double" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 8: A W3C-style XML schema for the person
in Figure 6.

{

"name": "Person",

"properties": {

"name": {

"type": "string"

},

"birthdate": {

"type": "date"

},

"height": {

"type": "number"

},

"weight": {

"type": "number"

}

}

}

Figure 9: A JSON schema for the person in Figure
7

Interoperability

Interop Tools

Outline

1 Common difficulties in interop

2 Concepts in interoperability

3 Tools used in achieving interoperability
Virtual Machines
Markup Languages

4 Conclusions

Interoperability

Interop Tools

Virtual Machines

Virtual machines

Virtual Machines (VMs) are a
runtime environment for a
program
High-level languages compile to
an intermediate language
Intermediate language: Java
bytecode or Common
Intermediate Language

Wikipedia
https://en.wikipedia.org/wiki/Common_
Language_Runtime

https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime

Interoperability

Interop Tools

Virtual Machines

High-level vs Bytecode

interoperability.[3] The tagging system used to describe as-
pects of a markup language can be adapted to describe data
types within other languages and data models.

One system that makes use of this is the Starlink frame-
work[2]. Starlink’s purpose is to facilitate passing messages
between languages that do not share a common communica-
tion protocol. As such, for each language it must model both
the incoming message and the protocols for each language.
The translation of the message between representations is
handled using sets of logical automata, while the represen-
tations themselves are done using a specialized markup lan-
guage they call the Message Description Language. In an
MDL, each piece of data is contained within its own set of
ML tags , referred to as primitive fields. Primitive fields are
themselves contained in another set of tags, called struc-
tured fields. These fields can be likened to the metadata
labels, with primitive fields standing for syntactic level la-
bels and structured fields standing for semantic level labels.
I’m not sure that’s strictly true, so look into this. Consider
including figure 7 of [2] here

Consider using: MDLs are set up in a specific way so that
the automata are able to e�ciently translate between two
MDL representations

FML and Hardware Independence
Markup languages can also be used to divorce programs from
hardware dependencies, freeing them to be more interoper-
able over distributed platforms.

Will need some description of what’s nice about fuzzy con-
trollers The Fuzzy Markup Language (FML) is a prime ex-
ample of this. At present, the best method for implementing
fuzzy controllers for a particular system has involved design-
ing specific hardware models based on the system it was be-
ing designed for. When dealing with a number of platforms
using di↵erent hardware, this meant di↵erent designs were
required to implement the same controller for each. FML
attempts to shift the control of fuzzy logic from hardware
to software, such that it can be implemented on multiple
platforms for little additional cost.

Consider using [1] figure 1 to explain the fuzzy system
Once again, While significantly more complicated, FML can
be described in a basic sense to be using the XML tags as
a means of attaching metadata to data involved in a fuzzy
control system. It is more complicated because they use
more than the two levels of metadata described by Ide and
Pustejovsky. FML is meant to support a fairly complex
system, and the models used within that system for deter-
mining stu↵. As such, they go beyond modeling primitive
data to modeling full data structures. It goes beyond this,
but out of the realm of metadata.

5. CONCLUSIONS

6. ACKNOWLEDGMENTS

7. REFERENCES
[1] G. Acampora. Fuzzy markup language: A xml based

language for enabling full interoperability in fuzzy
systems design. In G. Acampora, V. Loia, C.-S. Lee,
and M.-H. Wang, editors, On the Power of Fuzzy
Markup Language, volume 296 of Studies in Fuzziness
and Soft Computing, pages 17–31. Springer Berlin

public class Fib{

public Fib();

Code:

0: aload_0

1: invokespecial #1

4: return

public int fibonacci(int);

Code:

0: iload_1

1: ifne 6

4: iconst_0

5: ireturn

6: iload_1

7: iconst_1

8: if_icmpne 13

11: iconst_1

12: ireturn

13: aload_0

14: iload_1

15: iconst_1

16: isub

17: invokevirtual #2

20: aload_0

21: iload_1

22: iconst_2

23: isub

24: invokevirtual #2

27: iadd

28: ireturn

}

public class Fib{

public int fibonacci(int n) {

if(n == 0){

return 0;

}else if(n == 1){

return 1;

}else{

return fibonacci(n - 1) + fibonacci(n - 2);

}

}

}

interoperability.[3] The tagging system used to describe as-
pects of a markup language can be adapted to describe data
types within other languages and data models.

One system that makes use of this is the Starlink frame-
work[2]. Starlink’s purpose is to facilitate passing messages
between languages that do not share a common communica-
tion protocol. As such, for each language it must model both
the incoming message and the protocols for each language.
The translation of the message between representations is
handled using sets of logical automata, while the represen-
tations themselves are done using a specialized markup lan-
guage they call the Message Description Language. In an
MDL, each piece of data is contained within its own set of
ML tags , referred to as primitive fields. Primitive fields are
themselves contained in another set of tags, called struc-
tured fields. These fields can be likened to the metadata
labels, with primitive fields standing for syntactic level la-
bels and structured fields standing for semantic level labels.
I’m not sure that’s strictly true, so look into this. Consider
including figure 7 of [2] here

Consider using: MDLs are set up in a specific way so that
the automata are able to e�ciently translate between two
MDL representations

FML and Hardware Independence
Markup languages can also be used to divorce programs from
hardware dependencies, freeing them to be more interoper-
able over distributed platforms.

Will need some description of what’s nice about fuzzy con-
trollers The Fuzzy Markup Language (FML) is a prime ex-
ample of this. At present, the best method for implementing
fuzzy controllers for a particular system has involved design-
ing specific hardware models based on the system it was be-
ing designed for. When dealing with a number of platforms
using di↵erent hardware, this meant di↵erent designs were
required to implement the same controller for each. FML
attempts to shift the control of fuzzy logic from hardware
to software, such that it can be implemented on multiple
platforms for little additional cost.

Consider using [1] figure 1 to explain the fuzzy system
Once again, While significantly more complicated, FML can
be described in a basic sense to be using the XML tags as
a means of attaching metadata to data involved in a fuzzy
control system. It is more complicated because they use
more than the two levels of metadata described by Ide and
Pustejovsky. FML is meant to support a fairly complex
system, and the models used within that system for deter-
mining stu↵. As such, they go beyond modeling primitive
data to modeling full data structures. It goes beyond this,
but out of the realm of metadata.

5. CONCLUSIONS

6. ACKNOWLEDGMENTS

7. REFERENCES
[1] G. Acampora. Fuzzy markup language: A xml based

language for enabling full interoperability in fuzzy
systems design. In G. Acampora, V. Loia, C.-S. Lee,
and M.-H. Wang, editors, On the Power of Fuzzy
Markup Language, volume 296 of Studies in Fuzziness
and Soft Computing, pages 17–31. Springer Berlin

public class Fib{

public Fib();

Code:

0: aload_0

1: invokespecial #1

4: return

public int fibonacci(int);

Code:

0: iload_1

1: ifne 6

4: iconst_0

5: ireturn

6: iload_1

7: iconst_1

8: if_icmpne 13

11: iconst_1

12: ireturn

13: aload_0

14: iload_1

15: iconst_1

16: isub

17: invokevirtual #2

20: aload_0

21: iload_1

22: iconst_2

23: isub

24: invokevirtual #2

27: iadd

28: ireturn

}

public class Fib{

public int fibonacci(int n) {

if(n == 0){

return 0;

}else if(n == 1){

return 1;

}else{

return fibonacci(n - 1) + fibonacci(n - 2);

}

}

}

Interoperability

Interop Tools

Virtual Machines

Interoperability with virtual machines

Usually some overheard
associated with calling
other languages.
Overhead can be lessened
when all languages are on
one VM.
High-level languages can
have conventions to call
other high-level languages
on the same VM.
Common language
ensures common syntax
and behavior.

A Java method of object cliff:
cliff.getAge();

Clojure calling Java:
(. getAge cliff)

JRuby calling Java:
require ‘java’
cliff.getAge()

Interoperability

Interop Tools

Markup Languages

Markup languages

Markup languages are a
way of modeling data, and
act as metadata
XML and JSON can model
data like objects.
Markup languages are
independent of
programming languages.

Class Person

string name = "Cliff"

date dateOfBirth = 4/16/1978

int height = 74

double weight = 212

end

Figure 3: A Person class strongly-typed language

Class Person

var name = "Cliff"

var dateOfBirth = 4/16/1978

var height = 74

var weight = 212

end

Figure 4: A Person class in an untyped language

what the data can by itself. In the case of strongly-typed
languages, the type information included as part of a vari-
able declaration is a kind of metadata, as in Figure 3. There
we can see that there is a di↵erence in the representation of
the height and weight fields, despite both fields being a
number.

VMs and metadata
There are two primary ways virtual machines handle meta-
data: language type specifications and metadata files. Both
of these are handled by a compiler at compile time. Once
the system has been compiled to the intermediate language,
there should be no syntactic di↵erence between the di↵erent
parts, as they are now all the same language.

As mentioned above, the explicit type information in
strongly-typed languages, like Java or C# is a kind of meta-
data. This metadata is entirely for use by their compil-
ers, to assist with translation to the intermediate language.
In weakly or dynamically typed languages like Ruby and
Groovy, this metadata does not exist (Figure 4). Since these
languages perform run-time type checks instead of at com-
pilation time, significantly more code is generated by their
compilers to handle type checking, and they cannot take ad-
vantage of the intermediate language’s primitive type system
(everything must be assumed to be an Object-type object)4.
I need to confirm this is true for Groovy

Compilers for both the JVM and CLR also generate meta-
data along side the intermediate code. The JVM stores this
metadata in the same file as the code, while the CLR stores
it in a separate file in the same location. This metadata is
used by the run-time interpreter for type checking and to
assist with JIT optimization, but can also be accessed by
other tools.

MLs and metadata
Metadata is the strong point of markup languages, as they
are designed around the same concept of describing data.
Essentially, the fields in a markup language (tags, in the
case of XML-based languages) act as metadata for the data
they are attached to.

4While this does have performance implications [6], they do
not outweigh the gains from utilizing the VM

<Person>

<name> Cliff </name>

<birthdate> 4/16/1978 </birthdate>

<height> 74 </height>

<weight> 212 </weight>

</Person>

Figure 5: An XML description of a person

When translating into an object for another programming
language,

The real metadata in a markup language can be stored
in many ways. In Starlink’s MDLs, for example, the type
information of fields is stored in a <type> tag before the
definition of the fields begins, as can be seen in Figure 2
[2]. In other cases, the type information is stored in-line
with specifications for correct formatting, as in XML schema
(discussed in Section 5.2).

5.2 Standards and Interfaces
Metadata is the core of successful interoperability. But

if two systems attempting to communicate are expecting
di↵erently tagged data, they will still fail to interoperate.
Metadata alone is not enough.

There are two aspects to standards. One is agreement on
similar data types, the other is the reaction to or approach to
handling those types once received. Ide and Pustejovsky [5]
refer to this di↵erence as syntactic interoperability (agree-
ment on data type and communication protocols) and se-
mantic interoperability (the ability to act on data received
in a way unsurprising to other components of a system).
While syntactic interop can be handled in part by metadata,
semantic interop can require knowledge of more detailed as-
pects of the components in a system.

Shetty and Vadivel [7] demonstrate an example of a fail-
ure in semantic interoperability even while retaining some
(though not all) syntactic interoperability between Java and
.NET (CLR languages) web services. While they found sev-
eral syntactic mismatches, such as the lack of unsigned num-
bers in Java, there were issues even where the systems sup-
ported the same types. In particular, Shetty and Vadivel
noted that null values were handled in largely incompatible
ways. When given an array with a null element, Java inter-
preted as a null object, and printed null when that element
was requested. In contrast, .NET interpreted the element
as empty, and printed an empty string when the element
was requested. Additionally, they found that precision of
decimal, double, and float types di↵ered between platforms.
When asked to add and display 4.111111 and 8.999999, the
Java client returned 12.999999 with full precision, while the
.NET client returned 13.

Though these two services were handling the same data,
represented by the same types, they behaved di↵erently
when asked to act upon that data. As Shetty and Vadivel
point out, this has implications for clients who don’t know
which service architecture they will be interacting with[7].

VMs and Standardization
Although the above study found issues between virtual ma-
chines, systems run on homogeneous virtual machines archi-
tecture actually have an advantage. Systems on a virtual
machine already have a standard implemented in the form

XML model of a person

Class Person

string name = "Cliff"

date dateOfBirth = 4/16/1978

int height = 74

double weight = 212

end

Figure 3: A Person class strongly-typed language

Class Person

var name = "Cliff"

var dateOfBirth = 4/16/1978

var height = 74

var weight = 212

end

Figure 4: A Person class in an untyped language

what the data can by itself. In the case of strongly-typed
languages, the type information included as part of a vari-
able declaration is a kind of metadata, as in Figure 3. There
we can see that there is a di↵erence in the representation of
the height and weight fields, despite both fields being a
number.

VMs and metadata
There are two primary ways virtual machines handle meta-
data: language type specifications and metadata files. Both
of these are handled by a compiler at compile time. Once
the system has been compiled to the intermediate language,
there should be no syntactic di↵erence between the di↵erent
parts, as they are now all the same language.

As mentioned above, the explicit type information in
strongly-typed languages, like Java or C# is a kind of meta-
data. This metadata is entirely for use by their compil-
ers, to assist with translation to the intermediate language.
In weakly or dynamically typed languages like Ruby and
Groovy, this metadata does not exist (Figure 4). Since these
languages perform run-time type checks instead of at com-
pilation time, significantly more code is generated by their
compilers to handle type checking, and they cannot take ad-
vantage of the intermediate language’s primitive type system
(everything must be assumed to be an Object-type object)4.
I need to confirm this is true for Groovy

Compilers for both the JVM and CLR also generate meta-
data along side the intermediate code. The JVM stores this
metadata in the same file as the code, while the CLR stores

4While this does have performance implications [6], they do
not outweigh the gains from utilizing the VM

Class Person

var name = ["Cliff", "string"]

var dateOfBirth = [4/16/1978, "date"]

var height = [74, "int"]

var weight = [212, "double"]

end

Figure 5: An untyped Person class, with type meta-
data

<Person>

<name> Cliff </name>

<birthdate> 4/16/1978 </birthdate>

<height> 74 </height>

<weight> 212 </weight>

</Person>

Figure 6: An XML description of a person

{

"name": "Cliff",

"birthdate": "4/16/1978",

"height": "74",

"weight": "212";

}

Figure 7: A JSON description of a person

it in a separate file in the same location. This metadata is
used by the run-time interpreter for type checking and to
assist with JIT optimization, but can also be accessed by
other tools.

MLs and metadata
Metadata is the strong point of markup languages, as they
are designed around the same concept of describing data.
Essentially, the fields in a markup language (tags, in the
case of XML-based languages) act as metadata for the data
they are attached to.

When translating into an object for another programming
language,

The real metadata in a markup language can be stored
in many ways. In Starlink’s MDLs, for example, the type
information of fields is stored in a <type> tag before the
definition of the fields begins, as can be seen in Figure 2
[2]. In other cases, the type information is stored in-line
with specifications for correct formatting, as in XML schema
(discussed in Section 5.2).

5.2 Standards and Interfaces
Metadata is the core of successful interoperability. But

if two systems attempting to communicate are expecting
di↵erently tagged data, they will still fail to interoperate.
Metadata alone is not enough.

There are two aspects to standards. One is agreement on
similar data types, the other is the reaction to or approach to
handling those types once received. Ide and Pustejovsky [5]
refer to this di↵erence as syntactic interoperability (agree-
ment on data type and communication protocols) and se-
mantic interoperability (the ability to act on data received
in a way unsurprising to other components of a system).
While syntactic interop can be handled in part by metadata,
semantic interop can require knowledge of more detailed as-
pects of the components in a system.

Shetty and Vadivel [7] demonstrate an example of a fail-
ure in semantic interoperability even while retaining some
(though not all) syntactic interoperability between Java and
.NET (CLR languages) web services. While they found sev-
eral syntactic mismatches, such as the lack of unsigned num-
bers in Java, there were issues even where the systems sup-
ported the same types. In particular, Shetty and Vadivel

JSON model of a person

Interoperability

Interop Tools

Markup Languages

Schema and standardization

Schema provide both
standardization and
additional metadata.
Libraries exist to check
incoming data against a
schema.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Person">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="birthdate" type="xs:date" />

<xs:element name="height" type="xs:double" />

<xs:element name="weight" type="xs:double" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 6: A W3C-style XML schema for the person
in Figure 5.

of the intermediate language. Because the intermediate lan-
guage has a full language specification, including both a type
system and data interpretation behavior, it can act as a de-
scription for required behavior. Moreover, once a system has
been compiled into the intermediate language, the behavior
of the di↵erent components is constrained by that virtual
machine’s behavior.

This is not a perfect solution however, as it still requires
that the high-level languages have conventions for accessing
other high-level language components. These conventions
are tied to compilers at least, so grammar for calling other
languages on a particular VM can be included as part of
a new compiler specification without a↵ecting other imple-
mentations of that language.

As an example of this, Java was not initially intended to
call other languages, and making calls to non-Java languages
can be a di�cult proposition [3]. However, new JVM lan-
guages like Clojure and JRuby inherently provide support
for accessing Java classes. would this benefit from an explicit
example?

MLs and Standardization
Semantic interop is somewhat more straight-forward to at-
tain with markup languages. Although not built in, many
markup languages have a notion of schema, such as in Fig. 6,
which can be used to regulate correct formatting. Messages
sent in the markup language can be checked against these
schema to ensure both that they contain the right fields in
the right places (ie, a nested field is contained by the correct
super field), as well as that those fields contain the correct
type of data. As Figure 6 shows, type metadata can be
stored within the schema specifications.

It should be noted that schema and similar mechanisms
are themselves simply a standard, and are not expressly en-
forced or singular. XML has several schema languages asso-
ciated with it. Figure 6 is an example of the W3C5 recom-
mended standard.

6. PERFORMANCE
Regardless of how the system is built or the interop imple-

mented, an interoperating system will always accrue some

5World Wide Web Consortium

overhead. There may be unexpected costs from translat-
ing between languages, which can appear in places such as
execution speed or program storage space

The main issue faced in virtual machines is the LCD con-
straint. Because all languages eventually end up running
in the same language, care must be taken that higher-level
languages can be reasonably translated to the intermediate.
Li, White, and Singer [6] show that in the Java Virtual Ma-
chine, non-Java languages rely heavily on existing Java code
libraries in order to mitigate performance di�culties. Ad-
ditionally, they found that non-Java languages produced se-
quences of bytecode distinct from those produced from Java
source code. For dynamically-typed languages like Ruby,
these sequences are significantly longer than bytecode from
an equivalent Java class. Additionally, JRuby bytecode con-
tains none of the built-in type operators, which are used to
optimize performance. This has some potential performance
and space implications when comparing JRuby and Java.

While I am not aware of a similar study focusing on lan-
guages on the CLR, the CLR was designed both with inter-
operability in mind and with an awareness that dynamically-
typed languages would be running on it. From these two
points, it seems reasonable to assume that CIL bytecode
and the CLR interpreter are designed to handle dynamic
types more e�ciently or concisely.

The primary concern for markup languages is in transla-
tion time. Because systems involving MLs usually also in-
volve di↵erent languages at runtime, they also require trans-
lating between two or three languages during execution.

Bromberg et al’s report on the Starlink framework, which
handles three translations per message, showed a non-
negligible time lapse between when the initial message was
received by Starlink and when Starlink returned a reply to
that protocol [2].

Ultimately, the performance costs of achieving interoper-
ability must be weighed against the potential performance
gains. In systems involving several specialized domains, or
in systems utilizing diverse hardware, the gains can well out-
weigh the costs.

7. CONCLUSIONS
Virtual machines and markup languages each have strengths

and weaknesses in di↵erent use cases.
Virtual machines are much more feasible for systems be-

ing built from scratch, where all language decisions are in
the hands of the developers. They may also be available
to existing programs on a VM which a developer wishes to
extend to a larger system; in this case, the extended system
merely need be built on the same virtual machine, and it
will be able to interoperate with the pre-existing software.

In comparison, markup languages are better suited to
dealing with preexisting or legacy systems, where there is
too much code to make rewriting a feasible option, or where
parts of the source are simply unavailable, potentially due to
working with a third-party software. Likewise, if the existing
system cannot target a particular virtual machine, perhaps
because a compiler from that language to that VM doesn’t
exist, recompiling the existing program is not feasible.

Additionally, markup languages have an advantage in dis-
tributed system environments, where they can be used in
sending data over the network. This is particularly impor-
tant in client/server architecture, where servers have few, if
any, guarantees about the hardware or sometimes even the

Interoperability

Interop Tools

Markup Languages

Client/server interop with markup languages

Client Server

Person
 var name = Cliff
...

Person
 String name = Cliff
...

<Person>
 <name>Cliff</name>
 …
</Person>

network

Communication across a network using XML

Interoperability

Conclusions

Outline

1 Common difficulties in interop

2 Concepts in interoperability

3 Tools used in achieving interoperability

4 Conclusions

Interoperability

Conclusions

Conclusions

Interop allows programmers to extend existing systems
without requiring them to know the original language.
Also allows programmers access to the strengths of
languages other than the main system language.
Metadata and standards allow programmers to reason
about interoperability, and to communicate how their
system handles interop.
Virtual machines and markup languages make use of
these concepts to enable interop.

Interoperability

Conclusions

Thank you for listening!

Questions?

Contact: malone153@morris.umn.edu

Interoperability

References

References

N. Ide and J. Pustejovsky.
What does interoperability mean, anyway? Toward an
operational definition of interoperability for language
technology.
In Proc. 2nd Int. Conf. Global Interoperability Lang. Res,
2010.

D. S. V. Sujala D Shetty.
Interoperability issues seen in web services.
IJCSNS International Journal of Computer Science and
Network Security, 9:160–169, August 2009.

	Common difficulties in interop
	Type systems
	Data structures
	Data processing

	Concepts in interoperability
	Metadata
	Standards

	Tools used in achieving interoperability
	Virtual Machines
	Markup Languages

	Conclusions

