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ABSTRACT
This paper discusses various techniques to improve the effi-
ciency of cloud computing. These techniques are aimed at
improving cloud storage access time, as well as cloud compu-
tational time. Users can store large amounts of data on the
cloud and must be able to retrieve their data at all times.
The large amount of resources stored on the cloud can re-
sult in slow data retrieval times for the user. To decrease the
query, or lookup, time for data on the cloud, there are a sev-
eral strategies introduced in this paper to optimize indexing.
Users also use cloud systems for their substantial computa-
tional power. Processing large-scale workloads quickly and
efficiently is crucial in keeping the user satisfied with com-
putation times, as well as maintaining the lowest possible
cost by using the least amount of computational resources.
Applications vary in the amount of resources they require
so optimizing resource allocation to prevent waste is impor-
tant. A method called overbooking has been adapted for
cloud computing and proves very beneficial in reducing re-
source waste.
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1. INTRODUCTION
Cloud computing is a service provided by IT firms, such

as Amazon, Google, and Microsoft, that allows users to take
advantage of their distributed computing resources. The
resources (large amounts of computing power and storage)
that are available through cloud providers have proven to
be very popular with users. A main feature of cloud sys-
tems is their scalability or elasticity. The ability to scale
resources up or down with customer demands make cloud
structures more reliable than a local user system. These
resources would also be quite costly if purchased by users
individually; it would mean maintaining many servers at
all times, finding the physical space to put these servers,
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and installing their desired services/applications on many
computers. Cloud services are rented out based on specific
service-level agreements (SLAs) characterizing their perfor-
mance, reliability, etc. Each cloud provider aims at provid-
ing a cloud system that will be efficient in terms of comput-
ing data the fastest as well as using the least amount of their
resources as possible, which is the key problem addressed in
this paper.

Improving the efficiency of cloud computing can be done
in many ways, but this paper summarizes two main ap-
proaches. The first approach is about decreasing the phys-
ical time it takes for a user to access their data on a cloud
storage database. This is done through indexing strategies
that lead to reductions in query times as well as cost. The
second approach is the use of overbooking to increase com-
puting efficiency. This method relies on the fact that users
tend to overestimate the resources they will actually need.
Allowing the amount of requested resources to surpass the
actual available amount of resources, with careful monitor-
ing, results in less resource waste on the cloud provider’s
side.

2. BACKGROUND
The approach for cloud storage efficiency that is presented

uses databases, so a brief overview of how databases work is
provided. A database is a large collection of organized data.
The data is organized in a way that it is easy for a process
to lookup specific information. A query is the process of se-
lecting and receiving data from a database. Indexes exist so
that a query does not have to search through every piece of
information in a database. Indexes are equivalent to folders
in a file system.

The index manipulations used in this paper use the Exten-
sible Markup Language, or XML. XML is a language that
was designed to transport and keep data organized. Its abil-
ity to structure data easily has made XML very popular and
it is used on most websites found today. XML is structured
by tags that are not predefined, which means you can orga-
nize data with tags that are self descriptive. A tag opens
with <tag> and closes with </tag>. It either encloses spe-
cific data or it surrounds another set of tags. For example,
a piece of a sample XML document would look like:

<painting>

<id>"1854-1"</id>

<name>"Olympia"</name>

<painter>

<name>

<first>"Edouard"</first>



<last>"Manet"</last>

</name>

</painter>

</painting>

You can see that a painting has attributes consisting of an
id, painting name, and the first and last name of the painter.
These are in quotations and provide information about the
elements. This example uses nested elements, or elements
stored within elements.

3. EFFICIENCY THROUGH INDEXING
AND QUERIES

While some services that are provided through the cloud
are geared towards computational power, this section fo-
cuses on the services that allow for large amounts of data
storage. In this section, the efficiency of a cloud system is
referring to the response time it takes for the user to receive
the requested data as well as the monetary costs that go
into retrieving that data. The amount of resources used by
the cloud to access storage and process queries is what is
billed to the user. Therefore, measuring the cost of data re-
quests can be used to determine the actual efficiency of these
queries. In order to better understand the basic cloud archi-
tecture and examine how exploiting an index can speed up
processing to reduce cloud resource consumption, Camacho-
Rodŕıguez et al. [1] used the example the Amazon Web
Services (AWS) platform (Figure 1).

Figure 1: Overview of cloud architecture based on
AWS.

User interaction with the system involves the following
steps. A document arrives at the front end and is stored
in the file storage service (1-2). A message referencing the
document is sent through the loader request queue and the
document is loaded once the message is retrieved by the
indexing module (3-5). The indexing module creates the
index data that is then inserted into the index store (6).
Once a query arrives it is inserted into the query request

queue and sent to the query processor module (7-9). The
index data is then extracted from the index store (10).

Index storage services provide an API with simple func-
tionalities typical of key-value stores, such as get and put
requests. Thus, any other processing steps needed on the
data retrieved from the index are performed by a standard
XML querying engine (11), providing value- and structural
joins, selections, projections etc. After the document refer-
ences have been extracted from the index, the local query
evaluator receives this information (12) and the XML doc-
uments cited are retrieved from the file store (13). Finally,
the results are written to a message with a reference to those
results (14). That message is read by the front end and the
results are retrieved from the file store and returned to the
user (15-18) [1].

3.1 Indexing Strategies

Figure 2: Sample XML documents.

This section explains a few simple XML indexing strate-
gies, as noted by Camacho-Rodŕıguez et al. [1]. To preface
these strategies, it is helpful to understand what a Uniform
Resource Identifier (URI) is. A URI can be thought as sim-
ply a string of characters that are used to identify or locate a
name or ID. To show how these index strategies work on two
sample XML documents (Figure 2), it will be useful to show
what results are returned with each strategy. For a given
node n in a document d, the function key(n) computes a
string key based on which n’s information is indexed. Let e,
a and w be three constant string tokens, and || denote string
concatenation. Then we define key(n) as:

It is important to note that there are two keys that come
from an attribute node. One key is the attribute name and
the other is the value of the attribute.

3.1.1 Strategy LU (Label-URI)
This index strategy is the simplest of the four. From a

query, it extracts all node names, attributes and element
string values. The URI sets that are obtained are then in-
tersected and evaluated on those documents whose URIs
are found in the intersection. The table below shows some
of what is produced from the LU strategy. Each key that is
used returns the attribute name, or document name, of the
file. The attribute values column is filled with ∈, which de-
notes that the values are null. The attribute values column
is null in the LU strategy because it only associates the key
with the attribute name.



Figure 3: Data extracted from the dataset in figure
3 using LU.

3.1.2 Strategy LUP (Label-URI-Path)
This strategy consists of finding, for each root-to-leaf path

appearing in a query, all documents having a data path that
matches the query path. A root-to-leaf query path is ob-
tained simply by traversing the query tree and recording
node keys and edge types [1]. In the table below, you can
see that the keys and attribute names are still the same,
while the attribute values column is no longer null. The at-
tribute values column is now filled with all paths that can
be used to get to the key that was selected.

Figure 4: Data extracted from the dataset in figure
3 using LUP.

3.1.3 Strategy LUI (Label-URI-ID)
The idea of this strategy is to concatenate the structural

identifiers (IDs) of a given node in a document and store
them into a single attribute value. This implementation is
used because structural XML joins which are used to identify
the relevant documents need sorted inputs. When keeping
the IDs ordered, it reduces the use of expensive sort opera-
tors after the look-up. In the table below, as with the LU
and LUP, the key and attribute name columns remain the
same. However, now the attribute values column stores the
IDs. The IDs are have three values with them, pre, post
and depth. Looking at the results of the LUI table (figure
5), the attribute value element that corresponds with ename
has two sets of ordered pairs because there are two name el-
ements found in the example (figure 2).

3.1.4 Strategy 2LUPI (Label-URI-Path, Label-URI-
ID)

This strategy utilizes two previously introduced index strat-
egies: LUP and LUI. 2LUPI first uses LUP to obtain the set
of documents containing matches for the query paths, and
second, uses LUI to retrieve the IDs of the relevant nodes.
The path labels that are obtained from the LUP strategy
are used to form relations that are compared with the ID’s
extracted from the root-to-leaf path taken by the LUI strat-
egy.

Figure 5: Data extracted from the dataset in figure
3 using LUI.

3.2 Testing Environment
Camacho-Rodŕıguez et al. [1] experiments ran on Amazon

Web Services (AWS) servers from the Asia Pacific region in
September-October 2012. They used the centralized Java-
based XML query processor, implementing an extension of
an algorithm to our larger subset of XQuery. They also
used two types of Amazon Elastic Compute Cloud (EC2)
instances for running the indexing module and query pro-
cessor. The first instance is large (L) with 7.5 GB of RAM
memory and 2 virtual cores with 2 EC2 Compute Units each.
The second instance is extra large (XL), with 15 GB of RAM
memory and 4 virtual cores with 2 EC2 Compute Units each.

An EC2 Compute Unit is equivalent to the CPU capacity
of a 1.0-1.2 GHz 2007 Xeon processor. Varying XML doc-
uments were generated (20000 documents in all, adding up
to 40 GB) to test the indexing strategies. A fraction of the
documents were modified to alter their path structure (while
preserving their labels), and another fraction were modified
to make them different from the original document by ren-
dering more elements optional children of their parents.

3.3 Indexing Results

Figure 6: Indexing in 8 large EC2 instances.

Figure 7: Indexing shown in multiple EC2 instances.

Using the AWS framework from section 3.2, the results
from the various indexing strategies are shown in Figures
6 and 7. Figure 6 compares the indexing time it took for



each strategy with the increasing document sizes. Using
the large EC2 instance, you can see that as the document
size gets bigger, 2LUPI is the slowest of the 4 strategies.
This is because 2LUPI is essentially LUP and LUI combined
to return more accurate results. Figure 7 shows the query
response times for both 1 instance, and 8 instances.

The results are split into two sections, one using the large
EC2 module and the other with the extra large EC2 mod-
ule. When running 8 instances versus 1 one instance, the
response times were drastically reduced due to the multi-
ple instances working in parallel to return the query. The
LUP indexing strategy allowed for the most efficient query
processing. Further compression of the paths in the LUP
index could potentially make it even more competitive. LUI
and 2LUPI strategies were found to behave better on data
in which query tree patterns are more multi-branched.

4. OVERBOOKING
Overbooking is the management of resources in such a way

that the number of actual available resources is less than the
hypothetical number of requested resources. It is a common
practice applied to areas such as hotel, airline and concert
ticket sales as well network bandwidth allocation and batch
scheduling for parallel computers. Users of cloud systems
will generally request more resources for applications than
they actually need, which means that there will be unused
resources on the cloud provider’s end. Tomás et al. [4] found
a study in which 5000 servers were observed for 6 months
and it was noted that average CPU resource usage ranged
from 10-50%.

User applications on the cloud can vary drastically in the
amount of resources used over time, which makes minimiz-
ing resource waste a difficult problem. If a cloud service
provider does not provide the requested resources then it
can result in a Service Level Agreement (SLA) violation. A
SLA is an agreement that states that a service provider will
guarantee the availability of their service a certain percent-
age of the time to the user and can penalize the provider if
the agreement is not met.

4.1 Applying Overbooking to Cloud Systems

Figure 8: The relationship between the three main
components (AC, KOB and SOS) and the cloud in-
fastructure. AC decides whether to allocate new
requests; SOS determines the best placement; and
both use the information collected by the KOB.

Each virtual machine is comprised of CPU, memory, and
their input/output (I/O). When deciding which resources

to overbook it is important to have enough CPU power per
VM so that the application being used will not suffer per-
formance loss. Also having a sufficient amount of memory
available is needed to prevent the application from crashing.
Each VM will have different amounts of CPU and memory
allocated to it. The applications that are using these VMs
will be constantly changing the amount of resources they
need. At some point the amount of resources the applica-
tion is using will decrease, meaning it will not be efficient to
keep the same VMs assigned to the application.

This problem of changing the number of VMs allocated to
a given service over time is known as horizontal application
elasticity [4]. To improve horizontal application elasticity, a
strategy called admission control (AC) is used to allow the
maximum number of virtual machines used to surpass the
actual number of virtual machines possible, also known as
overbooking. AC uses data collected, through a monitoring
tool called the knowledge database module (KOB)(Figure
8), to determine how to allocate resources to new incoming
application requests. The KOB is used in conjunction with
AC to either accept or reject new service application requests
based on the data collected.

The issue of modifying the number of VMs assigned to
specific services is not the only hindrance to resource utiliza-
tion on the cloud. Overbooking can also be applied to ma-
nipulate the actual resource usage of each virtual machine.
Optimizing individual virtual machine resources (CPU, band-
width, memory, etc.) is called the vertical application elas-
ticity [4]. To handle the vertical application elasticity prob-
lem, a resource scheduler, called smart overbooking sched-
uler (SOS) (Figure 8), is used that can overbook physical
resources.

Figure 9: Notations used for Algorithms

Figure 10: Overbooking Admission Control Algo-
rithm

The algorithm used for AC (Figure 10) takes into account
current and predicted status of the system (real usage, not



requested resources), the workload profiles and the over-
booking already achieved, but without analyzing the long
term impact [4]. There are several parameters that restrict
admission control from overpassing the actual capacity. Be-
cause AC only uses the current status when making the de-
cision, this means that it is not considering the possibility of
having to deploy more VMs to applications that are accepted
in the future. Once the AC has decided that an application

Figure 11: Worst-Fit Overbooking Scheduling

has been accepted and will be deployed, the SOS (Figure
11) is then in charge of deciding which is the most suitable
node and core(s) for each VM. As physical servers have lim-
ited CPU, memory, and I/O capabilities, these have to be
carefully considered when performing the overbooking to try
to avoid placements that may lead to low performance and
possible SLA violations [4]. The worst-fit style algorithm
first takes into account the real usage, not what is requested
It then predicts what the future expected usage of the physi-
cal resources are. This information is used together with the
application profile to estimate if accepting the new incoming
request would overpass the total real capacity of CPU, Mem-
ory or I/O (Figure 11 - Line 4). If the accumulated usage
(Line 4) is less than the real available threshold of resources
(Line 5), then the framework takes into consideration how
overbooked the selected node already is (Line 6) and what
the trend of that overbooking is (Line 7). Tomás et al. [4]
found it useful to measure the overbooking that has already
been done so they define the overbooking factor, or OBF,
as:

where X can be any dimensions of a virtual machine (CPU,
memory, I/O), depending on the capacity being measured.
The range of OBFx is (0,1) since RealUsage cannot be greater
than the requested one as it is encapsulated within the re-
quested VM and RealUsage cannot be negative. Thus, OBF
values represent how overbookable the resources are: the
greater the value the higher the potential for overbooking
[4]. The OBF is calculated for each node and for each of
the VM dimensions on the whole system. The overbooking

scheduler is considered a worst-fit style algorithm because
it is selecting the node with the largest value that appears
in the ranges of OBFs (Line 2). In order to make single
comparisons when determining which node should be used
through the worst-fit algorithm, the OBF of each dimension
is multiplied together to determine the overall OBF :

These values are then used to finally determine whether the
overbooking action will occur or not. OBF values are pre-
dicted for the future based on current and past resource
availability, in the form of slope values calculated from OBF
values (Line 7). The finalSlope is the final expected OBF
value and maxSlope is the value that corresponds to the
worst case possible for that current calculation. Finally, the
algorithm ensures that both the finalSlope and maxSlope
values are not greater than the actual resource threshold
(Line 8). It can then allocate a VM to the application that
initially needed to be overbooked (Line 9-10). Tomás et al.
[4] also noted that as AC has accepted the new application,
all VMs must be scheduled by SOS, even though this could
result in aggressive overbooking of certain hosts.

4.2 Testing Environment
In order to test their overbooking method, Tomás et al.

[4] simulated an actual cloud environment. They emulated
two different kinds of workloads as their data. The back-
ground workload is comprised of web server applications
with a varying number of user requests. This workload is in-
terpolated from real available traces, in this case Wikipedia
traces. The dynamic workload consisted of applications pro-
filed by using monitoring tools after running the real appli-
cation and generating a workload through a poisson dis-
tribution. Two different type of applications are profiled
in the results, one with steady behavior and the other one
with bursty usage. Bursty meaning applications that vary
in the amount of resources they need. The cloud infras-
tructure simulated for testing their algorithms consisted of
16 Nodes where each one of them has 32 Cores. The virtual
machine sizes they used ranged from small (1 CPU, 2048 MB
Memory, 1000 Mbit/s Bandwidth), large (4 CPUs, 4096MB
Memory, 4000 Mbit/s Bandwidth) to extra large (8 CPUs,
8192 MB Memory, 8000 Mbit/s Bandwidth).

4.3 Overbooking Results
Figures 12 and 13 show the various results from the using

the overbooking method. Figure 12 shows the difference of
CPU and memory utilization when overbooking is compared
with the standard CPU and memory utilization observed
without overbooking. The min, max and avg refers to the
minimum, maximum and average use of CPU and memory
utilization recorded without using the overbooking method.
The ideal CPU and memory lines denote the best possible
utilization that could have been achieved. The varying usage
of CPU and memory seen in the min, max and avg illustrate
the changes that were observed in resource demands over
time without using overbooking, while overbooking stayed
relatively constant at around 90% utilization. Figure 13
shows the total amount of VMs allocated over time using
overbooking and standard methods. Both of them depict the
significant improvement obtained by using the overbooking
technique, which increased resource usage between 44.7%



Figure 12: CPU and Memory Usage.

and 56.6% regarding CPU and between 55.8% and 76.1%
for memory when compared to non-overbooking. This led to
accepting between 3.3 and 6.3 times more dynamic workload
applications in the same period of time.

5. CONCLUSION
Improving the efficiency of the cloud, in both terms of

storage and computing power, has been shown to be a com-
plex task. Manipulating indexes to minimize the amount of
time a query takes, as well as to improve the accuracy of
query results was shown in section 3. The results showed
that the improvements gained benefited both the user and
cloud provider. Applying overbooking to cloud computing
resources was another method shown in section 4. The re-
sults demonstrated that the general waste of resources due
to varying demands of applications was greatly diminished.
While these methods are meant to be applied to different
areas of cloud systems, storage and computation, it is not
too hard to imagine them being used together to improve
the total performance of a cloud system. Cloud computing
allows users access to such a large amount of resources that
it is a service that will continue to grow rapidly in the fu-
ture. This paper mainly focused on two specific strategies
to improve the performance and efficiency of cloud comput-
ing. However, the number of techniques and improvements
possible to improve performance are endless.
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