Applying Evolutionary Computation to Robotics

Adrian T. Schiller
University of Minnesota, Morris

schil227@morris.umn.edu

ABSTRACT

Evolutionary computation (EC) is a useful tool for solving
difficult problems which have a non-obvious solution. How-
ever, because robots resides in the physical plane and cannot
be evolved rapidly, it is questionable how useful EC is in the
field of robotics. By studying three research cases which ap-
ply EC to robotics, a consensus can be reached about what
methods are required to do so. It becomes apparent that a
simulation is required to run EC rapidly, and the results of
the cases show EC applied to robotics can be effective.

Keywords

Evolutionary robotics, evolutionary computation, robotics,
neural networks, evolved behaviors, locomotion, simulation

1. INTRODUCTION

As robots become increasingly automated, they are used
in a wider variety of environments and expected to perform
a wider variety of actions. The problem with this is that
it requires more human effort to encode the robot with the
proper behaviors for the numerous cases which the robot
may encounter. Evolutionary Computation (EC) is a very
useful tool for solving complex problems, and applying EC
to robots seems ideal for developing complex behaviors.

However, EC requires intensive computation for hours at
a time, generating, modifying, and evaluating many candi-
dates. This becomes impractical for a physical robot because
it would require the overhead of uploading the code, setting
up the robot and its environment to be identical every time
it is tested, and doing each of these tasks thousands of times.
EC for robotics is especially challenging because it is done in
real time, as opposed to traditional EC which can evaluate
many candidates relatively quickly on a computer. Because
of the precision and time required, it is unclear how to make
EC effective in robotics.

Yet means do exist to apply evolution to robotics, an area
known as Evolutionary Robotics (ER). This paper will an-
alyze three different research cases involving ER. Each case

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

has a robot tasked with solving a particular problem; main-
taining a position on a body of water, increasing walking
speed, and tracking their coordinates without sensory input.
By analyzing the research cases, it was found that EC can
be applied to robots by using a simulation, and the outcome
have shown that ER is effective.

Section 2 has background information on evolutionary com-
putation, neural networks, and the research cases this paper
uses. Section 3 covers robotic simulation and how it is used
in these research cases, Section 4 gives the details about
the evolutionary robotics for each of the research cases, and
Section 5 discusses results and behaviors the evolved robots
developed. Section 6 presents the conclusion of this paper.

2. BACKGROUND

In order to understand the complexities of evolution and
robotics, we must define evolutionary computation with ge-
netic algorithms, and neural networks. Three research cases
will be introduced as well.

2.1 Evolutionary Computation with Genetic
Algorithms

Evolutionary computation (EC) is described by Sipper [5]
as solving a problem by tweaking a population of candidates
and evaluating them using a quantifiable measure of success.
A fitness function serves the purpose of evaluating a candi-
date’s ability; the candidates which perform well are used
to create the next generation of individuals. This process
repeats until a suitable candidate can be found or a limit is
met. When populating the next generation, the top candi-
dates are crossed-over with one another, which produces two
new individuals based on the candidates. Mutation is an-
other means of modifying a candidate, which is the random
chance of slightly changing the candidate. Candidates are
crossed-over/mutated until the new population is created.

Genetic Algorithms (GA) [7], a type of EC, represents
a candidate as a bit string. In GA, performing cross-over
means that one or several pairs of indices are chosen to be
swapped between two candidate bit strings. Likewise, mu-
tation would flip a random bit in the candidate bit string.
A sample problem which GA can be applied to is “One-
Max”. The purpose of “OneMax” is to evolve a binary array
to consist entirely of ones. It starts with a population of
p candidates which are arrays of length n whose elements
are randomly set to either zero or one. In the first iter-
ation, the fitness function would be applied which would
return the number of ones in an array. Then, some subset
of the population, m, is chosen to populate the next array



motl .,
motl,,,
motl,
mot2,,,

duration

INPUT LAYER

HIDDEN LAYER OUTPUT LAYER

Figure 1: The ANN for the position tracking con-
troller. Taken from [4]

of candidates (m for example, could contain the 20 best in-
dividuals). The m candidates that move on would then be
used to create the next generation of candidate arrays via
cross-over/mutation until p candidates are constructed. In
this example, the crossover process takes two fit candidate
arrays and swaps parts from the arrays to make two new
candidate arrays. These candidates may also undergo some
mutation, such as flipping a random bit in the array. This
process then continues until a suitable candidate is reached,
or a time/iteration limit is reached. The result is the candi-
date with the highest fitness; in this example the candidate
with the most ones.

2.2 Neural Networks

Two of the three research cases presented in this paper
use artificial neural networks ([3], [4]). An Artificial Neural
Network (ANN) [6] is an algorithm which is based loosely
on the central nervous system in biology. The network is a
connected collection of nodes (“neurons”). The network is
composed of weighted vertices (synapses in the biology anal-
ogy) between all the nodes, which act as a control structure
to transform the input to the output. The goal of the net-
work is to develop an approximated relationship between a
given input and a desired output. Figure 1 is an example of
an ANN.

The ANN has three general layers: input, middle, and
output. The middle layer is not necessarily only one layer,
but for the purposes of this paper it is considered a single
layer. The input layer is composed of whatever input is pro-
vided. In the case of a robot, it could be motor controllers
and other sensors, each of which would be node. The mid-
dle layer is the hidden layer where the evolutionary process
occurs. From the genetic algorithm example in 2.1, instead
of swapping bits in an array, weights of the network would
be swapped or altered. The output layer is the result of
the weighted inputs. For example, there could be an ANN
which takes in the velocity of a car and how long it has
driven as its input, and the output could be a coordinate on
the xy-plane of its location, calculated from a mathematical
formula developed in the hidden layer.

2.3 Research Cases

This paper compares and contrasts three separate research
cases which used Evolutionary Robotics (ER). Each research
study used three common approaches to apply evolution to

Figure 3: The Aldebaran Nao Robot, programmed
to play soccer

find a solution for a physical robot; a simulation, an evo-
lutionary process, and behavioral analysis of evolved candi-
dates.

The first study presented here, done by Moore et al. [3],
is a simple floating aquatic robot which is tasked with main-
taining a particular position while being subjected to water
flowing in a single direction, also known as laminar flows.
The robot has a cylindrical body with three servo-controlled
fins; two flippers which have 360° of circular movement range
and a caudal (rear) fin which has 30° of movement. Figure 2
shows the robot in simulated and physical form. The robot
is equipped with an inertial measurement unit (IMU) which
measures linear and angular acceleration, and is able to pro-
vide a 3D coordinate of the robot’s current position. ER was
chosen for finding a solution because of the numerous inter-
actions between the robot and the laminar flows.

The next study, conducted by Farchy et al. [1], was to in-
crease the walking speed of the humanoid robot Aldebaran
Nao (Figure 3). This robot is programmed by teams to
play (robot) soccer in a competition called RoboCup. The
process by which Farchy et al. applied ER was through
Grounded Simulation Learning (GSL), which added human
guidance to the evolutionary process (more on GSL in sec-
tion 4.2).

The final study, by Pretorius et al. [4], created a Lego
Mindstorm robot which would track its own position and
heading from an evolved controller, without using any ex-
ternal sensors. This controller would be able to calculate
where the robot is located as it moves, only using the mo-
tor’s speed, direction, and running time. The robot (Figure
4) consists of two motorized wheels and has two blue and
purple tracking markers on the top, as well as a light sen-
sor. The markers and light sensor were used by an overhead
camera to collect position and orientation information, and
pair it with commands given to the robot. This data was
used as a testbed to train the controller. This is a diffi-
cult problem because without sensory input, tracking a po-
sition must be done using internal functions, which tend to
be complex because of various accelerations the robot un-
dergoes when moving, and inaccurate due to friction and
imprecise movement (slippage, low battery, etc.). ER was
chosen to create a correlation between motor movement and
location/orientation.

3. SIMULATION

Physical evolution in robotics is expensive because of the
overhead of running trials in real time and setting up the
robot to be identical for each test. Simulation is valuable



Figure 2: The station keeping robot rendered in simulation as well as in it’s physical form. Taken from [3]

side-mounted wheel
light sensor connected

side-mounted
light sensor

Figure 4: The position tracking robot. Taken from

[4]

because it can explore the space of ER at an accelerated
rate without requiring setup. Simulation is the representa-
tion of characteristics or behaviors of one system through
the use of another system. Simulation provides a means by
which a simulated robot can be rapidly altered and evalu-
ated, thereby enabling the evolutionary process to proceed
efficiently and quickly.

However, because simulations are often imperfect repre-
sentations of the physical space, there is some accumula-
tion of error by transitivity [1]. Even small inaccuracies
can sometimes lead to poor performance where a candidate
performs well in simulation, but performs poorly with the
physical robot. Consider, for example, if a simulation had
assumed the surface a walking robot was moving on was a
completely level plane. If in actuality it was slightly sloped,
we could envision a robot which evolved to perform well in
the simulation but might be unable to handle the change in
slope and perhaps fall down. Therefore it is critical to have a
simulation which has little transitivity error when applying
ER.

Moore et al. [3] evolved floating station-keeping robots
with a simulator which uses the Open Dynamics Engine
(ODE). The simulated environment updated every 5 ms to
calculate the next state of the robot and environment. It
provides a system to calculate forces applied to the simulated
robot in a body of water, but does not take into account
fluid dynamics. Instead, physical drag is applied to each of
the faces of the simulated robot. Propulsion is found to be
the net force generated by each of the faces against the drag,

which determine the next state of the robot. Fluid dynamics
are computationally intensive and require a lot of process-
ing to do accurately. Alternatively, creating a simple model
requires much less CPU processing time and therefore scales
better for evolving candidates. Moore et al. noted that an
extremely accurate simulation was not a priority because
they were more interested in the evolved behaviors, that is
solutions the evolved candidates create, rather than exact
specifications (see Section 5.1).

The robot walking code modified by Farchy et al. [1] used
SimSpark, a simulation based on the RoboCup tournament
which also uses the ODE for rigid body movement and col-
lision detection. It is not a perfect simulation however, and
lacks important features such as joint friction. Unlike the
station keeping robot, transitivity errors pose more of an is-
sue because they can off balance the robot and potentially
immobilize it by causing it to falling down. Every 20 ms
the simulator updates the state of the robot by using sensor
information fed into the simulation. The robot used in the
simulator is not the same model as the physical one used
by Farchy et al., requiring approximations of key features
such as the shape of the foot. However, Farchy et al. em-
ployed a “Grounded Simulation Learning” (GSL) algorithm,
which, like the station keeping robot study, was used for
finding developed behaviors and, in this case, modifying the
evolutionary process based on the analysis of intermediate
candidates. GSL also accommodates for inaccuracies in the
simulation by routinely analyzing if evolved controllers are
indeed applicable to the physical robot.

The simulation used by Pretorius et. al. [4] used a more
unorthodox method. As opposed to using a physics sim-
ulator (such as ODE), they chose to use artificial neural
networks as the simulator. The reason the team went with
this option is because a physics engine, as previously stated,
contains minute inaccuracies which can affect the results. In
this case, the simulator is also what is being evolved, the goal
being to create a simple navigation controller which would
effectively simulate the robot’s location and direction. By
driving the robot over a surface using arbitrary motor com-
mands, and tracking the position and orientation with an
overhead camera, they were able to extract data to be used
as a testbed for the evolutionary process. In this case, the
error caused by transitivity is relative to how accurately the
camera captured the position and orientation of the robot.
Fortunately, the relative error was fairly small because the
captured results were within 2 cm of the physical robot’s
position.

In each of the research cases, there was a way in which
the process of evaluating the robot was taken from the phys-
ical environment and placed in simulation. The simulation
then enabled evolutionary robotics to avoid the overhead of
physical testing and to happen at an accelerated rate. By
transferring the actions of the robot and the physical envi-



ronment into a simulation, it allows ER to be feasibly done
in a reasonable amount of time.

4. EVOLUTIONARY PROCESS

The process of evolving candidates (addressed in section
2) was applied to each of the research robots. This section
details how each case applied ER, including population size,
number of generations, how they implemented neural net-
works, fitness functions and evaluation methods.

4.1 Station Keeping Robot

The input of the ANN for the station keeping robot [3]
was the current position of the robot in three dimensional
coordinates, (z,y, z), the difference between the the robot’s
current position and the desired position, and the previous
output. The output nodes were the oscillation of the Caudal
fin, and speed of the flipper servos. The desired outcome of
this neural network is to have the robot properly orient itself
and maintain a fixed position based on the input.

The simulated robot was subjected to 4 different types
of Laminar flows; from the front, the back, the side (90°
from the front), and at a 45° angle from the front left. Be-
cause Moore et al. [3] were interested in behaviors evolved
by the robot, each of these trials was a separate evolutionary
process so as to not create a single candidate which had to
perform well in all four. A transient period was used, which
allotted 60 seconds for the robot to adjust to the particular
flow. This was because early candidates would try to im-
mediately maintain the position and have poor results; the
transient period allowed the candidate to reorient itself to
better maintain the position without an early penalty.

The evolutionary process used a population of 100 candi-
dates and evolved them for 2000 generations. Each of the
four trials replicated the evolutionary process 25 times. Af-
ter the 60 second adjustment phase, the simulated robot
candidate was evaluated every 250 ms for the next 60 sec-
onds. The robot’s total fitness was the summation of the
evaluated fitness every 250 ms:

fitness = Z(l() —di(z,y, 2))

t

where

dt(x7y7 Z) = {

10, if distance;(z,y, z) > 10

distance;(z,y, z), otherwise

and the distance function is how far the robot’s position was
from the desired location. The 10 in the fitness function is
an arbitrary number to quantify the fitness of the candi-
date. The fitness is modified to have a gradient effect when
the robot is close to the target location, which incentivizes
continual station keeping.

4.2 Walking Humanoid Robot

The walking robot [1] had 17 different parameters, in-
cluding stepPeriod, amp,,;,,, startLength, etc. which act
as functions that alter multiple joints in the robot walk cy-
cle. Farchy et al. applied ER to optimize the parameters to
increase the standard walking speed. It is worth noting that
they did not use an ANN, and instead evolved the parameter
sets with different values using a GA-like algorithm.

The robot was evaluated in two separate trials. The first
trial, goToTarget, gave the simulated robot several locations

to walk to, dealing with several changes in direction. The
fitness of goToTarget is:

fitness = (Z(DistanceTraveledt)) — fallingPenalty
t

where DistanceTraveled is the the length to each destina-
tion. All of the DistanceTraveled values are summed until
the trial ends or the robot falls down. FallingPenalty is
a penalty administered to the fitness should the robot fall
before completing the trial. The other trial is WalkFront,
which evaluates the velocity of the robot walking forward for
15 seconds. The robots fitness for WalkFront is the maxi-
mum velocity it achieves. Together, these two trials evaluate
how quickly a robot can move and how stable it is, evolving
a both fast and stable robot.

One of the most interesting concepts done by Farchy et al.
[1] and the focus of their research was the use of Grounded
Simulation Learning (GSL). GSL is composed of two main
parts: grounding and guidance. Grounding refers to making
the simulation’s behavior match the physical robots behav-
ior; this reduces problems with transitivity. Guidance refers
to human interaction in the simulation to make strategic
adjustments in the evolutionary process. GSL was applied
after each iteration to focus on evolving specific features,
such as taking longer strides or improving better balance.
For example, after the first iteration of evolution the team
uploaded the candidate to the physical robot and noticed
that the leg swing parameter seemed to play an important
role in the speed of the robot. The next iteration was then
adjusted to have greater variation in the swing parameter to
be used in the evolutionary algorithm.

4.3 Position Tracking Robot

To train the position tracking robot’s ANN, the robot was
issued commands [4] consisting of three elements: motor
speeds, the directions of each of the motors, and the execu-
tion time for the command in milliseconds. The motor speed
was randomly generated in the range from 0 to 50% of it’s
maximum, and the time ranging from .5 to 3 seconds. Al-
though random, there was bias to have the motors go in the
same direction at an equal speed (straight movement) 30%
of the time, as well as both motor speeds to equal 0 (stopping
the robot) 20% of the time. This was because Pretorius et
al. felt that these would be common commands, and should
be emphasized in the simulation.

Pretorius et al. used three different simple ANNSs to track
the robot’s position. Similar to how the station keeping
robot evolved four different candidates for each of the lam-
inar flows, using three different networks removed the de-
mand for a single network to perform well in tracking both
coordinates and the orientation. The input to each of the
neural networks consisted of the two motor speeds before re-
ceiving the command, the two motor speeds from the current
command, and the length of time for the current command.
The purpose of using the previous motor command was to
account for positive and negative acceleration the robot un-
derwent going from one command to the next; the neural
network would have to incorporate that change in order to
make an accurate account of its orientation. The output of
each of the ANNs was either the robot’s x-coordinate, y-
coordinate, or angle. Figure 1 is a visual representation of
the ANNs.

The ANNs were then evolved using a GA. The GA pa-



rameters included a 80% crossover probability and a 5%
mutation possibility. The population size was 250 candi-
dates, which were evolved for 15,000 generations. This took
approximately 12 hours for each of the three ANNs. The
fitness function was the Mean Squared Error (MSE), which
measured the accuracy of a given candidate ANN configu-
ration. The MSE is defined as:
| o
fitness = N Z
P

(tpi - G’Pi)27
=11i=1

where N is the size of the testbed (i.e. the collected data
from arbitrary motor commands and their physical position,
as gathered from the overhead camera), O is the number
of outputs from the ANN, ¢ is the expected output, and
a is the actual output. Both ¢ and a are are subject to
some particular test p in the testbed and for either the x-
coordinate, y-coordinate, or angle, 7.

In addition to evolving the ANN controllers, Pretorius
et al. evolved a navigational controller, which was a set of
commands, to drive the robot around a 3 by 3 rectangular
grid using the evolved ANNs. The objective was to have
the robot start in the center left spot and drive counter
clockwise around the grid to end back up in the starting
spot, while avoiding the middle rectangle, staying on the
grid, and visiting each space in a procedural manner. If the
navigation controller violated any of those requirements, it
would be heavily penalized. The fitness function was:

Cnogain

10
where Np,q. is the absolute number of rectangles traversed
while not entering forbidden areas and Crogain is the number
of commands which did not cause the robot to advance to
the next rectangle.

In order to effectively evolve the navigation controller can-
didates, cross-over/mutation was modified to swap parts
that were relatively close to the same part in the grid which
the robot would navigate. For example when crossing two
candidates, the part of their structure which issued a ‘turn’
command at the top left square of the grid would be marked
as the swap point. This resulted in more consistent candi-
dates and more effective evolution.

S. RESULTS

This section discusses results found from each of the re-
search cases. This includes some observed behaviors with
the swimming and walking robots, which shed insight on
what candidates evolved to do to find a solution to their
problem.

5.1 Station Keeping Robot

The evolutionary solutions for the station keeping robot
in [3] were both unforeseen and effective. Depending on the
trial, the evolved candidates would range from standard lo-
comotion to complex maneuvers. When the flow was coming
from either the front or at a 45° angle to the front left, the
simulated robot would swim forward or swim forward while
listing to the left. Because of the design of the robot, it is
somewhat difficult for it to turn and not move too far away
from the starting point. This would make station keeping
especially difficult when the flow was coming from the back
or side, the robot would drift away as it would turn, result-
ing in a poor fitness. So instead, when the flow was coming

fitness = N2, —

Figure 6: The accuracies of the evolved coordinate
tracking ANN. Taken from [4]

NN Simulator Final MSE | Average absolute error
change in angle 26.412 3.585 degrees
change in y-coordinate 12.909 2.143 cm
change in x-coordinate 18.559 2.782 cm

from directly behind the robot, it used a complex maneuver
to flip tail-over-head to face the flow and then propelled it-
self forward to maintain its position [2]. Figure 5 shows the
behavior. This works well because the robot floats, and the
flipping movement didn’t cause a change in its height in the
water. The most challenging trial was when the flow came
at a 90° angle; because reorienting to such an angle was
a significant challenge, the evolved behavior incorporated a
flipping motion combined with a rolling the body to avoid
turning.

Moore et al. compared early candidates with final candi-
dates to contrast in evolved behaviors. When the flow was
coming from behind, an early candidate selected from the
25" generation was pushed by the current straight out of
the ‘rewards zone’ (the desired station keeping location). It
did not actually start swimming until 60 seconds into the
120 second trial, and was unable to make any progress in
the allotted time. In contrast, the final candidate immedi-
ately reacts and is able to orient (flip) itself and gain against
the flow into the ‘rewards zone’.

Moore et al. noted that one of the most impacting changes
was to allow a setup phase. The setup phase allowed the can-
didate to have a poor initial fitness as long as it was able
to attain a good fitness later. This was a valuable decision
because the speed of maintaining the position was unim-
portant, and by allowing more time for candidates to orient
themselves relieved pressure to perform well immediately.
By using a well constructed fitness function, the ER process
is shown to be very effective in this case.

5.2 Walking Humanoid Robot

The results of the ER for the walking robot [1] had im-
proved the walking speed, and the improvement was statisti-
cally significant. Before evolution, the walking speed of the
robot was 11.9 cm/s. After the first iteration of evolution
the maximum walking speed increased to 13.2 cm/s, how-
ever the robot was not as stable as the original. The next
iteration used the same parameters as the first (increasing
the leg swing) and the walking speed had increased to 14.6
cm/s, however it was more prone to falling. The following
GSL focused more on stabilizing the robot, and a parame-
ter set was found such that the robot was able to move at
15.9 cm/s without loss of stability. Initially the maximum
length of the robot’s step was reduced by 1/3 because the
parameters the robot used were unstable in the real tests but
worked fine in simulation. It was found that by the forth it-
eration this was no longer an issue, and the step size was
restored to its maximum. At the maximum step size, the
original velocity of 11.9 cm/s increased to 13.5 cm/s, and
the final evolved parameter set enabled the robot to move
at 17.1 cm/s, a 26.7% increase.

5.3 Position Tracking Robot



Figure 5: Images from the simulation which showed the evolved behavior when the flow was behind the

robot. Taken from [3]

Figure 7: Predicted and actual robot paths from
the navigation controller, which used 13 commands.
Taken from [4]

140 2

—o—Observed Path

—=—NN Predicted Path

\ 3

Forbidden Zane
60cm x 38cm 4

100
80
i Start

LN

. ~ 7

20

The position tracking robot’s [4] three ANN had evolved
to be competent at tracking the robots coordinate and angle.
The top x-coordinate, y-coordinate, and angle ANNs were
tested with 50 commands determine their accuracy, the re-
sults are located in Figure 6. To validate the experiment,
Pretorius et al. tested the navigation controller evolved with
the ANNs. Figure 7 shows the results of the navigational test
controller, which used 13 commands to navigate around the
grid. Pretorius et al. were satisfied with the results, noting
that they were able to accomplish the specified task with-
out manually programming the robot. The simulated and
actual paths were reasonably close to one another, meaning
that the ANNs were able to achieve a relatively accurate ac-
count of the position and orientation of the robot. The error
between the actual and simulated run was expected because
slight errors tended to compound, i.e. after each command
the simulator would be slightly inaccurate plus the sum of
the previous command’s inaccuracies.

6. CONCLUSIONS

These research cases each demonstrate successful appli-
cations of ER. We can draw the conclusion that evolution-
ary robotics can be quite effective. Simulation provided an
important platform upon which evolution could take place.
That platform can be a physical representation of the robot
and the environment, or by a sizable testbed as seen in the
robot developed by Pretorius et al. [4]. Despite the prob-

lems presented by each of the research cases, each were able
to find a suitable candidate solution, be it through ANN or
parameter sets. Despite the diversity of environments and
interactions a robot may be subjected to, if the robot can
be represented in simulation and have a well defined fitness
function, ER is a viable option.

7. ACKNOWLEDGMENTS

Thanks to Nic McPhee, Elena Machkasova, and Alex Jarvis
for their invaluable feedback.

8. REFERENCES

[1] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone.
Humanoid robots learning to walk faster: From the real
world to simulation and back. In Proceedings of the
2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS ’13, pages 39-46,
Richland, SC, 2013. International Foundation for
Autonomous Agents and Multiagent Systems.

[2] J. M. Moore. Trial 2: Evolved individual, 2013. [Online;
accessed 26-March-2014].

[3] J. M. Moore, A. J. Clark, and P. K. McKinley.
Evolution of station keeping as a response to flows in
an aquatic robot. In Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation
Conference, GECCO ’13, pages 239-246, New York,
NY, USA, 2013. ACM.

[4] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers.
Towards an artificial neural network-based simulator
for behavioural evolution in evolutionary robotics. In
Proceedings of the 2009 Annual Research Conference of
the South African Institute of Computer Scientists and
Information Technologists, SAICSIT 09, pages
170-178, New York, NY, USA, 2009. ACM.

[5] M. Sipper. Evolved to Win. Lulu, 2011. available at
http://www.lulu.com/.

[6] Wikipedia. Artificial neural network — wikipedia, the
free encyclopedia, 2014. [Online; accessed
26-March-2014].

[7] Wikipedia. Genetic algorithm — wikipedia, the free
encyclopedia, 2014. [Online; accessed 7-March-2014].



