
Applying Evolutionary Computation to Robotics

Adrian T. Schiller
University of Minnesota, Morris
schil227@morris.umn.edu

ABSTRACT
Evolutionary computation (EC) is a useful tool for solving
difficult problems which have a non-obvious solution. How-
ever, because robots resides in the physical plane and cannot
be evolved rapidly, it is questionable how useful EC is in the
field of robotics. By studying three research cases which ap-
ply EC to robotics, a consensus can be reached about what
methods are required to do so. It becomes apparent that a
simulation is required to run EC rapidly, and the results of
the cases show EC applied to robotics can be effective.

Keywords
Evolutionary robotics, evolutionary computation, robotics,
neural networks, evolved behaviors, locomotion, simulation

1. INTRODUCTION
As robots become increasingly automated, they are used

in a wider variety of environments and expected to perform
a wider variety of actions. The problem with this is that
it requires more human effort to encode the robot with the
proper behaviors for the numerous cases which the robot
may encounter. Evolutionary Computation (EC) is a very
useful tool for solving complex problems, and applying EC
to robots seems ideal for developing complex behaviors.

However, EC requires intensive computation for hours at
a time, generating, modifying, and evaluating many candi-
dates. This becomes impractical for a physical robot because
it would require the overhead of uploading the code, setting
up the robot and its environment to be identical every time
it is tested, and doing each of these tasks thousands of times.
EC for robotics is especially challenging because it is done in
real time, as opposed to traditional EC which can evaluate
many candidates relatively quickly on a computer. Because
of the precision and time required, it is unclear how to make
EC effective in robotics.

Yet means do exist to apply evolution to robotics, an area
known as Evolutionary Robotics (ER). This paper will an-
alyze three different research cases involving ER. Each case

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

has a robot tasked with solving a particular problem; main-
taining a position on a body of water, increasing walking
speed, and tracking their coordinates without sensory input.
By analyzing the research cases, it was found that EC can
be applied to robots by using a simulation, and the outcome
have shown that ER is effective.

Section 2 has background information on evolutionary com-
putation, neural networks, and the research cases this paper
uses. Section 3 covers robotic simulation and how it is used
in these research cases, Section 4 gives the details about
the evolutionary robotics for each of the research cases, and
Section 5 discusses results and behaviors the evolved robots
developed. Section 6 presents the conclusion of this paper.

2. BACKGROUND
In order to understand the complexities of evolution and

robotics, we must define evolutionary computation with ge-
netic algorithms, and neural networks. Three research cases
will be introduced as well.

2.1 Evolutionary Computation with Genetic
Algorithms

Evolutionary computation (EC) is described by Sipper [5]
as solving a problem by tweaking a population of candidates
and evaluating them using a quantifiable measure of success.
A fitness function serves the purpose of evaluating a candi-
date’s ability; the candidates which perform well are used
to create the next generation of individuals. This process
repeats until a suitable candidate can be found or a limit is
met. When populating the next generation, the top candi-
dates are crossed-over with one another, which produces two
new individuals based on the candidates. Mutation is an-
other means of modifying a candidate, which is the random
chance of slightly changing the candidate. Candidates are
crossed-over/mutated until the new population is created.

Genetic Algorithms (GA) [7], a type of EC, represents
a candidate as a bit string. In GA, performing cross-over
means that one or several pairs of indices are chosen to be
swapped between two candidate bit strings. Likewise, mu-
tation would flip a random bit in the candidate bit string.
A sample problem which GA can be applied to is “One-
Max”. The purpose of “OneMax” is to evolve a binary array
to consist entirely of ones. It starts with a population of
p candidates which are arrays of length n whose elements
are randomly set to either zero or one. In the first iter-
ation, the fitness function would be applied which would
return the number of ones in an array. Then, some subset
of the population, m, is chosen to populate the next array



in the training data for the simulator NN. This seeding of
commands was achieved by ensuring that 50% of the com-
mands consisted of totally random motor speeds, 30% of
equal motor speeds in the same direction and setting both
motor speeds to zero the remaining 20% of the time.

5.2 Motion Tracking
It was decided to make use of a roof-mounted camera to

track the state changes (i.e. changes in position and orienta-
tion) of the robot in response to commands. The motivation
for the use of this technique is that it would dramatically ac-
celerate the data acquisition process and also lead to more
accurate data acquisition than would be the case if use was
made of manual measurements, since human error was elim-
inated as a possible source of error.

In order to track the robot, use was made of the pink
and blue markers shown in Figure 1. Each of these markers
contains a small white dot in its center. The e↵ect of these
dots in the images obtained from the camera, was a gradual
fade from blue (or pink) to white from the circumference
of the marker to its center. By carefully using this colour
gradient and comparing the colour value of pixels near the
center of the marker with that of their neighbouring pixels,
the center of each marker could be determined in each frame
of the video footage with reasonable accuracy. Each of the
markers was placed on a black background and some other
features of the robot were blackened out (Figure 1) in or-
der to improve the tracking accuracy by eliminating colours
which could match those of the markers.

After tracking the positions of the marker centers in each
frame, the pixel coordinates of the markers in the image were
converted to real-world coordinates on the operating surface
of the robot by employing the JCamCalib Java Camera Cali-
bration Package [2]. This package allowed for the calculation
of the camera’s intrinsic parameters which could be used to
undistort the images obtained from the camera. It also pro-
vided the functionality to construct a homography matrix
to convert from pixel coordinates to real-world coordinates.

Although certain inaccuracies were inevitably present in
the motion tracking process, satisfactory results were gen-
erally obtained, with the position of each of the two marker
centers being tracked to within approximately 2cm of their
actual positions.

5.3 Simulator Neural Networks
Three separate simulator NNs were employed in this study,

one each for the prediction of the change in the x-coordinate,
y-coordinate and orientation angle of the robot respectively
in reaction to an arbitrary motor command. The change in
the orientation angle of the robot was measured relative to a
fixed, globally-defined vector, while a simple Cartesian coor-
dinate frame was used to measure the change in the position
of the robot. This coordinate frame was locally defined to
move with the robot during testing.

Given as input to each of the simulator NNs were the two
motor speeds maintained by the robot before receiving the
current command, the two motor speeds given as part of
the current command and the time the current command
was allowed to be executed. In response to this input data,
the networks were expected to predict the change in the x-
coordinate, y-coordinate and orientation angle of the robot.

The motivation for presenting each of the NNs with the
two motor speeds maintained before receiving a certain com-

mand, is that it was anticipated that the robot would un-
dergo a certain amount of acceleration/deceleration before
stabilizing on the motor speeds given as part of the current
command. This acceleration/deceleration would depend on
the previously maintained motor speeds and this thus war-
ranted giving this information as input to the NNs. The
fact that the robot would take a certain amount of time
to stabilize on constant motor speeds after receiving a new
command was also the reason for imposing a minimum on
the duration time of each command (Section 5.1).

In Figure 2 is an illustration of each of the three NNs used:

Figure 2: Neural Network Structure

A linear activation function was used for all neurons in the
simulator NNs. In the hidden layer of all three these net-
works, 20 hidden neurons were employed of which 10 were
implemented as product units and the remaining 10 as sum-
mation units.

After experimentally acquiring training data, each NN
was trained by making use of a Genetic Algorithm in which
each chromosome encoded potential weight values of the
network. The decision was made to evolve weight values
for the NNs using a Genetic Algorithm rather than train-
ing the NNs using more conventional training techniques
(such as back-propagation), since the topology of the error
landscapes for the NNs was not known before starting train-
ing. These landscapes could possibly be irregular with local
minima in which conventional training techniques would get
caught, leading to premature convergence. Local minima
could be a result of the physical problem being solved: A
certain combination of weight values in an NN could lead to
relatively good predictions by the NN, although this com-
bination of weights is still not the ideal combination, since
better predictions could be obtained when employing an-
other (superior) combination of weights. First-mentioned
combination of weights would thus form a local minimum in
the error landscape where conventional training techniques
could be trapped. Another possibility is that local minima
were introduced in the training data as a result of errors
involved in the motion tracking or other stages of data col-
lection. Employing a Genetic Algorithm would circumvent
di�culties introduced by such local minima, since Genetic
Algorithms have been shown to be e�cient and accurate for
optimization over error landscapes which are discontinuous,
non-di↵erentiable or noisy [6]. Parameters used during the
NN training process were as shown in Table 1.

The fitness function employed during this training process
was simply the inverse of the Mean Squared Error (MSE)

173

Figure 1: The ANN for the position tracking con-
troller. Taken from [4]

of candidates (m for example, could contain the 20 best in-
dividuals). The m candidates that move on would then be
used to create the next generation of candidate arrays via
cross-over/mutation until p candidates are constructed. In
this example, the crossover process takes two fit candidate
arrays and swaps parts from the arrays to make two new
candidate arrays. These candidates may also undergo some
mutation, such as flipping a random bit in the array. This
process then continues until a suitable candidate is reached,
or a time/iteration limit is reached. The result is the candi-
date with the highest fitness; in this example the candidate
with the most ones.

2.2 Neural Networks
Two of the three research cases presented in this paper

use artificial neural networks ([3], [4]). An Artificial Neural
Network (ANN) [6] is an algorithm which is based loosely
on the central nervous system in biology. The network is a
connected collection of nodes (“neurons”). The network is
composed of weighted vertices (synapses in the biology anal-
ogy) between all the nodes, which act as a control structure
to transform the input to the output. The goal of the net-
work is to develop an approximated relationship between a
given input and a desired output. Figure 1 is an example of
an ANN.

The ANN has three general layers: input, middle, and
output. The middle layer is not necessarily only one layer,
but for the purposes of this paper it is considered a single
layer. The input layer is composed of whatever input is pro-
vided. In the case of a robot, it could be motor controllers
and other sensors, each of which would be node. The mid-
dle layer is the hidden layer where the evolutionary process
occurs. From the genetic algorithm example in 2.1, instead
of swapping bits in an array, weights of the network would
be swapped or altered. The output layer is the result of
the weighted inputs. For example, there could be an ANN
which takes in the velocity of a car and how long it has
driven as its input, and the output could be a coordinate on
the xy-plane of its location, calculated from a mathematical
formula developed in the hidden layer.

2.3 Research Cases
This paper compares and contrasts three separate research

cases which used Evolutionary Robotics (ER). Each research
study used three common approaches to apply evolution to

the OpenParams and tracks the best parameters. The idea
of the OpenParams is to keep track of distinct parameters
that perform well on both the robot and simulation. It can
be thought of as tracking tree nodes whose children should
be visited. Finally, in line 15, a human is put into the loop
as a guide in order to speed up the optimization by focus-
ing the optimization on specific parameters to investigate in
greater depth in the next iteration. More information about
guidance is given in Section 4.4. This loop repeats until the
resulting parameters do not improve the robot’s fitness.

3. TESTBED DOMAIN
In order to validate GSL, we implemented and tested it

on a concrete, challenging robot task, namely fast biped
locomotion on an Aldebaran Nao robot, shown in Figure 1.
The Nao is a humanoid robot that stands a little more than
half a meter tall. It has twenty-five degrees of freedom,
eleven of which are in the pelvis and legs. In addition, the
Nao has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer.

Figure 1: Aldebaran Nao.

Section 3.1 describes the parameterized walk engine that
this work optimizes, and Section 3.2 specifies the simulator
used for this work.

3.1 Walk Engine
A walk engine converts a requested walking velocity to a

set of desired joint angles that are sent to the joint motors
at each time step. While the Nao robots come equipped
with Aldebaran’s closed-source walk engine, research from
several RoboCup teams have shown that significantly faster
walks are possible on the Naos [7, 27, 30]. Therefore, we
start from one of the existing walk engines designed by a
RoboCup team. Specifically, the walk engine used in this
work is based on the walk by Nao-Team HTWK from Leipzig
University of Applied Sciences [30], which was in turn in-
spired by Behnke [5]. Due to space constraints, we limit our
attention in this paper to the optimized parameters. Further
details on the walk engine are available in [5].

Specifically, 17 parameters were optimized, a list of which
can be found in Table 1. A phase of the walk is the time
it takes the robot to take two steps (one with the left foot
and one with the right), and it is denoted as the stepPeriod
parameter. A step consists of three components. The first
component is shifting the center of mass onto the stance
leg. Then, the back leg is lifted by bending according to
the knee, vshort, �short, and ashort parameters. Finally, the
lifted leg is swung forward according to the ampswing, vswing,
and �swing parameters. The fwdO↵set parameter is applied

to prevent the robot from drifting forwards when walking in
place. The remaining parameters scale and o↵set the sensor
values of the gyrometers, which are used as the closed loop
component during the calculations of the three movement
components.

Parameter Description
stepPeriod Number of frames to take two steps.
ampswing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
startLength Used in calculating initial ramp up.
vshort Factor for the leg lifting calculation.
ashort Amplitude of the leg lifting calculation.
�short O↵set of the leg lifting calculation.
vswing Factor for the swing calculation.
�swing O↵set for the swing calculation.
gyrohipPitch Body pitch factor for calculating hip pitch.
gyrokneePitch Body pitch factor for calculating knee pitch.
gyrohipRoll Body roll factor for calculating hip roll.
gyroankleRoll Body roll factor for calculating ankle roll.
scaleroll Scale for sensor value of body roll.
o↵setpitch O↵set for sensor value of body pitch.
scalepitch Scale for sensor value of body pitch.
fwdO↵set O↵set to have the robot walk in place.

Table 1: The walk engine parameters examined in this project.

3.2 SimSpark
The RoboCup 3D simulation league uses the SimSpark [2]

multi-agent simulator, which was designed by the RoboCup
initiative. SimSpark uses the Open Dynamics Engine (ODE)
to simulate rigid body dynamics, including collision detec-
tion. Although ODE provides a realistic simulation of physics,
it does make several approximations. For example, there is
no friction model on hinges in ODE, and so no friction acts
on the simulated robot’s joints [1].

Figure 2: Simulated Nao agent.

The physics simulator’s update cycle occurs every 20 mil-
liseconds, at which time it calculates pending events and
sends sensor information to the simulated agent. At that
point, the agent’s behavior code can use the sensor infor-
mation to determine the robot’s next action. To walk, a
request for a walk velocity is sent to the walk engine, which
uses this request and the sensor information to determine
the next desired joint commands. To achieve these joint an-
gles, PID controllers compute torque values that are to be
applied to each joint, and then these torque values are sent
back to the simulator to process. As we have control over
this process, this simulator meets assumption 1 described in
Section 2.1.

41

Figure 3: The Aldebaran Nao Robot, programmed
to play soccer

find a solution for a physical robot; a simulation, an evo-
lutionary process, and behavioral analysis of evolved candi-
dates.

The first study presented here, done by Moore et al. [3],
is a simple floating aquatic robot which is tasked with main-
taining a particular position while being subjected to water
flowing in a single direction, also known as laminar flows.
The robot has a cylindrical body with three servo-controlled
fins; two flippers which have 360◦ of circular movement range
and a caudal (rear) fin which has 30◦ of movement. Figure 2
shows the robot in simulated and physical form. The robot
is equipped with an inertial measurement unit (IMU) which
measures linear and angular acceleration, and is able to pro-
vide a 3D coordinate of the robot’s current position. ER was
chosen for finding a solution because of the numerous inter-
actions between the robot and the laminar flows.

The next study, conducted by Farchy et al. [1], was to in-
crease the walking speed of the humanoid robot Aldebaran
Nao (Figure 3). This robot is programmed by teams to
play (robot) soccer in a competition called RoboCup. The
process by which Farchy et al. applied ER was through
Grounded Simulation Learning (GSL), which added human
guidance to the evolutionary process (more on GSL in sec-
tion 4.2).

The final study, by Pretorius et al. [4], created a Lego
Mindstorm robot which would track its own position and
heading from an evolved controller, without using any ex-
ternal sensors. This controller would be able to calculate
where the robot is located as it moves, only using the mo-
tor’s speed, direction, and running time. The robot (Figure
4) consists of two motorized wheels and has two blue and
purple tracking markers on the top, as well as a light sen-
sor. The markers and light sensor were used by an overhead
camera to collect position and orientation information, and
pair it with commands given to the robot. This data was
used as a testbed to train the controller. This is a diffi-
cult problem because without sensory input, tracking a po-
sition must be done using internal functions, which tend to
be complex because of various accelerations the robot un-
dergoes when moving, and inaccurate due to friction and
imprecise movement (slippage, low battery, etc.). ER was
chosen to create a correlation between motor movement and
location/orientation.

3. SIMULATION
Physical evolution in robotics is expensive because of the

overhead of running trials in real time and setting up the
robot to be identical for each test. Simulation is valuable



(a) (b) (c) (d) (e)

Figure 1: Modeling and fabrication of an aquatic robot. From left to right: (a) evolutionary experiment based on a simulation model;
(b) corresponding SolidWorks model for prototype; (c) 3D-printed passive components of prototype; (d) integration of electronic
components and battery into the prototype; (e) assembled, painted and waterproofed prototype in the flow tank. The physical
prototype’s main body is 13cm long and 8cm in diameter with fins that are 8cm long and 2cm wide.

lized to accelerate the design process. Even a coarse approxima-
tion of the target environment can give insight into what constitutes
a successful control strategy, although higher fidelity simulation
can provide better results [13]. Moreover, by focusing on find-
ing solutions that are good enough, as opposed to the global opti-
mum, evolutionary computation is able to handle situations, such
as highly dynamic aquatic environments, where exhaustive search
of the controller space is infeasible.

Our research integrates evolutionary computation, efficient mod-
els of physical materials, and rapid prototyping in order to ex-
plore novel designs for robotic fish and other types of robots; see
Figure 1. We conduct these studies on a testbed for evolutionary
robotics research, termed Evolution Park. The testbed includes
rack-mounted computer clusters and a collection of high-end graph-
ics workstations enable evolution of both controllers and morpholo-
gies, along with high-precision interactive simulations of the result-
ing robots. A multi-material 3D printer enables rapid prototyping
of robot models produced through computational evolution. The
printer is capable of simultaneously jetting materials with different
properties in a single build, enabling direct fabrication of complex
structures, such as fins that comprise semi-rigid struts and more
pliable inner membranes, as well as printing of molds for intricate
metal parts. The printed forms are then coupled with electronic
control systems, motors, and sensors to produce fully functional
robots. To evaluate robots, experiments are conducted in a 4500-
gallon tank with underwater and ceiling-mounted video cameras, or
an elliptical flow tank in which the robots are exposed to currents
and turbulence; see Figure 1. Outdoor experiments are conducted
on ponds and lakes near the Michigan State University campus.

(a) (b)

Figure 2: Components of the Evolution Park experimental en-
vironment: (a) 4500-gallon custom-built tank for robotic fish
experiments; (b) elliptical flow tank for studying behaviors in
the presence of water currents.

In this paper, we describe a study on the evolution of controllers
for station keeping, whereby an aquatic robot is required to main-
tain a specified position despite surrounding water flow. A behavior
exhibited by many species of fish, station keeping is important to
robotic tasks such as identification of stationary objects and collec-
tion of water quality data at a specified location. Station keeping
in aquatic robots is similar to hovering in flying insects, which has
been studied as a component of morphological evolution in [18].
Here, we use the NEAT algorithm [20] to evolve controllers for
the aquatic robotic platform, shown in Figure 1, that includes two
actuated lateral “flippers,” an actuated caudal fin, and an inertial
measurement unit (IMU). In this study, we address station keeping
in the presence of external forces produced by laminar water flow.
As opposed to a turbulent flow, which is characterized by eddies,
a laminar flow occurs when the water flows at a constant rate in
parallel layers, with no mixing between layers. To achieve station,
a robotic controller must coordinate the actuation of all motors in
an effort to locomote against external forces by interpreting iner-
tial (i.e., linear and angular acceleration) data. To the best of our
knowledge, aquatic station keeping has not previously been studied
in evolutionary robotics.

The primary contributions of this paper are threefold. The first
concerns input to the simulated controller. Typically, neural con-
trollers work with feedback obtained from both sensory input and
physical hardware responses. However, we found that decoupling
the controller from direct motor feedback, and instead using only
input from a simulated IMU (corresponding to the IMU chip we
used in the physical prototype), produced effective behaviors. Sec-
ond, we discovered that for this particular task, a cumulative fit-
ness function was most effective, but that it had to ignore a sig-
nificant “startup phase” in which the robot could lose fitness in
the process of re-orienting itself. Third, we observed a number
of interesting gaits and other movements that enabled the robot to
achieve and maintain station in the presence of different laminar
flows. Specifically, the evolved neural controllers in several tri-
als were able to identify the direction of flow and correctly orient
themselves through complex movements before facing their target
station and then transitioning to simpler forward swimming. In on-
going work, we plan to integrate the evolved controllers into our
physical prototype and evaluate it in the elliptical flow tank shown
in Figure 1.

Section 2 presents an overview of the simulated robot, the simu-
lation environment including hydrodynamic model, artificial neural
networks and the station keeping task. Experiments and results are
presented in Section 3, along with a description of specific evolved
behaviors for different flows followed by conclusions in Section 4.
Videos of the evolved behaviors are available through links pro-
vided throughout the paper.

240

Figure 2: The station keeping robot rendered in simulation as well as in it’s physical form. Taken from [3]

was specifically decided to employ an NN in the study pre-
sented here, since it would cater for such e↵ects. Further-
more, the need for explicit derivation of equations of motion
predicting the changes in position/orientation of the robot
was eliminated by employing an NN simulator structure.
Su�ciently accurate predictions of robotic motion obtained
from the proposed simulator would thus justify the notion
that the use of an ANN as simulator can (at least from a
mathematical point of view) simplify simulator design and,
as a result, the ER process as a whole.

4. EXPERIMENTAL ROBOT
Use was made of the compact, modular end-user robotics

range from Lego, called the Mindstorms NXT [3] as the ex-
perimental robot. The use of Lego robots in the field of ER
has also been reported by several other researchers [15, 17,
18].

The reason that this robot was decided upon, is that it
is very simple to configure and program. Due to the plug-
and-play nature of the sensors and motors used in the Mind-
storms robot, no prior engineering knowledge was needed to
configure these devices to work properly. The morphology
of this robot is also completely customizable. For the work
outlined here, the configuration employed was as shown in
Figure 1.

Figure 1: Robot Morphology

As can be seen from Figure 1, a very simple shape was
decided upon, incorporating two wheels, each controlled by
a separate servo motor, and two light sensors. At the back
of the robot a small guide-wheel was attached, used simply
to provide a third contact point with the working surface

(apart from the two large wheels) to prevent excessive fric-
tion. The two large rubber wheels were employed in order
to allow the robot to execute simple motion through di↵er-
ential steering. Two side-mounted light sensors were used
to detect lines drawn around the perimeter of the working
surface, to prevent the robot from leaving the surface dur-
ing data acquisition. The center-mounted light was used as
a synchronizing device for video analysis, while the blue and
pink markers were used to track the position and orientation
of the robot in the video footage (Section 5.2).

Due to the reasonably slow onboard processor of the Mind-
storms robot and its limited onboard memory, it was de-
cided to execute code on a “server”-like personal computer
and relay commands to the robot via a Bluetooth connec-
tion, using the robot’s onboard Bluetooth device. This was
achieved by making use of the Java-based API, ICommand
[1], which provides high-level functionality for establishing
a Bluetooth connection with the robot, as well as sending
commands and receiving feedback from the robot over this
connection.

The Lego Mindstorms NXT robot operates on six AA bat-
teries. For this work, use was made of rechargeable batteries
which could be charged when not in use to allow for long pe-
riods of testing. It was discovered that the performance of
the robot’s motors depends rather largely on the charge-
level of the batteries, and it was thus decided to employ the
motor speed regulation capability of the ICommand pack-
age [1] and to ensure that batteries were charged above a
certain level during all tests. The maximum motor speeds
sent to the robot during testing were also limited to half of
the full speed of which the motors are capable in order to
minimize the battery-dependence factor and reduce a small
degree of slipping of the robot’s wheels which was observed
on the working surface at higher speeds.

5. IMPLEMENTATION DETAILS
In order to ensure that the final simulator NN was as

accurate as possible, much e↵ort was expended in deciding
upon the implementation details for various factors related
to the data acquisition and NN training processes in this
study. These details are discussed below.

5.1 Robot Commands
Each of the commands given to the robot in this work

consisted of three elements:

• Motor speed for motor one

• Motor speed for motor two

• Execution time of command (in milliseconds)

The motor speeds for each command consisted of a ran-
domly generated magnitude (in the range 0 to 50% of max-
imum motor speed) as well as a randomly generated direc-
tion (forwards or backwards). Furthermore, a random exe-
cution time in the range 0.5 to 3 seconds was used for each
command. Although commands were randomly generated,
the generation was seeded to be biased towards equal motor
speeds in the same direction (which would cause the robot
to move in an approximately straight line) and for both mo-
tor speeds to equal zero (which would cause the robot to
stop), since it was envisaged that these commands would be
required regularly and thus needed to be represented well

172

Figure 4: The position tracking robot. Taken from
[4]

because it can explore the space of ER at an accelerated
rate without requiring setup. Simulation is the representa-
tion of characteristics or behaviors of one system through
the use of another system. Simulation provides a means by
which a simulated robot can be rapidly altered and evalu-
ated, thereby enabling the evolutionary process to proceed
efficiently and quickly.

However, because simulations are often imperfect repre-
sentations of the physical space, there is some accumula-
tion of error by transitivity [1]. Even small inaccuracies
can sometimes lead to poor performance where a candidate
performs well in simulation, but performs poorly with the
physical robot. Consider, for example, if a simulation had
assumed the surface a walking robot was moving on was a
completely level plane. If in actuality it was slightly sloped,
we could envision a robot which evolved to perform well in
the simulation but might be unable to handle the change in
slope and perhaps fall down. Therefore it is critical to have a
simulation which has little transitivity error when applying
ER.

Moore et al. [3] evolved floating station-keeping robots
with a simulator which uses the Open Dynamics Engine
(ODE). The simulated environment updated every 5 ms to
calculate the next state of the robot and environment. It
provides a system to calculate forces applied to the simulated
robot in a body of water, but does not take into account
fluid dynamics. Instead, physical drag is applied to each of
the faces of the simulated robot. Propulsion is found to be
the net force generated by each of the faces against the drag,

which determine the next state of the robot. Fluid dynamics
are computationally intensive and require a lot of process-
ing to do accurately. Alternatively, creating a simple model
requires much less CPU processing time and therefore scales
better for evolving candidates. Moore et al. noted that an
extremely accurate simulation was not a priority because
they were more interested in the evolved behaviors, that is
solutions the evolved candidates create, rather than exact
specifications (see Section 5.1).

The robot walking code modified by Farchy et al. [1] used
SimSpark, a simulation based on the RoboCup tournament
which also uses the ODE for rigid body movement and col-
lision detection. It is not a perfect simulation however, and
lacks important features such as joint friction. Unlike the
station keeping robot, transitivity errors pose more of an is-
sue because they can off balance the robot and potentially
immobilize it by causing it to falling down. Every 20 ms
the simulator updates the state of the robot by using sensor
information fed into the simulation. The robot used in the
simulator is not the same model as the physical one used
by Farchy et al., requiring approximations of key features
such as the shape of the foot. However, Farchy et al. em-
ployed a “Grounded Simulation Learning” (GSL) algorithm,
which, like the station keeping robot study, was used for
finding developed behaviors and, in this case, modifying the
evolutionary process based on the analysis of intermediate
candidates. GSL also accommodates for inaccuracies in the
simulation by routinely analyzing if evolved controllers are
indeed applicable to the physical robot.

The simulation used by Pretorius et. al. [4] used a more
unorthodox method. As opposed to using a physics sim-
ulator (such as ODE), they chose to use artificial neural
networks as the simulator. The reason the team went with
this option is because a physics engine, as previously stated,
contains minute inaccuracies which can affect the results. In
this case, the simulator is also what is being evolved, the goal
being to create a simple navigation controller which would
effectively simulate the robot’s location and direction. By
driving the robot over a surface using arbitrary motor com-
mands, and tracking the position and orientation with an
overhead camera, they were able to extract data to be used
as a testbed for the evolutionary process. In this case, the
error caused by transitivity is relative to how accurately the
camera captured the position and orientation of the robot.
Fortunately, the relative error was fairly small because the
captured results were within 2 cm of the physical robot’s
position.

In each of the research cases, there was a way in which
the process of evaluating the robot was taken from the phys-
ical environment and placed in simulation. The simulation
then enabled evolutionary robotics to avoid the overhead of
physical testing and to happen at an accelerated rate. By
transferring the actions of the robot and the physical envi-



ronment into a simulation, it allows ER to be feasibly done
in a reasonable amount of time.

4. EVOLUTIONARY PROCESS
The process of evolving candidates (addressed in section

2) was applied to each of the research robots. This section
details how each case applied ER, including population size,
number of generations, how they implemented neural net-
works, fitness functions and evaluation methods.

4.1 Station Keeping Robot
The input of the ANN for the station keeping robot [3]

was the current position of the robot in three dimensional
coordinates, (x, y, z), the difference between the the robot’s
current position and the desired position, and the previous
output. The output nodes were the oscillation of the Caudal
fin, and speed of the flipper servos. The desired outcome of
this neural network is to have the robot properly orient itself
and maintain a fixed position based on the input.

The simulated robot was subjected to 4 different types
of Laminar flows; from the front, the back, the side (90◦

from the front), and at a 45◦ angle from the front left. Be-
cause Moore et al. [3] were interested in behaviors evolved
by the robot, each of these trials was a separate evolutionary
process so as to not create a single candidate which had to
perform well in all four. A transient period was used, which
allotted 60 seconds for the robot to adjust to the particular
flow. This was because early candidates would try to im-
mediately maintain the position and have poor results; the
transient period allowed the candidate to reorient itself to
better maintain the position without an early penalty.

The evolutionary process used a population of 100 candi-
dates and evolved them for 2000 generations. Each of the
four trials replicated the evolutionary process 25 times. Af-
ter the 60 second adjustment phase, the simulated robot
candidate was evaluated every 250 ms for the next 60 sec-
onds. The robot’s total fitness was the summation of the
evaluated fitness every 250 ms:

fitness =
∑
t

(10 − dt(x, y, z))

where

dt(x, y, z) =

{
10, if distancet(x, y, z) > 10

distancet(x, y, z), otherwise

and the distance function is how far the robot’s position was
from the desired location. The 10 in the fitness function is
an arbitrary number to quantify the fitness of the candi-
date. The fitness is modified to have a gradient effect when
the robot is close to the target location, which incentivizes
continual station keeping.

4.2 Walking Humanoid Robot
The walking robot [1] had 17 different parameters, in-

cluding stepPeriod, ampswing, startLength, etc. which act
as functions that alter multiple joints in the robot walk cy-
cle. Farchy et al. applied ER to optimize the parameters to
increase the standard walking speed. It is worth noting that
they did not use an ANN, and instead evolved the parameter
sets with different values using a GA-like algorithm.

The robot was evaluated in two separate trials. The first
trial, goToTarget, gave the simulated robot several locations

to walk to, dealing with several changes in direction. The
fitness of goToTarget is:

fitness = (
∑
t

(DistanceTraveledt)) − fallingPenalty

where DistanceTraveled is the the length to each destina-
tion. All of the DistanceTraveled values are summed until
the trial ends or the robot falls down. FallingPenalty is
a penalty administered to the fitness should the robot fall
before completing the trial. The other trial is WalkFront,
which evaluates the velocity of the robot walking forward for
15 seconds. The robots fitness for WalkFront is the maxi-
mum velocity it achieves. Together, these two trials evaluate
how quickly a robot can move and how stable it is, evolving
a both fast and stable robot.

One of the most interesting concepts done by Farchy et al.
[1] and the focus of their research was the use of Grounded
Simulation Learning (GSL). GSL is composed of two main
parts: grounding and guidance. Grounding refers to making
the simulation’s behavior match the physical robots behav-
ior; this reduces problems with transitivity. Guidance refers
to human interaction in the simulation to make strategic
adjustments in the evolutionary process. GSL was applied
after each iteration to focus on evolving specific features,
such as taking longer strides or improving better balance.
For example, after the first iteration of evolution the team
uploaded the candidate to the physical robot and noticed
that the leg swing parameter seemed to play an important
role in the speed of the robot. The next iteration was then
adjusted to have greater variation in the swing parameter to
be used in the evolutionary algorithm.

4.3 Position Tracking Robot
To train the position tracking robot’s ANN, the robot was

issued commands [4] consisting of three elements: motor
speeds, the directions of each of the motors, and the execu-
tion time for the command in milliseconds. The motor speed
was randomly generated in the range from 0 to 50% of it’s
maximum, and the time ranging from .5 to 3 seconds. Al-
though random, there was bias to have the motors go in the
same direction at an equal speed (straight movement) 30%
of the time, as well as both motor speeds to equal 0 (stopping
the robot) 20% of the time. This was because Pretorius et
al. felt that these would be common commands, and should
be emphasized in the simulation.

Pretorius et al. used three different simple ANNs to track
the robot’s position. Similar to how the station keeping
robot evolved four different candidates for each of the lam-
inar flows, using three different networks removed the de-
mand for a single network to perform well in tracking both
coordinates and the orientation. The input to each of the
neural networks consisted of the two motor speeds before re-
ceiving the command, the two motor speeds from the current
command, and the length of time for the current command.
The purpose of using the previous motor command was to
account for positive and negative acceleration the robot un-
derwent going from one command to the next; the neural
network would have to incorporate that change in order to
make an accurate account of its orientation. The output of
each of the ANNs was either the robot’s x-coordinate, y-
coordinate, or angle. Figure 1 is a visual representation of
the ANNs.

The ANNs were then evolved using a GA. The GA pa-



rameters included a 80% crossover probability and a 5%
mutation possibility. The population size was 250 candi-
dates, which were evolved for 15,000 generations. This took
approximately 12 hours for each of the three ANNs. The
fitness function was the Mean Squared Error (MSE), which
measured the accuracy of a given candidate ANN configu-
ration. The MSE is defined as:

fitness =
1

N

N∑
p=1

O∑
i=1

(tpi − api)
2,

where N is the size of the testbed (i.e. the collected data
from arbitrary motor commands and their physical position,
as gathered from the overhead camera), O is the number
of outputs from the ANN, t is the expected output, and
a is the actual output. Both t and a are are subject to
some particular test p in the testbed and for either the x-
coordinate, y-coordinate, or angle, i.

In addition to evolving the ANN controllers, Pretorius
et al. evolved a navigational controller, which was a set of
commands, to drive the robot around a 3 by 3 rectangular
grid using the evolved ANNs. The objective was to have
the robot start in the center left spot and drive counter
clockwise around the grid to end back up in the starting
spot, while avoiding the middle rectangle, staying on the
grid, and visiting each space in a procedural manner. If the
navigation controller violated any of those requirements, it
would be heavily penalized. The fitness function was:

fitness = N2
max − Cnogain

10
,

where Nmax is the absolute number of rectangles traversed
while not entering forbidden areas and Cnogain is the number
of commands which did not cause the robot to advance to
the next rectangle.

In order to effectively evolve the navigation controller can-
didates, cross-over/mutation was modified to swap parts
that were relatively close to the same part in the grid which
the robot would navigate. For example when crossing two
candidates, the part of their structure which issued a ‘turn’
command at the top left square of the grid would be marked
as the swap point. This resulted in more consistent candi-
dates and more effective evolution.

5. RESULTS
This section discusses results found from each of the re-

search cases. This includes some observed behaviors with
the swimming and walking robots, which shed insight on
what candidates evolved to do to find a solution to their
problem.

5.1 Station Keeping Robot
The evolutionary solutions for the station keeping robot

in [3] were both unforeseen and effective. Depending on the
trial, the evolved candidates would range from standard lo-
comotion to complex maneuvers. When the flow was coming
from either the front or at a 45◦ angle to the front left, the
simulated robot would swim forward or swim forward while
listing to the left. Because of the design of the robot, it is
somewhat difficult for it to turn and not move too far away
from the starting point. This would make station keeping
especially difficult when the flow was coming from the back
or side, the robot would drift away as it would turn, result-
ing in a poor fitness. So instead, when the flow was coming

Figure 6: The accuracies of the evolved coordinate
tracking ANN. Taken from [4]

that this selection criteria would accelerate the evolution
process, since each of the commands selected for crossover
would need to be similar (each command would aim to take
the robot in a similar direction).

In order to keep the crossover process as simple as pos-
sible, constant-length chromosomes (each encoding a fixed
number of commands in its command set) were used dur-
ing evolution. However, the possibility was introduced for
a command in the evolved command set to be a null com-
mand, which meant that no command was given to the robot
when arriving at said command in the command set. This
thus allowed for command sets e↵ectively consisting of dif-
fering quantities of commands to be evolved, while ensuring
an uncomplicated crossover process.

The remaining parameters employed during this ER pro-
cess were the same as were used for the Genetic Algorithm
to evolve NN weights for the simulator NNs (Table 1). Evo-
lution was allowed to proceed for 1000 generations and was
repeated multiple times to produce di↵erent optimized com-
mand sets. After evolution was completed, each of the
evolved command sets were sent to the real-world robot and
their performance in executing the task in the real-world
was examined.

7. RESULTS
In order to evaluate the accuracy with which the simulator

NNs were trained, the final value of the MSE (Equation 1)
produced by each NN after training was considered when
each NN was presented with data from the validation set (see
Section 7.1 for an explanation of this term). Furthermore,
the values predicted by each of the three simulator NNs (in
terms of the change in the position/orientation of the robot)
were compared with expected values for certain commands
present in the validation set.

These results are shown in this section, along with the
results obtained in the validation experiment, where the
robotic behaviours evolved in simulation using the simula-
tor NNs are compared with the behaviours observed when
transferring the evolved behaviours to the real-world robot.

7.1 Simulator Accuracy
In Table 2, a summary of the accuracy achieved by each

simulator NN after training is shown. In this Table, the
MSE value produced by each NN when presented with data
from the validation set is shown, along with the average error
present in the prediction made by each NN for the change in
position/orientation of the robot for commands in the val-
idation set. The validation set is a set of data which was
collected during data acquisition, but not presented during
the training phase of the NNs and is used to gauge the ac-
curacy and generalization ability of the NNs.

Table 2: Summary of NN simulator accuracy

NN Simulator Final MSE Average absolute error
change in angle 26.412 3.585 degrees
change in y-coordinate 12.909 2.143 cm
change in x-coordinate 18.559 2.782 cm

Figures 3, 4 and 5 show plots of the expected value and
value predicted by each of the three trained simulator NNs

for the change in the orientation angle, y-coordinate and x-
coordinate respectively resulting from 50 commands in the
validation set.

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

20

40

60

Command number

R
o

ta
ti

o
n

 i
n

 d
e
g

re
e
s

 

 
Predicted
Actual

Figure 3: Comparison of predicted and actual values
for change in angle

0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40

50

60

Command number

D
is

p
la

c
e
m

e
n

t 
in

 c
m

 

 
Predicted
Actual

Figure 4: Comparison of predicted and actual values
for change in y-coordinate

As can be seen from Table 2 and Figures 3, 4 and 5 all
three the NNs trained reasonably well and the values pre-
dicted by the NNs are generally quite close to the expected
values. If it is taken into consideration that the change in
the y-coordinate of the robot as a result of a given command
was on average in the order of 25cm, the errors present in the
predictions of these changes are relatively minor (Table 2).
The same holds for the prediction of the orientation angle
and x-coordinate changes. The x-coordinate NN is perhaps
the slight exception to the high degree of accuracy obtained,
as it can be seen that the predictions from this network do

175

from directly behind the robot, it used a complex maneuver
to flip tail-over-head to face the flow and then propelled it-
self forward to maintain its position [2]. Figure 5 shows the
behavior. This works well because the robot floats, and the
flipping movement didn’t cause a change in its height in the
water. The most challenging trial was when the flow came
at a 90◦ angle; because reorienting to such an angle was
a significant challenge, the evolved behavior incorporated a
flipping motion combined with a rolling the body to avoid
turning.

Moore et al. compared early candidates with final candi-
dates to contrast in evolved behaviors. When the flow was
coming from behind, an early candidate selected from the
25th generation was pushed by the current straight out of
the ‘rewards zone’ (the desired station keeping location). It
did not actually start swimming until 60 seconds into the
120 second trial, and was unable to make any progress in
the allotted time. In contrast, the final candidate immedi-
ately reacts and is able to orient (flip) itself and gain against
the flow into the ‘rewards zone’.

Moore et al. noted that one of the most impacting changes
was to allow a setup phase. The setup phase allowed the can-
didate to have a poor initial fitness as long as it was able
to attain a good fitness later. This was a valuable decision
because the speed of maintaining the position was unim-
portant, and by allowing more time for candidates to orient
themselves relieved pressure to perform well immediately.
By using a well constructed fitness function, the ER process
is shown to be very effective in this case.

5.2 Walking Humanoid Robot
The results of the ER for the walking robot [1] had im-

proved the walking speed, and the improvement was statisti-
cally significant. Before evolution, the walking speed of the
robot was 11.9 cm/s. After the first iteration of evolution
the maximum walking speed increased to 13.2 cm/s, how-
ever the robot was not as stable as the original. The next
iteration used the same parameters as the first (increasing
the leg swing) and the walking speed had increased to 14.6
cm/s, however it was more prone to falling. The following
GSL focused more on stabilizing the robot, and a parame-
ter set was found such that the robot was able to move at
15.9 cm/s without loss of stability. Initially the maximum
length of the robot’s step was reduced by 1/3 because the
parameters the robot used were unstable in the real tests but
worked fine in simulation. It was found that by the forth it-
eration this was no longer an issue, and the step size was
restored to its maximum. At the maximum step size, the
original velocity of 11.9 cm/s increased to 13.5 cm/s, and
the final evolved parameter set enabled the robot to move
at 17.1 cm/s, a 26.7% increase.

5.3 Position Tracking Robot



Figure 5: Images from the simulation which showed the evolved behavior when the flow was behind the
robot. Taken from [3]

Figure 5: Behavior of an evolved solution in Trial 2. The first 60s, which is the transient phase, is utilized to reorient itself against a
laminar flow pushing on the robot from left to right. The robot executes a 180 degree flip to bring the caudal fin into a position from
which it can provide the greatest thrust against the flow. In this solution, the flippers are used to flip the robot as well as make minor
adjustments once the robot is in an effective position. A video of this evolved solution is available at http://y2u.be/UufbnEGFwV4.

Figure 6: Action taken by an evolved solution in Trial 4. In this trial, an individual faces a laminar flow at a 45� angle to the robot’s
front. The robot spends the first 50s reorienting itself against the flow. After 50 seconds, the robot has achieved a relatively stable
station and begins to accumulate high levels of fitness by using the flippers and fin in a coordinated effort to maintain its center over
the station point. A video of this evolved behavior is available at http://y2u.be/HIDHC3KG7Yw.

evolved solutions instead exhibited a more complex maneuver, ap-
parently because a 90 degree turn proved time intensive. Instead,
the evolved behavior favored a combination of the flipping motion
seen in Trial 2 with a roll to bring the body into an effective position
for swimming against the flow. Trial 3 individuals had difficulty
achieving station within the time allowed as the initial reorienta-
tion required a significant amount of the evaluation period.

For Trial 4, a simulated flow was applied at a 45 degree angle
to the robot’s initial right-front. As depicted in Figure 6, evolved
individuals demonstrated the ability of the controller to respond to
the direction of flow and attain station keeping during the course
of an individual evaluation. Images in Figure 6 are taken at 10
second intervals over the first 70 seconds of simulation time. Ini-
tially, the robot is displaced from its station. The robot begins to
react at approximately 10s when it starts to orient itself to the flow
by using its flippers to rotate the body while the fin provides for-

ward propulsion. Fitness evaluation begins at 60s. By this time
the robot has achieved, and can maintain, station by working to
correct its position relative to the given station point. Videos of
an early generation individual and the evolved solution described
previously are available at: http://y2u.be/dF_5-3I6Bl4 and
http://y2u.be/HIDHC3KG7Yw, respectively.

Fitness Evaluation.
Fitness results from the trials are shown in Figure 7 and 8. These

results provide insight into the relative difficulty that each flow pre-
sented to the evolutionary process. Specifically, in Trial 1, where
the robot directly faced the flow, solutions achieved near perfect
results, where a fitness of 1 correlates to solutions that maintained
station for the entire evaluation phase. Apparently, the lack of need
to reorient the body helped to produce such high fitnesses. Fig-
ure 9 shows the final distribution of the best evolved individuals for

243

Figure 7: Predicted and actual robot paths from
the navigation controller, which used 13 commands.
Taken from [4]

0

20

40

60

80

100

120

140

0 50 100 150 200

Observed Path

NN Predicted Path

ForbiddenZone
60cm x 38cm

8
Start

1
2

3

4

567

Figure 6: Predicted and actual robot paths for command set of size 10

0

20

40

60

80

100

120

140

0 50 100 150 200

Observed Path

NN Predicted Path

ForbiddenZone
60cm x 38cm

8

1

2

3

4

567

Start

Figure 7: Predicted and actual robot paths for command set of size 13

more di�cult to find relationships between robotic ac-
tions and the e↵ects that these actions have on the
robot-environment system

• changes in the morphology of simulator NNs (i.e. num-
ber of hidden neurons, activation functions employed

etc.) that can possibly improve simulator accuracy and
generalization ability

• evolution of more complex robotic control structures,
i.e. controller NNs

Although the research presented here is still largely in the

177

The position tracking robot’s [4] three ANN had evolved
to be competent at tracking the robots coordinate and angle.
The top x-coordinate, y-coordinate, and angle ANNs were
tested with 50 commands determine their accuracy, the re-
sults are located in Figure 6. To validate the experiment,
Pretorius et al. tested the navigation controller evolved with
the ANNs. Figure 7 shows the results of the navigational test
controller, which used 13 commands to navigate around the
grid. Pretorius et al. were satisfied with the results, noting
that they were able to accomplish the specified task with-
out manually programming the robot. The simulated and
actual paths were reasonably close to one another, meaning
that the ANNs were able to achieve a relatively accurate ac-
count of the position and orientation of the robot. The error
between the actual and simulated run was expected because
slight errors tended to compound, i.e. after each command
the simulator would be slightly inaccurate plus the sum of
the previous command’s inaccuracies.

6. CONCLUSIONS
These research cases each demonstrate successful appli-

cations of ER. We can draw the conclusion that evolution-
ary robotics can be quite effective. Simulation provided an
important platform upon which evolution could take place.
That platform can be a physical representation of the robot
and the environment, or by a sizable testbed as seen in the
robot developed by Pretorius et al. [4]. Despite the prob-

lems presented by each of the research cases, each were able
to find a suitable candidate solution, be it through ANN or
parameter sets. Despite the diversity of environments and
interactions a robot may be subjected to, if the robot can
be represented in simulation and have a well defined fitness
function, ER is a viable option.

7. ACKNOWLEDGMENTS
Thanks to Nic McPhee, Elena Machkasova, and Alex Jarvis

for their invaluable feedback.

8. REFERENCES
[1] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone.

Humanoid robots learning to walk faster: From the real
world to simulation and back. In Proceedings of the
2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS ’13, pages 39–46,
Richland, SC, 2013. International Foundation for
Autonomous Agents and Multiagent Systems.

[2] J. M. Moore. Trial 2: Evolved individual, 2013. [Online;
accessed 26-March-2014].

[3] J. M. Moore, A. J. Clark, and P. K. McKinley.
Evolution of station keeping as a response to flows in
an aquatic robot. In Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation
Conference, GECCO ’13, pages 239–246, New York,
NY, USA, 2013. ACM.

[4] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers.
Towards an artificial neural network-based simulator
for behavioural evolution in evolutionary robotics. In
Proceedings of the 2009 Annual Research Conference of
the South African Institute of Computer Scientists and
Information Technologists, SAICSIT ’09, pages
170–178, New York, NY, USA, 2009. ACM.

[5] M. Sipper. Evolved to Win. Lulu, 2011. available at
http://www.lulu.com/.

[6] Wikipedia. Artificial neural network — wikipedia, the
free encyclopedia, 2014. [Online; accessed
26-March-2014].

[7] Wikipedia. Genetic algorithm — wikipedia, the free
encyclopedia, 2014. [Online; accessed 7-March-2014].


