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Overview

The Big Picture

Problem: A robot is faced with a problem where the solution is not
immediately obvious
Potential Solution: Evolutionary computation (EC) is a process
which can can solve difficult problems in programming
Issue: Since a robot interacts with the physical world, EC is
slower by many magnitudes
Solution: By using simulation and applicable evolutionary
strategies, it is possible to use EC to evolve robots
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Research Cases Station Keeping Robot

Station Keeping Robot

(a) (b) (c) (d) (e)

Figure 1: Modeling and fabrication of an aquatic robot. From left to right: (a) evolutionary experiment based on a simulation model;
(b) corresponding SolidWorks model for prototype; (c) 3D-printed passive components of prototype; (d) integration of electronic
components and battery into the prototype; (e) assembled, painted and waterproofed prototype in the flow tank. The physical
prototype’s main body is 13cm long and 8cm in diameter with fins that are 8cm long and 2cm wide.

lized to accelerate the design process. Even a coarse approxima-
tion of the target environment can give insight into what constitutes
a successful control strategy, although higher fidelity simulation
can provide better results [13]. Moreover, by focusing on find-
ing solutions that are good enough, as opposed to the global opti-
mum, evolutionary computation is able to handle situations, such
as highly dynamic aquatic environments, where exhaustive search
of the controller space is infeasible.

Our research integrates evolutionary computation, efficient mod-
els of physical materials, and rapid prototyping in order to ex-
plore novel designs for robotic fish and other types of robots; see
Figure 1. We conduct these studies on a testbed for evolutionary
robotics research, termed Evolution Park. The testbed includes
rack-mounted computer clusters and a collection of high-end graph-
ics workstations enable evolution of both controllers and morpholo-
gies, along with high-precision interactive simulations of the result-
ing robots. A multi-material 3D printer enables rapid prototyping
of robot models produced through computational evolution. The
printer is capable of simultaneously jetting materials with different
properties in a single build, enabling direct fabrication of complex
structures, such as fins that comprise semi-rigid struts and more
pliable inner membranes, as well as printing of molds for intricate
metal parts. The printed forms are then coupled with electronic
control systems, motors, and sensors to produce fully functional
robots. To evaluate robots, experiments are conducted in a 4500-
gallon tank with underwater and ceiling-mounted video cameras, or
an elliptical flow tank in which the robots are exposed to currents
and turbulence; see Figure 1. Outdoor experiments are conducted
on ponds and lakes near the Michigan State University campus.

(a) (b)

Figure 2: Components of the Evolution Park experimental en-
vironment: (a) 4500-gallon custom-built tank for robotic fish
experiments; (b) elliptical flow tank for studying behaviors in
the presence of water currents.

In this paper, we describe a study on the evolution of controllers
for station keeping, whereby an aquatic robot is required to main-
tain a specified position despite surrounding water flow. A behavior
exhibited by many species of fish, station keeping is important to
robotic tasks such as identification of stationary objects and collec-
tion of water quality data at a specified location. Station keeping
in aquatic robots is similar to hovering in flying insects, which has
been studied as a component of morphological evolution in [18].
Here, we use the NEAT algorithm [20] to evolve controllers for
the aquatic robotic platform, shown in Figure 1, that includes two
actuated lateral “flippers,” an actuated caudal fin, and an inertial
measurement unit (IMU). In this study, we address station keeping
in the presence of external forces produced by laminar water flow.
As opposed to a turbulent flow, which is characterized by eddies,
a laminar flow occurs when the water flows at a constant rate in
parallel layers, with no mixing between layers. To achieve station,
a robotic controller must coordinate the actuation of all motors in
an effort to locomote against external forces by interpreting iner-
tial (i.e., linear and angular acceleration) data. To the best of our
knowledge, aquatic station keeping has not previously been studied
in evolutionary robotics.

The primary contributions of this paper are threefold. The first
concerns input to the simulated controller. Typically, neural con-
trollers work with feedback obtained from both sensory input and
physical hardware responses. However, we found that decoupling
the controller from direct motor feedback, and instead using only
input from a simulated IMU (corresponding to the IMU chip we
used in the physical prototype), produced effective behaviors. Sec-
ond, we discovered that for this particular task, a cumulative fit-
ness function was most effective, but that it had to ignore a sig-
nificant “startup phase” in which the robot could lose fitness in
the process of re-orienting itself. Third, we observed a number
of interesting gaits and other movements that enabled the robot to
achieve and maintain station in the presence of different laminar
flows. Specifically, the evolved neural controllers in several tri-
als were able to identify the direction of flow and correctly orient
themselves through complex movements before facing their target
station and then transitioning to simpler forward swimming. In on-
going work, we plan to integrate the evolved controllers into our
physical prototype and evaluate it in the elliptical flow tank shown
in Figure 1.

Section 2 presents an overview of the simulated robot, the simu-
lation environment including hydrodynamic model, artificial neural
networks and the station keeping task. Experiments and results are
presented in Section 3, along with a description of specific evolved
behaviors for different flows followed by conclusions in Section 4.
Videos of the evolved behaviors are available through links pro-
vided throughout the paper.
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Moore et al . developed the station keeping robot
Goal: to maintain position in a body of water

Schiller (U of Minn, Morris) Applying EC to Robotics 28 April 2014 4 / 36



Research Cases Station Keeping Robot

Station Keeping Robot

Figure 3: A demonstration of the station keeping task. The
sphere and crossing lines indicate the desired station keeping
point for the robot. Maximum fitness is accrued when the robot
brings its center of mass, denoted by the green lines, to intersect
with this station point.

directions. Instead, these solutions would attempt to hold station
immediately using body orientations that were not very effective.
This strategy led to the individuals drifting out of the fitness area
without actually accomplishing the station keeping task. During
the evaluation phase, fitness is accumulated periodically, creating
an evolutionary pressure to hold station throughout an entire eval-
uation period, instead of just at the conclusion of the evaluation
period. Fitness is calculated as follows:

distance =
⇣p

(xT � xt)2 + (yT � yt)2 + (zT � zt)2
⌘3

(1a)

fitness =

⇢
10� (distance) if > 0

0 otherwise (1b)

where (xT , yT , zT ) is the desired station position and (xt, yt, zt) is
the current position. This fitness function creates a spherical zone
in which individuals can accrue fitness. As an individual moves
closer to the station point, its fitness score for that timestep in-
creases. A cubic gradient encourages solutions to move toward and
maintain station at the target location rather than just stay relatively
close. Individuals accumulate no fitness when outside the sphere
but are not explicitly penalized.

3. EXPERIMENTS AND RESULTS
Four separate trials, illustrated in Figure 4, were conducted to

evolve station keeping for flows originating from different direc-
tions relative to the robot’s initial orientation. Trial 1 simulates a
flow from the front; Trial 2 from the rear; Trial 3 from the left; and
Trial 4 from the right-front. Each trial consists of 25 replicate runs
evolved for 2000 generations with a population of 100 individuals.
Each individual was simulated for 120 seconds with only the sec-
ond half being used to calculate the fitness. The four trials were
conducted independently, with solutions being evolved to handle a
specific flow situation. A time step of 5ms was used in the simula-
tion environment, giving each individual solution a total of 24,000
neural controller updates during a run.

Figure 4: Direction of flow in each of the four trials. Trial 1
involved a flow coming from straight ahead. In trial 2, the flow
comes directly from behind. For trial 3, the flow came from the
side of the body. Finally, in trial 4 the flow came 45 degrees
from straight ahead.

Evolved Behaviors.
Depending on the direction of the flow, evolved behaviors varied

from simple forward swimming locomotion to complex acrobatic
maneuvers that reorient the robot towards a flow. In Trial 1, a sim-
ulated laminar flow from upstream (i.e., from the front to the back
of the robot) was applied. This configuration served as a bench-
mark to measure performance of the subsequent trials, as the robot
did not have to reorient itself prior to maintaining station. Evolved
gaits for this solution were reminiscent of natural fish locomotion,
with both the caudal fin and flippers working in a coordinated os-
cillatory motion to swim against the flow. A video of this solution
is available at http://y2u.be/fb_JzvkXfKU. Trial 2 simulated
a flow pushing on the rear of the robot. Initially, we had expected to
see solutions that used the flippers to maintain station while keep-
ing the orientation relatively stable. However, evolved solutions
instead developed a more effective maneuver in order to bring the
caudal fin into an effective position to counteract the flow. An early
individual and a late generation video can be seen in the follow-
ing videos; early generation: http://y2u.be/m8ka0Ay7wNo and
late generation: http://y2u.be/UufbnEGFwV4. As depicted in
Figure 5, the robot flipped itself over, and then executed a forward
motion similar to that seen in the first trial. Reorienting the body
into an effective position for forward propulsion demonstrates the
controller’s ability to identify and counteract the force generated by
a laminar flow.

In Trial 3, a simulated flow exerts force against the side of the
robot. Of the four trials conducted, this proved to be the most chal-
lenging, apparently due to the difficulty of turning 90 degrees to
the left in the allotted time. A video showing a middle generation
evolved individual can be seen at http://y2u.be/uszEpt-O9n0.
For this trial, the expected behavior was to turn 90 degrees and face
the flow without any need to rotate along another axis. However,
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Research Cases Walking Robot

Walking Robot

Farchy et al . modified the
code of the Aldebaran Nao
robot
Goal: to increase walking
speed

the OpenParams and tracks the best parameters. The idea
of the OpenParams is to keep track of distinct parameters
that perform well on both the robot and simulation. It can
be thought of as tracking tree nodes whose children should
be visited. Finally, in line 15, a human is put into the loop
as a guide in order to speed up the optimization by focus-
ing the optimization on specific parameters to investigate in
greater depth in the next iteration. More information about
guidance is given in Section 4.4. This loop repeats until the
resulting parameters do not improve the robot’s fitness.

3. TESTBED DOMAIN
In order to validate GSL, we implemented and tested it

on a concrete, challenging robot task, namely fast biped
locomotion on an Aldebaran Nao robot, shown in Figure 1.
The Nao is a humanoid robot that stands a little more than
half a meter tall. It has twenty-five degrees of freedom,
eleven of which are in the pelvis and legs. In addition, the
Nao has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer.

Figure 1: Aldebaran Nao.

Section 3.1 describes the parameterized walk engine that
this work optimizes, and Section 3.2 specifies the simulator
used for this work.

3.1 Walk Engine
A walk engine converts a requested walking velocity to a

set of desired joint angles that are sent to the joint motors
at each time step. While the Nao robots come equipped
with Aldebaran’s closed-source walk engine, research from
several RoboCup teams have shown that significantly faster
walks are possible on the Naos [7, 27, 30]. Therefore, we
start from one of the existing walk engines designed by a
RoboCup team. Specifically, the walk engine used in this
work is based on the walk by Nao-Team HTWK from Leipzig
University of Applied Sciences [30], which was in turn in-
spired by Behnke [5]. Due to space constraints, we limit our
attention in this paper to the optimized parameters. Further
details on the walk engine are available in [5].

Specifically, 17 parameters were optimized, a list of which
can be found in Table 1. A phase of the walk is the time
it takes the robot to take two steps (one with the left foot
and one with the right), and it is denoted as the stepPeriod
parameter. A step consists of three components. The first
component is shifting the center of mass onto the stance
leg. Then, the back leg is lifted by bending according to
the knee, vshort, �short, and ashort parameters. Finally, the
lifted leg is swung forward according to the ampswing, vswing,
and �swing parameters. The fwdO↵set parameter is applied

to prevent the robot from drifting forwards when walking in
place. The remaining parameters scale and o↵set the sensor
values of the gyrometers, which are used as the closed loop
component during the calculations of the three movement
components.

Parameter Description
stepPeriod Number of frames to take two steps.
ampswing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
startLength Used in calculating initial ramp up.
vshort Factor for the leg lifting calculation.
ashort Amplitude of the leg lifting calculation.
�short O↵set of the leg lifting calculation.
vswing Factor for the swing calculation.
�swing O↵set for the swing calculation.
gyrohipPitch Body pitch factor for calculating hip pitch.
gyrokneePitch Body pitch factor for calculating knee pitch.
gyrohipRoll Body roll factor for calculating hip roll.
gyroankleRoll Body roll factor for calculating ankle roll.
scaleroll Scale for sensor value of body roll.
o↵setpitch O↵set for sensor value of body pitch.
scalepitch Scale for sensor value of body pitch.
fwdO↵set O↵set to have the robot walk in place.

Table 1: The walk engine parameters examined in this project.

3.2 SimSpark
The RoboCup 3D simulation league uses the SimSpark [2]

multi-agent simulator, which was designed by the RoboCup
initiative. SimSpark uses the Open Dynamics Engine (ODE)
to simulate rigid body dynamics, including collision detec-
tion. Although ODE provides a realistic simulation of physics,
it does make several approximations. For example, there is
no friction model on hinges in ODE, and so no friction acts
on the simulated robot’s joints [1].

Figure 2: Simulated Nao agent.

The physics simulator’s update cycle occurs every 20 mil-
liseconds, at which time it calculates pending events and
sends sensor information to the simulated agent. At that
point, the agent’s behavior code can use the sensor infor-
mation to determine the robot’s next action. To walk, a
request for a walk velocity is sent to the walk engine, which
uses this request and the sensor information to determine
the next desired joint commands. To achieve these joint an-
gles, PID controllers compute torque values that are to be
applied to each joint, and then these torque values are sent
back to the simulator to process. As we have control over
this process, this simulator meets assumption 1 described in
Section 2.1.

41
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Research Cases Coordinate Tracking Robot

Coordinate Tracking Robot

Pretorius et al . created a Lego
Mindstorms robot
Goal: to evolve an internal
navigation controller

was specifically decided to employ an NN in the study pre-
sented here, since it would cater for such e↵ects. Further-
more, the need for explicit derivation of equations of motion
predicting the changes in position/orientation of the robot
was eliminated by employing an NN simulator structure.
Su�ciently accurate predictions of robotic motion obtained
from the proposed simulator would thus justify the notion
that the use of an ANN as simulator can (at least from a
mathematical point of view) simplify simulator design and,
as a result, the ER process as a whole.

4. EXPERIMENTAL ROBOT
Use was made of the compact, modular end-user robotics

range from Lego, called the Mindstorms NXT [3] as the ex-
perimental robot. The use of Lego robots in the field of ER
has also been reported by several other researchers [15, 17,
18].

The reason that this robot was decided upon, is that it
is very simple to configure and program. Due to the plug-
and-play nature of the sensors and motors used in the Mind-
storms robot, no prior engineering knowledge was needed to
configure these devices to work properly. The morphology
of this robot is also completely customizable. For the work
outlined here, the configuration employed was as shown in
Figure 1.

Figure 1: Robot Morphology

As can be seen from Figure 1, a very simple shape was
decided upon, incorporating two wheels, each controlled by
a separate servo motor, and two light sensors. At the back
of the robot a small guide-wheel was attached, used simply
to provide a third contact point with the working surface

(apart from the two large wheels) to prevent excessive fric-
tion. The two large rubber wheels were employed in order
to allow the robot to execute simple motion through di↵er-
ential steering. Two side-mounted light sensors were used
to detect lines drawn around the perimeter of the working
surface, to prevent the robot from leaving the surface dur-
ing data acquisition. The center-mounted light was used as
a synchronizing device for video analysis, while the blue and
pink markers were used to track the position and orientation
of the robot in the video footage (Section 5.2).
Due to the reasonably slow onboard processor of the Mind-

storms robot and its limited onboard memory, it was de-
cided to execute code on a “server”-like personal computer
and relay commands to the robot via a Bluetooth connec-
tion, using the robot’s onboard Bluetooth device. This was
achieved by making use of the Java-based API, ICommand
[1], which provides high-level functionality for establishing
a Bluetooth connection with the robot, as well as sending
commands and receiving feedback from the robot over this
connection.
The Lego Mindstorms NXT robot operates on six AA bat-

teries. For this work, use was made of rechargeable batteries
which could be charged when not in use to allow for long pe-
riods of testing. It was discovered that the performance of
the robot’s motors depends rather largely on the charge-
level of the batteries, and it was thus decided to employ the
motor speed regulation capability of the ICommand pack-
age [1] and to ensure that batteries were charged above a
certain level during all tests. The maximum motor speeds
sent to the robot during testing were also limited to half of
the full speed of which the motors are capable in order to
minimize the battery-dependence factor and reduce a small
degree of slipping of the robot’s wheels which was observed
on the working surface at higher speeds.

5. IMPLEMENTATION DETAILS
In order to ensure that the final simulator NN was as

accurate as possible, much e↵ort was expended in deciding
upon the implementation details for various factors related
to the data acquisition and NN training processes in this
study. These details are discussed below.

5.1 Robot Commands
Each of the commands given to the robot in this work

consisted of three elements:

• Motor speed for motor one

• Motor speed for motor two

• Execution time of command (in milliseconds)

The motor speeds for each command consisted of a ran-
domly generated magnitude (in the range 0 to 50% of max-
imum motor speed) as well as a randomly generated direc-
tion (forwards or backwards). Furthermore, a random exe-
cution time in the range 0.5 to 3 seconds was used for each
command. Although commands were randomly generated,
the generation was seeded to be biased towards equal motor
speeds in the same direction (which would cause the robot
to move in an approximately straight line) and for both mo-
tor speeds to equal zero (which would cause the robot to
stop), since it was envisaged that these commands would be
required regularly and thus needed to be represented well

172
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Background Artificial Neural Networks

Artificial Neural Networks (ANN)

ANNs are a collection of
nodes with weighted edges.
Input values are altered as
they pass though nodes in the
hidden layer based on the
weights
The purpose of the network is
to develop a functional
relationship from the input to
the output

in the training data for the simulator NN. This seeding of
commands was achieved by ensuring that 50% of the com-
mands consisted of totally random motor speeds, 30% of
equal motor speeds in the same direction and setting both
motor speeds to zero the remaining 20% of the time.

5.2 Motion Tracking
It was decided to make use of a roof-mounted camera to

track the state changes (i.e. changes in position and orienta-
tion) of the robot in response to commands. The motivation
for the use of this technique is that it would dramatically ac-
celerate the data acquisition process and also lead to more
accurate data acquisition than would be the case if use was
made of manual measurements, since human error was elim-
inated as a possible source of error.

In order to track the robot, use was made of the pink
and blue markers shown in Figure 1. Each of these markers
contains a small white dot in its center. The e↵ect of these
dots in the images obtained from the camera, was a gradual
fade from blue (or pink) to white from the circumference
of the marker to its center. By carefully using this colour
gradient and comparing the colour value of pixels near the
center of the marker with that of their neighbouring pixels,
the center of each marker could be determined in each frame
of the video footage with reasonable accuracy. Each of the
markers was placed on a black background and some other
features of the robot were blackened out (Figure 1) in or-
der to improve the tracking accuracy by eliminating colours
which could match those of the markers.

After tracking the positions of the marker centers in each
frame, the pixel coordinates of the markers in the image were
converted to real-world coordinates on the operating surface
of the robot by employing the JCamCalib Java Camera Cali-
bration Package [2]. This package allowed for the calculation
of the camera’s intrinsic parameters which could be used to
undistort the images obtained from the camera. It also pro-
vided the functionality to construct a homography matrix
to convert from pixel coordinates to real-world coordinates.

Although certain inaccuracies were inevitably present in
the motion tracking process, satisfactory results were gen-
erally obtained, with the position of each of the two marker
centers being tracked to within approximately 2cm of their
actual positions.

5.3 Simulator Neural Networks
Three separate simulator NNs were employed in this study,

one each for the prediction of the change in the x-coordinate,
y-coordinate and orientation angle of the robot respectively
in reaction to an arbitrary motor command. The change in
the orientation angle of the robot was measured relative to a
fixed, globally-defined vector, while a simple Cartesian coor-
dinate frame was used to measure the change in the position
of the robot. This coordinate frame was locally defined to
move with the robot during testing.

Given as input to each of the simulator NNs were the two
motor speeds maintained by the robot before receiving the
current command, the two motor speeds given as part of
the current command and the time the current command
was allowed to be executed. In response to this input data,
the networks were expected to predict the change in the x-
coordinate, y-coordinate and orientation angle of the robot.

The motivation for presenting each of the NNs with the
two motor speeds maintained before receiving a certain com-

mand, is that it was anticipated that the robot would un-
dergo a certain amount of acceleration/deceleration before
stabilizing on the motor speeds given as part of the current
command. This acceleration/deceleration would depend on
the previously maintained motor speeds and this thus war-
ranted giving this information as input to the NNs. The
fact that the robot would take a certain amount of time
to stabilize on constant motor speeds after receiving a new
command was also the reason for imposing a minimum on
the duration time of each command (Section 5.1).
In Figure 2 is an illustration of each of the three NNs used:

Figure 2: Neural Network Structure

A linear activation function was used for all neurons in the
simulator NNs. In the hidden layer of all three these net-
works, 20 hidden neurons were employed of which 10 were
implemented as product units and the remaining 10 as sum-
mation units.
After experimentally acquiring training data, each NN

was trained by making use of a Genetic Algorithm in which
each chromosome encoded potential weight values of the
network. The decision was made to evolve weight values
for the NNs using a Genetic Algorithm rather than train-
ing the NNs using more conventional training techniques
(such as back-propagation), since the topology of the error
landscapes for the NNs was not known before starting train-
ing. These landscapes could possibly be irregular with local
minima in which conventional training techniques would get
caught, leading to premature convergence. Local minima
could be a result of the physical problem being solved: A
certain combination of weight values in an NN could lead to
relatively good predictions by the NN, although this com-
bination of weights is still not the ideal combination, since
better predictions could be obtained when employing an-
other (superior) combination of weights. First-mentioned
combination of weights would thus form a local minimum in
the error landscape where conventional training techniques
could be trapped. Another possibility is that local minima
were introduced in the training data as a result of errors
involved in the motion tracking or other stages of data col-
lection. Employing a Genetic Algorithm would circumvent
di�culties introduced by such local minima, since Genetic
Algorithms have been shown to be e�cient and accurate for
optimization over error landscapes which are discontinuous,
non-di↵erentiable or noisy [6]. Parameters used during the
NN training process were as shown in Table 1.
The fitness function employed during this training process

was simply the inverse of the Mean Squared Error (MSE)
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Background Evolutionary Computation

Evolutionary Computation

Evolutionary Computation (EC) is a problem solving technique
which mimics natural selection
EC requires:

A candidate representation of a potential solution
A population of randomly generated candidates
A fitness function
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Background Evolutionary Computation

Evolutionary Computation: Process

Candidates are evaluated
The best performing candidates are selected
Selected candidates undergo transformations to repopulate the
population
Process repeats until some limit is reached
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Simulation

Simulation

Defined as representing the characteristics or behaviors of one
system through the use of another
Error caused from inaccuracies of simulation is known as
transitivity
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Simulation Station Keeping Robot: Simulation

Station Keeping Robot: Simulation

Used Open Dynamics Engine
(ODE) to replicate the robot
No fluid dynamics

Figure 3: A demonstration of the station keeping task. The
sphere and crossing lines indicate the desired station keeping
point for the robot. Maximum fitness is accrued when the robot
brings its center of mass, denoted by the green lines, to intersect
with this station point.

directions. Instead, these solutions would attempt to hold station
immediately using body orientations that were not very effective.
This strategy led to the individuals drifting out of the fitness area
without actually accomplishing the station keeping task. During
the evaluation phase, fitness is accumulated periodically, creating
an evolutionary pressure to hold station throughout an entire eval-
uation period, instead of just at the conclusion of the evaluation
period. Fitness is calculated as follows:

distance =
⇣p

(xT � xt)2 + (yT � yt)2 + (zT � zt)2
⌘3

(1a)

fitness =

⇢
10� (distance) if > 0

0 otherwise (1b)

where (xT , yT , zT ) is the desired station position and (xt, yt, zt) is
the current position. This fitness function creates a spherical zone
in which individuals can accrue fitness. As an individual moves
closer to the station point, its fitness score for that timestep in-
creases. A cubic gradient encourages solutions to move toward and
maintain station at the target location rather than just stay relatively
close. Individuals accumulate no fitness when outside the sphere
but are not explicitly penalized.

3. EXPERIMENTS AND RESULTS
Four separate trials, illustrated in Figure 4, were conducted to

evolve station keeping for flows originating from different direc-
tions relative to the robot’s initial orientation. Trial 1 simulates a
flow from the front; Trial 2 from the rear; Trial 3 from the left; and
Trial 4 from the right-front. Each trial consists of 25 replicate runs
evolved for 2000 generations with a population of 100 individuals.
Each individual was simulated for 120 seconds with only the sec-
ond half being used to calculate the fitness. The four trials were
conducted independently, with solutions being evolved to handle a
specific flow situation. A time step of 5ms was used in the simula-
tion environment, giving each individual solution a total of 24,000
neural controller updates during a run.

Figure 4: Direction of flow in each of the four trials. Trial 1
involved a flow coming from straight ahead. In trial 2, the flow
comes directly from behind. For trial 3, the flow came from the
side of the body. Finally, in trial 4 the flow came 45 degrees
from straight ahead.

Evolved Behaviors.
Depending on the direction of the flow, evolved behaviors varied

from simple forward swimming locomotion to complex acrobatic
maneuvers that reorient the robot towards a flow. In Trial 1, a sim-
ulated laminar flow from upstream (i.e., from the front to the back
of the robot) was applied. This configuration served as a bench-
mark to measure performance of the subsequent trials, as the robot
did not have to reorient itself prior to maintaining station. Evolved
gaits for this solution were reminiscent of natural fish locomotion,
with both the caudal fin and flippers working in a coordinated os-
cillatory motion to swim against the flow. A video of this solution
is available at http://y2u.be/fb_JzvkXfKU. Trial 2 simulated
a flow pushing on the rear of the robot. Initially, we had expected to
see solutions that used the flippers to maintain station while keep-
ing the orientation relatively stable. However, evolved solutions
instead developed a more effective maneuver in order to bring the
caudal fin into an effective position to counteract the flow. An early
individual and a late generation video can be seen in the follow-
ing videos; early generation: http://y2u.be/m8ka0Ay7wNo and
late generation: http://y2u.be/UufbnEGFwV4. As depicted in
Figure 5, the robot flipped itself over, and then executed a forward
motion similar to that seen in the first trial. Reorienting the body
into an effective position for forward propulsion demonstrates the
controller’s ability to identify and counteract the force generated by
a laminar flow.

In Trial 3, a simulated flow exerts force against the side of the
robot. Of the four trials conducted, this proved to be the most chal-
lenging, apparently due to the difficulty of turning 90 degrees to
the left in the allotted time. A video showing a middle generation
evolved individual can be seen at http://y2u.be/uszEpt-O9n0.
For this trial, the expected behavior was to turn 90 degrees and face
the flow without any need to rotate along another axis. However,
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Simulation Walking Robot: Simulation

Walking Robot: Simulation

Uses SimSpark (also ODE)
Not a perfect representation

the OpenParams and tracks the best parameters. The idea
of the OpenParams is to keep track of distinct parameters
that perform well on both the robot and simulation. It can
be thought of as tracking tree nodes whose children should
be visited. Finally, in line 15, a human is put into the loop
as a guide in order to speed up the optimization by focus-
ing the optimization on specific parameters to investigate in
greater depth in the next iteration. More information about
guidance is given in Section 4.4. This loop repeats until the
resulting parameters do not improve the robot’s fitness.

3. TESTBED DOMAIN
In order to validate GSL, we implemented and tested it

on a concrete, challenging robot task, namely fast biped
locomotion on an Aldebaran Nao robot, shown in Figure 1.
The Nao is a humanoid robot that stands a little more than
half a meter tall. It has twenty-five degrees of freedom,
eleven of which are in the pelvis and legs. In addition, the
Nao has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer.

Figure 1: Aldebaran Nao.

Section 3.1 describes the parameterized walk engine that
this work optimizes, and Section 3.2 specifies the simulator
used for this work.

3.1 Walk Engine
A walk engine converts a requested walking velocity to a

set of desired joint angles that are sent to the joint motors
at each time step. While the Nao robots come equipped
with Aldebaran’s closed-source walk engine, research from
several RoboCup teams have shown that significantly faster
walks are possible on the Naos [7, 27, 30]. Therefore, we
start from one of the existing walk engines designed by a
RoboCup team. Specifically, the walk engine used in this
work is based on the walk by Nao-Team HTWK from Leipzig
University of Applied Sciences [30], which was in turn in-
spired by Behnke [5]. Due to space constraints, we limit our
attention in this paper to the optimized parameters. Further
details on the walk engine are available in [5].

Specifically, 17 parameters were optimized, a list of which
can be found in Table 1. A phase of the walk is the time
it takes the robot to take two steps (one with the left foot
and one with the right), and it is denoted as the stepPeriod
parameter. A step consists of three components. The first
component is shifting the center of mass onto the stance
leg. Then, the back leg is lifted by bending according to
the knee, vshort, �short, and ashort parameters. Finally, the
lifted leg is swung forward according to the ampswing, vswing,
and �swing parameters. The fwdO↵set parameter is applied

to prevent the robot from drifting forwards when walking in
place. The remaining parameters scale and o↵set the sensor
values of the gyrometers, which are used as the closed loop
component during the calculations of the three movement
components.

Parameter Description
stepPeriod Number of frames to take two steps.
ampswing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
startLength Used in calculating initial ramp up.
vshort Factor for the leg lifting calculation.
ashort Amplitude of the leg lifting calculation.
�short O↵set of the leg lifting calculation.
vswing Factor for the swing calculation.
�swing O↵set for the swing calculation.
gyrohipPitch Body pitch factor for calculating hip pitch.
gyrokneePitch Body pitch factor for calculating knee pitch.
gyrohipRoll Body roll factor for calculating hip roll.
gyroankleRoll Body roll factor for calculating ankle roll.
scaleroll Scale for sensor value of body roll.
o↵setpitch O↵set for sensor value of body pitch.
scalepitch Scale for sensor value of body pitch.
fwdO↵set O↵set to have the robot walk in place.

Table 1: The walk engine parameters examined in this project.

3.2 SimSpark
The RoboCup 3D simulation league uses the SimSpark [2]

multi-agent simulator, which was designed by the RoboCup
initiative. SimSpark uses the Open Dynamics Engine (ODE)
to simulate rigid body dynamics, including collision detec-
tion. Although ODE provides a realistic simulation of physics,
it does make several approximations. For example, there is
no friction model on hinges in ODE, and so no friction acts
on the simulated robot’s joints [1].

Figure 2: Simulated Nao agent.

The physics simulator’s update cycle occurs every 20 mil-
liseconds, at which time it calculates pending events and
sends sensor information to the simulated agent. At that
point, the agent’s behavior code can use the sensor infor-
mation to determine the robot’s next action. To walk, a
request for a walk velocity is sent to the walk engine, which
uses this request and the sensor information to determine
the next desired joint commands. To achieve these joint an-
gles, PID controllers compute torque values that are to be
applied to each joint, and then these torque values are sent
back to the simulator to process. As we have control over
this process, this simulator meets assumption 1 described in
Section 2.1.
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Simulation Coordinate Tracking Robot: Simulation

Coordinate Tracking Robot: Simulation

An overhead camera captured
heading/orientation of robot
from arbitrary motor
commands
A testbed of 5,000 commands
were sent to the robot and
captured by the camera,
creating map of command and
position

was specifically decided to employ an NN in the study pre-
sented here, since it would cater for such e↵ects. Further-
more, the need for explicit derivation of equations of motion
predicting the changes in position/orientation of the robot
was eliminated by employing an NN simulator structure.
Su�ciently accurate predictions of robotic motion obtained
from the proposed simulator would thus justify the notion
that the use of an ANN as simulator can (at least from a
mathematical point of view) simplify simulator design and,
as a result, the ER process as a whole.

4. EXPERIMENTAL ROBOT
Use was made of the compact, modular end-user robotics

range from Lego, called the Mindstorms NXT [3] as the ex-
perimental robot. The use of Lego robots in the field of ER
has also been reported by several other researchers [15, 17,
18].

The reason that this robot was decided upon, is that it
is very simple to configure and program. Due to the plug-
and-play nature of the sensors and motors used in the Mind-
storms robot, no prior engineering knowledge was needed to
configure these devices to work properly. The morphology
of this robot is also completely customizable. For the work
outlined here, the configuration employed was as shown in
Figure 1.

Figure 1: Robot Morphology

As can be seen from Figure 1, a very simple shape was
decided upon, incorporating two wheels, each controlled by
a separate servo motor, and two light sensors. At the back
of the robot a small guide-wheel was attached, used simply
to provide a third contact point with the working surface

(apart from the two large wheels) to prevent excessive fric-
tion. The two large rubber wheels were employed in order
to allow the robot to execute simple motion through di↵er-
ential steering. Two side-mounted light sensors were used
to detect lines drawn around the perimeter of the working
surface, to prevent the robot from leaving the surface dur-
ing data acquisition. The center-mounted light was used as
a synchronizing device for video analysis, while the blue and
pink markers were used to track the position and orientation
of the robot in the video footage (Section 5.2).
Due to the reasonably slow onboard processor of the Mind-

storms robot and its limited onboard memory, it was de-
cided to execute code on a “server”-like personal computer
and relay commands to the robot via a Bluetooth connec-
tion, using the robot’s onboard Bluetooth device. This was
achieved by making use of the Java-based API, ICommand
[1], which provides high-level functionality for establishing
a Bluetooth connection with the robot, as well as sending
commands and receiving feedback from the robot over this
connection.
The Lego Mindstorms NXT robot operates on six AA bat-

teries. For this work, use was made of rechargeable batteries
which could be charged when not in use to allow for long pe-
riods of testing. It was discovered that the performance of
the robot’s motors depends rather largely on the charge-
level of the batteries, and it was thus decided to employ the
motor speed regulation capability of the ICommand pack-
age [1] and to ensure that batteries were charged above a
certain level during all tests. The maximum motor speeds
sent to the robot during testing were also limited to half of
the full speed of which the motors are capable in order to
minimize the battery-dependence factor and reduce a small
degree of slipping of the robot’s wheels which was observed
on the working surface at higher speeds.

5. IMPLEMENTATION DETAILS
In order to ensure that the final simulator NN was as

accurate as possible, much e↵ort was expended in deciding
upon the implementation details for various factors related
to the data acquisition and NN training processes in this
study. These details are discussed below.

5.1 Robot Commands
Each of the commands given to the robot in this work

consisted of three elements:

• Motor speed for motor one

• Motor speed for motor two

• Execution time of command (in milliseconds)

The motor speeds for each command consisted of a ran-
domly generated magnitude (in the range 0 to 50% of max-
imum motor speed) as well as a randomly generated direc-
tion (forwards or backwards). Furthermore, a random exe-
cution time in the range 0.5 to 3 seconds was used for each
command. Although commands were randomly generated,
the generation was seeded to be biased towards equal motor
speeds in the same direction (which would cause the robot
to move in an approximately straight line) and for both mo-
tor speeds to equal zero (which would cause the robot to
stop), since it was envisaged that these commands would be
required regularly and thus needed to be represented well
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Evolutionary Process Station Keeping Robot: Evolutionary Process

Station Keeping Robot

Evolved a separate candidate for each of the trials
Population size of 100 candidates
Evolved for 2,000 generations
The entire process was repeated 25 times for each of the four
trials
Total: 20,000,000 runs (76.1 years real time)
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Evolutionary Process Station Keeping Robot: Evolutionary Process

Station Keeping Robot: Neural Network

Input:
Current 3D coordinates, (x , y , z)
The difference between current and desired coordinate (x , y , z)
The output of the previous output (servo speeds and oscillations)

Output:
oscillation of the rear fin
speed of the left flipper
speed of the right flipper
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Evolutionary Process Station Keeping Robot: Evolutionary Process

Station Keeping Robot: Fitness Function

fitness =
∑

t

(10 − dt(x , y , z))

where

dt(x , y , z) =

{
10, if distancet(x , y , z) > 10
distancet(x , y , z), otherwise
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Evolutionary Process Walking Robot: Evolutionary Process

Walking Robot: Parameter optimization

Farchy et al . wanted to optimize several parameters to increase
speed

the OpenParams and tracks the best parameters. The idea
of the OpenParams is to keep track of distinct parameters
that perform well on both the robot and simulation. It can
be thought of as tracking tree nodes whose children should
be visited. Finally, in line 15, a human is put into the loop
as a guide in order to speed up the optimization by focus-
ing the optimization on specific parameters to investigate in
greater depth in the next iteration. More information about
guidance is given in Section 4.4. This loop repeats until the
resulting parameters do not improve the robot’s fitness.

3. TESTBED DOMAIN
In order to validate GSL, we implemented and tested it

on a concrete, challenging robot task, namely fast biped
locomotion on an Aldebaran Nao robot, shown in Figure 1.
The Nao is a humanoid robot that stands a little more than
half a meter tall. It has twenty-five degrees of freedom,
eleven of which are in the pelvis and legs. In addition, the
Nao has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer.

Figure 1: Aldebaran Nao.

Section 3.1 describes the parameterized walk engine that
this work optimizes, and Section 3.2 specifies the simulator
used for this work.

3.1 Walk Engine
A walk engine converts a requested walking velocity to a

set of desired joint angles that are sent to the joint motors
at each time step. While the Nao robots come equipped
with Aldebaran’s closed-source walk engine, research from
several RoboCup teams have shown that significantly faster
walks are possible on the Naos [7, 27, 30]. Therefore, we
start from one of the existing walk engines designed by a
RoboCup team. Specifically, the walk engine used in this
work is based on the walk by Nao-Team HTWK from Leipzig
University of Applied Sciences [30], which was in turn in-
spired by Behnke [5]. Due to space constraints, we limit our
attention in this paper to the optimized parameters. Further
details on the walk engine are available in [5].

Specifically, 17 parameters were optimized, a list of which
can be found in Table 1. A phase of the walk is the time
it takes the robot to take two steps (one with the left foot
and one with the right), and it is denoted as the stepPeriod
parameter. A step consists of three components. The first
component is shifting the center of mass onto the stance
leg. Then, the back leg is lifted by bending according to
the knee, vshort, �short, and ashort parameters. Finally, the
lifted leg is swung forward according to the ampswing, vswing,
and �swing parameters. The fwdO↵set parameter is applied

to prevent the robot from drifting forwards when walking in
place. The remaining parameters scale and o↵set the sensor
values of the gyrometers, which are used as the closed loop
component during the calculations of the three movement
components.

Parameter Description
stepPeriod Number of frames to take two steps.
ampswing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
startLength Used in calculating initial ramp up.
vshort Factor for the leg lifting calculation.
ashort Amplitude of the leg lifting calculation.
�short O↵set of the leg lifting calculation.
vswing Factor for the swing calculation.
�swing O↵set for the swing calculation.
gyrohipPitch Body pitch factor for calculating hip pitch.
gyrokneePitch Body pitch factor for calculating knee pitch.
gyrohipRoll Body roll factor for calculating hip roll.
gyroankleRoll Body roll factor for calculating ankle roll.
scaleroll Scale for sensor value of body roll.
o↵setpitch O↵set for sensor value of body pitch.
scalepitch Scale for sensor value of body pitch.
fwdO↵set O↵set to have the robot walk in place.

Table 1: The walk engine parameters examined in this project.

3.2 SimSpark
The RoboCup 3D simulation league uses the SimSpark [2]

multi-agent simulator, which was designed by the RoboCup
initiative. SimSpark uses the Open Dynamics Engine (ODE)
to simulate rigid body dynamics, including collision detec-
tion. Although ODE provides a realistic simulation of physics,
it does make several approximations. For example, there is
no friction model on hinges in ODE, and so no friction acts
on the simulated robot’s joints [1].

Figure 2: Simulated Nao agent.

The physics simulator’s update cycle occurs every 20 mil-
liseconds, at which time it calculates pending events and
sends sensor information to the simulated agent. At that
point, the agent’s behavior code can use the sensor infor-
mation to determine the robot’s next action. To walk, a
request for a walk velocity is sent to the walk engine, which
uses this request and the sensor information to determine
the next desired joint commands. To achieve these joint an-
gles, PID controllers compute torque values that are to be
applied to each joint, and then these torque values are sent
back to the simulator to process. As we have control over
this process, this simulator meets assumption 1 described in
Section 2.1.
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Evolutionary Process Walking Robot: Evolutionary Process

Walking Robot: Fitness Functions

Used two fitness functions for two separate runs
omniWalk

fitness = (
∑

t

(DistanceTraveledt))− fallingPenalty

WalkFront

fitness = maxVelocity() in 15 seconds
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Evolutionary Process Walking Robot: Evolutionary Process

Walking Robot: Grounded Simulation Learning

Farchy et al . used Grounded Simulation Learning (GSL) when
evolving candidates
The point of GSL is to add human guidance in the evolution
process
This is done by examining the physical robot with an evolved
candidate implementation, and isolating particular attributes
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Coordinate Tracking Robot

Population of 250 candidates
Evolved for 15,000 generations
Process repeated three times for each ANN
Total: 11,250,000 runs
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Evolutionary Process Coordinate Tracking Robot: Evolutionary Process

Coordinate Tracking Robot: Artificial Neural Network

Inputs of the ANNs:
Current Motor speeds
Current length of time
Previous Motor speeds

The ANN output was either:
The x-coordinate,
The y-coordinate,
And the angle

in the training data for the simulator NN. This seeding of
commands was achieved by ensuring that 50% of the com-
mands consisted of totally random motor speeds, 30% of
equal motor speeds in the same direction and setting both
motor speeds to zero the remaining 20% of the time.

5.2 Motion Tracking
It was decided to make use of a roof-mounted camera to

track the state changes (i.e. changes in position and orienta-
tion) of the robot in response to commands. The motivation
for the use of this technique is that it would dramatically ac-
celerate the data acquisition process and also lead to more
accurate data acquisition than would be the case if use was
made of manual measurements, since human error was elim-
inated as a possible source of error.

In order to track the robot, use was made of the pink
and blue markers shown in Figure 1. Each of these markers
contains a small white dot in its center. The e↵ect of these
dots in the images obtained from the camera, was a gradual
fade from blue (or pink) to white from the circumference
of the marker to its center. By carefully using this colour
gradient and comparing the colour value of pixels near the
center of the marker with that of their neighbouring pixels,
the center of each marker could be determined in each frame
of the video footage with reasonable accuracy. Each of the
markers was placed on a black background and some other
features of the robot were blackened out (Figure 1) in or-
der to improve the tracking accuracy by eliminating colours
which could match those of the markers.

After tracking the positions of the marker centers in each
frame, the pixel coordinates of the markers in the image were
converted to real-world coordinates on the operating surface
of the robot by employing the JCamCalib Java Camera Cali-
bration Package [2]. This package allowed for the calculation
of the camera’s intrinsic parameters which could be used to
undistort the images obtained from the camera. It also pro-
vided the functionality to construct a homography matrix
to convert from pixel coordinates to real-world coordinates.

Although certain inaccuracies were inevitably present in
the motion tracking process, satisfactory results were gen-
erally obtained, with the position of each of the two marker
centers being tracked to within approximately 2cm of their
actual positions.

5.3 Simulator Neural Networks
Three separate simulator NNs were employed in this study,

one each for the prediction of the change in the x-coordinate,
y-coordinate and orientation angle of the robot respectively
in reaction to an arbitrary motor command. The change in
the orientation angle of the robot was measured relative to a
fixed, globally-defined vector, while a simple Cartesian coor-
dinate frame was used to measure the change in the position
of the robot. This coordinate frame was locally defined to
move with the robot during testing.

Given as input to each of the simulator NNs were the two
motor speeds maintained by the robot before receiving the
current command, the two motor speeds given as part of
the current command and the time the current command
was allowed to be executed. In response to this input data,
the networks were expected to predict the change in the x-
coordinate, y-coordinate and orientation angle of the robot.

The motivation for presenting each of the NNs with the
two motor speeds maintained before receiving a certain com-

mand, is that it was anticipated that the robot would un-
dergo a certain amount of acceleration/deceleration before
stabilizing on the motor speeds given as part of the current
command. This acceleration/deceleration would depend on
the previously maintained motor speeds and this thus war-
ranted giving this information as input to the NNs. The
fact that the robot would take a certain amount of time
to stabilize on constant motor speeds after receiving a new
command was also the reason for imposing a minimum on
the duration time of each command (Section 5.1).
In Figure 2 is an illustration of each of the three NNs used:

Figure 2: Neural Network Structure

A linear activation function was used for all neurons in the
simulator NNs. In the hidden layer of all three these net-
works, 20 hidden neurons were employed of which 10 were
implemented as product units and the remaining 10 as sum-
mation units.
After experimentally acquiring training data, each NN

was trained by making use of a Genetic Algorithm in which
each chromosome encoded potential weight values of the
network. The decision was made to evolve weight values
for the NNs using a Genetic Algorithm rather than train-
ing the NNs using more conventional training techniques
(such as back-propagation), since the topology of the error
landscapes for the NNs was not known before starting train-
ing. These landscapes could possibly be irregular with local
minima in which conventional training techniques would get
caught, leading to premature convergence. Local minima
could be a result of the physical problem being solved: A
certain combination of weight values in an NN could lead to
relatively good predictions by the NN, although this com-
bination of weights is still not the ideal combination, since
better predictions could be obtained when employing an-
other (superior) combination of weights. First-mentioned
combination of weights would thus form a local minimum in
the error landscape where conventional training techniques
could be trapped. Another possibility is that local minima
were introduced in the training data as a result of errors
involved in the motion tracking or other stages of data col-
lection. Employing a Genetic Algorithm would circumvent
di�culties introduced by such local minima, since Genetic
Algorithms have been shown to be e�cient and accurate for
optimization over error landscapes which are discontinuous,
non-di↵erentiable or noisy [6]. Parameters used during the
NN training process were as shown in Table 1.
The fitness function employed during this training process

was simply the inverse of the Mean Squared Error (MSE)
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Coordinate Tracking Robot: Fitness Function

Used the Mean Squared Error (MSE) as the fitness function

fitness =
1
N

N∑
p=1

O∑
i=1

(tpi − api)
2,

N is the size of the testbed (5,000)
O is the ANN (1,2,3)
t is the expected output (computed by ANN)
a is the actual (testbed value)
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Station Keeping Robot: Results

Figure 5: Behavior of an evolved solution in Trial 2. The first 60s, which is the transient phase, is utilized to reorient itself against a
laminar flow pushing on the robot from left to right. The robot executes a 180 degree flip to bring the caudal fin into a position from
which it can provide the greatest thrust against the flow. In this solution, the flippers are used to flip the robot as well as make minor
adjustments once the robot is in an effective position. A video of this evolved solution is available at http://y2u.be/UufbnEGFwV4.

Figure 6: Action taken by an evolved solution in Trial 4. In this trial, an individual faces a laminar flow at a 45� angle to the robot’s
front. The robot spends the first 50s reorienting itself against the flow. After 50 seconds, the robot has achieved a relatively stable
station and begins to accumulate high levels of fitness by using the flippers and fin in a coordinated effort to maintain its center over
the station point. A video of this evolved behavior is available at http://y2u.be/HIDHC3KG7Yw.

evolved solutions instead exhibited a more complex maneuver, ap-
parently because a 90 degree turn proved time intensive. Instead,
the evolved behavior favored a combination of the flipping motion
seen in Trial 2 with a roll to bring the body into an effective position
for swimming against the flow. Trial 3 individuals had difficulty
achieving station within the time allowed as the initial reorienta-
tion required a significant amount of the evaluation period.

For Trial 4, a simulated flow was applied at a 45 degree angle
to the robot’s initial right-front. As depicted in Figure 6, evolved
individuals demonstrated the ability of the controller to respond to
the direction of flow and attain station keeping during the course
of an individual evaluation. Images in Figure 6 are taken at 10
second intervals over the first 70 seconds of simulation time. Ini-
tially, the robot is displaced from its station. The robot begins to
react at approximately 10s when it starts to orient itself to the flow
by using its flippers to rotate the body while the fin provides for-

ward propulsion. Fitness evaluation begins at 60s. By this time
the robot has achieved, and can maintain, station by working to
correct its position relative to the given station point. Videos of
an early generation individual and the evolved solution described
previously are available at: http://y2u.be/dF_5-3I6Bl4 and
http://y2u.be/HIDHC3KG7Yw, respectively.

Fitness Evaluation.
Fitness results from the trials are shown in Figure 7 and 8. These

results provide insight into the relative difficulty that each flow pre-
sented to the evolutionary process. Specifically, in Trial 1, where
the robot directly faced the flow, solutions achieved near perfect
results, where a fitness of 1 correlates to solutions that maintained
station for the entire evaluation phase. Apparently, the lack of need
to reorient the body helped to produce such high fitnesses. Fig-
ure 9 shows the final distribution of the best evolved individuals for
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Each trial had a candidate which successfully maintained the
position
When the flow was coming from behind, the evolved candidate
would flip end-over-head to orient itself
(http://y2u.be/UufbnEGFwV4)
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Walking Robot: Results

Figure 4: The performance of parameters through iterations of
the GSL algorithm, and the guidance used to achieve these re-
sults.

sual analysis showed that increasing this parameter caused
the robot to swing its lifted foot farther and take larger
steps. Therefore, the optimization was guided by increasing
the initial variance for the swing parameter to be used in the
CMA-ES optimization. This led to a maximum walk speed
of 13.2 cm/s. However, the new parameter sets were not as
stable as the original. In the third iteration, the re-optimized
parameter sets became too unstable to measure.

Therefore, for the second run of GSL, WalkFront was used
as Fitnesssim. As before, we grounded the simulation, re-
moved the seven balance parameters and focused on the
swing parameter. This resulted in a large improvement from
the original parameter set, reaching a speed of 13.8 cm/s.
The optimization did not seem to be stagnating at this point,
so the second iteration repeated the same methodology as
the first, resulting in a walk that moved 14.6 cm/s.

Further investigations at this point indicated that due to
the changes in the robot’s parameter set, the joint models
used in simulation were no longer approximating the walk
on the real robot accurately. Therefore, in the third itera-
tion, the grounding step was repeated with the current best
parameters, and the optimization was repeated. This step
resulted in another large improvement to the walk speed,
reaching 15.9 cm/s.

However, while the walk parameters from the third itera-
tion produced a fast walk, the robot fell periodically. In the
fourth iteration, the grounding and optimization steps were
repeated, but a faster parameter set was not found. Instead,
parameter sets were discovered at a speed of 15.6 cm/s, in
which the robot did not fall at all in our evaluation.

The step size was not initially optimized and was held
at 67% of the maximum because changing its value quickly
led to parameters that were unstable on the real robot but
worked well in simulation. In addition, putting the step size
at its maximum prevented nearby parameter sets from being
stable enough to evaluate. To combat this problem, the op-
timization was guided away from this parameter. However,
since the parameter set found in the fourth iteration was as
stable as the original parameter set, we were able to increase
the step size back to 100%. At this step size, the original
parameter set measured at a walk speed of 13.5 cm/s, while
the optimized parameters measured at 17.1 cm/s, which is
a 26.7% improvement in the walk speed.

5. RELATED WORK
Robotic bipedal locomotion has been a hot topic of re-

search in the robotics community in recent years. Much
of the research in this area uses the concept of the zero-
moment point to predict a stable trajectory for a robot to
follow. Such works include [7], [13], [27], and [32].
There has also been work on using machine learning to

improve robot performance. Several RobotCup teams have
improved the walk speed of the quadrupedal Sony Aibo us-
ing machine learning [15, 24, 14]. More recently, there has
been progress in learning on bipedal robots, including learn-
ing decision tree models to score penalty kicks [11], learning
to walk by demonstration [18], and improving walk stability
by learning from human feedback [19].
Simulation has long been used as a tool for modern re-

search and development. Thomke [29] describes how sim-
ulation has been used for crash testing in the automobile
industry for over a decade. Building real models for crash
testing is much more expensive and time consuming than
building a model in simulation. Additionally, real models
are limited in value because they are often built after the
automobile’s design can no longer be changed and there are
a large number of possible crash scenarios. In these cases,
it is engineers who learn from the simulation and indirectly
apply their findings in real designs.
Many learning algorithms, when first developed, are first

tested in virtual environments. Simulation has been used in
robotics research to develop and test new algorithms such as
path planning models [33]. Also, simulation has been used
in the development of learning algorithms for applications
such as for modeling robots with many sensors and actuators
[21] and, in 1990, for learning evasive maneuvers in flight
simulation [8]. Intuitively, learning in simulation lends itself
well towards active learning, when a database of training
data is not available.
There has also been work on learning to walk in simula-

tion, such as using manifold learning to determine high-level
walking decisions [23]. Our implementation is based on the
framework created by the UT Austin Villa RoboCup 3D sim-
ulation team [17], which produced a fast and stable walk for
the RoboCup 3D simulation league using machine learning.
However, the price of the convenience of simulation is its

inaccuracy. As Gat puts it, “You can’t do science about
robots without firing up a robot” [6]. In his 1995 paper, Gat
claims that in order for simulation to be useful, the results
of simulation must be tested on the real robot. Still, the
question remains on how best to make use of those tests.
Koos et al. [16] made a recent e↵ort to answer this ques-

tion by studying a quantity they labeled “Transferability”,
which is a measure on how well each component of a simu-
lated model’s performance transfers from the simulation to
reality. Trials were run on the real robot during optimization
to estimate transferability. Unlike this project, in which we
made changes to the simulation to increase transferability,
Koos et al. made changes to the optimization’s objective
such that it searches for parameters that improve both fit-
ness and transferability. More examples of using both sim-
ulation and real trials in learning include [3], [34], and [12].
In our approach, the optimization was guided manually

based on human observation. There has been much work
stemming from the concepts of learning from demonstration
[25] and using human feedback as a reward. In addition,
there has been research in using human demonstration to
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Each of the ANNs evolved for 12 hours
Pretorius et al . noted that the results were reasonably accurate

that this selection criteria would accelerate the evolution
process, since each of the commands selected for crossover
would need to be similar (each command would aim to take
the robot in a similar direction).

In order to keep the crossover process as simple as pos-
sible, constant-length chromosomes (each encoding a fixed
number of commands in its command set) were used dur-
ing evolution. However, the possibility was introduced for
a command in the evolved command set to be a null com-
mand, which meant that no command was given to the robot
when arriving at said command in the command set. This
thus allowed for command sets e↵ectively consisting of dif-
fering quantities of commands to be evolved, while ensuring
an uncomplicated crossover process.

The remaining parameters employed during this ER pro-
cess were the same as were used for the Genetic Algorithm
to evolve NN weights for the simulator NNs (Table 1). Evo-
lution was allowed to proceed for 1000 generations and was
repeated multiple times to produce di↵erent optimized com-
mand sets. After evolution was completed, each of the
evolved command sets were sent to the real-world robot and
their performance in executing the task in the real-world
was examined.

7. RESULTS
In order to evaluate the accuracy with which the simulator

NNs were trained, the final value of the MSE (Equation 1)
produced by each NN after training was considered when
each NN was presented with data from the validation set (see
Section 7.1 for an explanation of this term). Furthermore,
the values predicted by each of the three simulator NNs (in
terms of the change in the position/orientation of the robot)
were compared with expected values for certain commands
present in the validation set.

These results are shown in this section, along with the
results obtained in the validation experiment, where the
robotic behaviours evolved in simulation using the simula-
tor NNs are compared with the behaviours observed when
transferring the evolved behaviours to the real-world robot.

7.1 Simulator Accuracy
In Table 2, a summary of the accuracy achieved by each

simulator NN after training is shown. In this Table, the
MSE value produced by each NN when presented with data
from the validation set is shown, along with the average error
present in the prediction made by each NN for the change in
position/orientation of the robot for commands in the val-
idation set. The validation set is a set of data which was
collected during data acquisition, but not presented during
the training phase of the NNs and is used to gauge the ac-
curacy and generalization ability of the NNs.

Table 2: Summary of NN simulator accuracy

NN Simulator Final MSE Average absolute error
change in angle 26.412 3.585 degrees
change in y-coordinate 12.909 2.143 cm
change in x-coordinate 18.559 2.782 cm

Figures 3, 4 and 5 show plots of the expected value and
value predicted by each of the three trained simulator NNs

for the change in the orientation angle, y-coordinate and x-
coordinate respectively resulting from 50 commands in the
validation set.
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Figure 3: Comparison of predicted and actual values
for change in angle
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Figure 4: Comparison of predicted and actual values
for change in y-coordinate

As can be seen from Table 2 and Figures 3, 4 and 5 all
three the NNs trained reasonably well and the values pre-
dicted by the NNs are generally quite close to the expected
values. If it is taken into consideration that the change in
the y-coordinate of the robot as a result of a given command
was on average in the order of 25cm, the errors present in the
predictions of these changes are relatively minor (Table 2).
The same holds for the prediction of the orientation angle
and x-coordinate changes. The x-coordinate NN is perhaps
the slight exception to the high degree of accuracy obtained,
as it can be seen that the predictions from this network do
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Coordinate Tracking Robot: Navigation Test

Using the evolved ANNs, a navigation test was made for a
practical application
The test was evolved to:

Drive the robot in a circle around a 3x3 grid,
Not leave the grid or touch the middle square
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Figure 6: Predicted and actual robot paths for command set of size 10
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Figure 7: Predicted and actual robot paths for command set of size 13

more di�cult to find relationships between robotic ac-
tions and the e↵ects that these actions have on the
robot-environment system

• changes in the morphology of simulator NNs (i.e. num-
ber of hidden neurons, activation functions employed

etc.) that can possibly improve simulator accuracy and
generalization ability

• evolution of more complex robotic control structures,
i.e. controller NNs

Although the research presented here is still largely in the
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Conclusion

Conclusion

By using a simulation, the evolutionary process can occur at a
significantly faster rate
Evolutionary robotics could be applied if:

the robotics problem is well defined,
the robot and environment can be simulated,
and an appropriate fitness function can be constructed
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Questions and Contact Info

Thank you for your time and attention!

Contact:
schil227@morris.umn.edu

Questions?
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