
A Quantum Triangle Finding Algorithm and Quipper

Geoffrey G. Schumacher
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

schum476@morris.umn.edu

ABSTRACT
Quantum computing has undergone significant development
in the last two decades. Almost twenty years ago, L.K.
Grover developed a search algorithm that runs in O(

√
n).

Since then, many other quantum algorithms have been in-
troduced; some of which utilize earlier algorithms like that
developed by Grover. While physical implementation of a
quantum device remains the most restricting bottleneck of
the field, there are also other aspects that have restricted its
advancement. One such aspect is the topic of quantum pro-
gramming languages. While there are numerous quantum
algorithms in existence, there are relatively few languages
that have been developed with the capability of implement-
ing these algorithms in a practical manner. These program-
ming languages help communicate and formalize established
algorithms.

Keywords
Geoff’s Keywords: Quantum Algorithm, Qubit,
Superposition

1. INTRODUCTION
In the early 1980’s, Richard Feynman observed that some

quantum mechanical effects can not be simulated efficiently
on a classical computer system. This observation brought
upon the supposition that communication in general might
be performed more efficiently if it made use of these quantum
effects. [1] The form of computing that takes advantage of
quantum effects is known as quantum computing.

The main benefit of quantum computing results in higher
efficiency due to the amount of true parallelism that oc-
curs in a quantum system. As [1] noted, the time it takes
to perform certain computations on a classical system can
be decreased by adding parallel processors to the system.
An exponential decrease in time for a classical system then
requires an exponential increase in the number of parallel
processors. This then requires an increase of the same rate
in the amount of physical space. However, in a quantum

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

system, an exponential increase in parallelism requires only
a linear increase in the amount of space needed. This effect
is known as quantum parallelism. [1]

The drawback is that the access to the results of these par-
allel computations is limited. Reading the results is similar
to making a measurement in the system. This measurement
disturbs the quantum state, meaning that you can only read
the result of one parallel thread at a time. On top of that,
the measurement needed is probablilistic, which means you
can not even choose which thread you will read. [1]

This paper discusses a quantum triangle finding algorithm
and the quantum programming language Quipper, and is or-
ganized as follows. In Section 2, we briefly define key graph
theory terms. Section 3 covers the basics of quantum com-
puting. In Section 4, we introduce a quantum algorithm
known as Grover’s Algorithm. Section 5 walks through
a quantum algorithm used to find triangles in undirected
graphs. Part of this algorithm uses Grover’s Algorithm. In
Section 6, we introduce Quipper, a scalable quantum pro-
graming language. We then elaborate on an implementation
of another triangle finding algorithm in Quipper. Conclu-
sions are provided at the end.

2. BACKGROUND
In order to understand the afore mentioned algorithms,

as well as quantum computing in general, some background
knowledge must be stated about graph theory and quantum
mechanics.

2.1 Graph Theory
This subsection defines key terms of graph theory, which

will be used to discuss a quantum algorithm for finding tri-
angles in a graph.

Definition 1. A graph G consists of two finite sets: a set
V (G) of vertices and a set E(G) of edges, where each edge
is associated with a set consisting of either one or two ver-
tices called its endpoints. An edge with just one endpoint
is called a loop, and two distinct edges with the same set
of endpoints are said to be parallel. [2]

Definition 2. A simple graph is a graph that does not
have any loops or parallel edges. In a simple graph, an edge
with endpoints v and w is denoted {v, w} [2]

Definition 3. Let n be a positive integer. A complete
graph on n vertices, denoted Kn, is a simple graph with
n vertices v1, v2, ..., vn whose set of edges contains exactly
one edge for each pair of distinct vertices. [2]

Figure 1: Photons from the light source pass
through filter A.

Figure 2: Photons from the light source pass
through filters A and are stopped at filter C.

Definition 4. A graph H is said to be a subgraph of a
graph G iff every vertex in H is also a vertex in G, every
edge in H is also an edge in G, and every edge in H has the
same endpoints as in G. In a graph G, a complete subgraph
on three vertices is called a triangle. [2]

2.2 Notation
Here, we introduce necessary notations and terms. The

set {1, 2, ... , n} is denoted by [n]. The neighborhood of a
vertex, v ∈ [n] in G is denoted by νG(v) = {b|(v, b) ∈ G}.
That is, the set of all vertices adjacent to v in G is denoted
by νG(v). The complete graph on a set ν ⊆ [n] is denoted
by ν2. Let t(G) denote the number of triangles in G. The
number of paths of length two from a ∈ [n] to b ∈ [n] in G
is denoted by t(G, a, b). [6]

2.3 Quantum Mechanics
In this paper we give a brief introduction to the relevant

aspects of quantum mechanics. To begin, a common nota-
tion used in quantum mechanics is to represent the quan-
tum state of x as |x〉. Next, quantum mechanics will be
introduced through a simple experiment as described in [1].
This experiment illustrates key aspects of quantum mechan-
ics needed to understand quantum computing.

Photon Polarization Experiment. The only equipment
needed for this experiment are a strong light source (such as
a laser pointer) and three polaroids (or polarization filters).
The filters A, B, and C are polarized horizontally (→), at
45◦ (↗), and vertically (↑), respectively. We first insert
filter A into the beam of light, as seen in Figure 1. The
intensity of the output light will have half that of the input
light, and all of the outgoing photons will be horizontally
polarized. Next, filter C is inserted into the output light of
A, as seen in Figure 2. The intensity of the net output is
then zero. Finally, we insert B between filters A and C, as
seen in Figure 3. Now, the net output is one eighth of the
original output from the light source. This is an ambiguous
effect. Classical experience would suggest that adding filters
can only reduce the number of photons that pass through.

The Explanation. The polarization of a photon can be
expressed as a| →〉 + b| ↑〉. Here, a and b are complex
numbers such that |a|2 + |b|2 = 1 and | →〉, and | ↑〉 repre-
sent horizontal and vertical polarizations (respectively). To
determine the state of a particular photon, the system (the

Figure 3: Photons from the light source pass
through all filters A, B, and C.

beam of light in this case) needs to be measured. Here, a
polaroid acts as a measuring device for the quantum state
of photons. The probability of a photon measured as be-
ing polarized horizontally is |a|2 and that of being polarized
vertically is |b|2. However, measurement of all photons in
the system changes the state of the entire system to one of
these two polarizations. In this experiment, the entire state
of the output of the light passing through a certain filter is
polarized in the same way as the filter it passed through.
For example, the state of the system after passing through
filter A was polarized horizontally. That is, all the photons
that pass through A are horizontally polarized.

Assuming that the light source produces randomly polar-
ized photons, A will measure 50% of the photons as hor-
izontally polarized. In the second scenario involving only
A and C, all the photons that reach C are polarized hori-
zontally, so at this point, the probability of measuring the
state of the system as vertical is 0%, so no photons will pass
through C. This is why the intensity of the light after C
is zero in the first scenario. While, A and C measure the
photons on the set of {| →〉, | ↑〉}, B measures on the set
of { 1√

2
(| →〉 + | ↑〉), 1√

2
(| →〉 − | ↑〉)} which can be written

as {|↗〉, | ↖〉}. Here, | ↗〉 and | ↖〉 represent a polariza-
tion of 45◦ and 135◦ respectively. So in the third scenario,
photons that pass through A have a 50% chance of being
measured as the 45◦ polarization when passing through B.
When photons of this polarization reach C, they have a 50%
chance of being measured as ↑. Therefore, one eigth of the
total photons pass through all filters A, B, and C.

This relates to quantum computing in handling the state
of a quantum bit as well as an entire quantum system (a sys-
tem of multiple quantum bits). When the state of a quantum
bit is measured, it changes the state of the entire system to
the same state of the quantum bit being measured. There-
fore, there is no value in measuring the state of one bit in the
quantum system and then immediately measuring the state
of another bit. After a measurement is made, the state of
the whole system needs to be reset to what it was before
the measurement was made (or possibly a different state).
While polaroids A and C act as measuring devices, polaroid
B resets the state of the system in the exact same matter as
a quantum gate that is discussed in section 3.2.

3. QUANTUM COMPUTING
There are fundamental differences between classical and

quantum computing. This section will discuss two that lay
out the foundation of quantum computing, as well as a vital
concept necessary for many quantum algorithms.

3.1 Qubits
One of the fundamental differences between classical and

quantum computing goes down to the level of bits. In clas-

sical computing, a bit is represented by the set of values {0,
1}. In quantum computing, these values can be represented
by the set of quantum bit, or qubit, values {|0〉, |1〉}. The
bit values {0, 1} are traditionally thought as the state of
a switch, either off or on, whereas the qubit values of {|0〉,
|1〉} can be interpreted as corresponding to the spin of an
electron or photon, either → or ↑. The important difference
between the two is the state in which a bit could exist. A
classical bit can be in a state of either 0 or 1 (exclusively).
However, a qubit can be in a superposition of |0〉 and |1〉.
That is, a qubit can be both |0〉 and |1〉 at the same time,
such as a|0〉 + b|1〉, where a and b are complex numbers
that satisfy the equation |a|2 + |b|2 = 1. A qubit must be
measured to determine whether it is in a state of |0〉 or |1〉
at any given moment, where |a|2 is the probability that the
qubit is |0〉 and |b|2 is the probability that it is |1〉. The true
power of qubits comes in numbers. In a classical system of
n bits the combination of said bits can only be in one state
at a time. However, in a quantum system of n qubits, the
combination of said qubits can be in a superposition of 2n

different states. [1]

3.2 Quantum Gates: the Walsh-Hadamard
Transformation

Gates in classical computing can be generalized to trans-
formations of classical bits. For example, the NOT gate is
the transformation of one input bit into the opposite bit:

NOT : 0→ 1
1→ 0

In quantum computing, one important transformation on
qubits is the Hadamard transformation, defined by:

H : |0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

When applied to |0〉, the transformation H creates a super-
position state of 1√

2
(|0〉 + |1〉). When H is applied to n

qubits individually, it generates a superposition of 2n pos-
sible states. These states could be viewed as the binary
representations of the numbers from 0 to 2n−1 (inclusive).
The transformation that applies H to n qubits is known as
the Walsh, or Walsh-Hadamard, transformation W [4].

3.3 Oracles
Many quantum algorithms use the concept of an oracle at

some point in their respective procedures. As Green et al
described

”An oracle is usually given by a classical function
f : Booln → Boolm, describing some aspect of
the input to the algorithm...” [4]

In other words, given an input, the oracle will produce an
output that represents an answer to a question. For exam-
ple, suppose the oracle described by the function f above
represents predicting the results of flipping a weighted coin
based on a previous trial. Given n boolean values represent-
ing the results of n flips of said weighted coin, the oracle
would then produce a prediction of the next m flips.

For many algorithms that use an oracle, their complexity
is measured by how many times the oracle is queried. This
is known as the query complexity of an algorithm.

A quantum algorithm is similar in principle, however the
exploitation of quantum properties allows it to be more par-
allel in nature when evaluating its response. This also makes
it probabilistic. That means that the response the oracle
gives is not guaranteed to be correct. The probability that
the result from a specific oracle is correct will depend on its
implementation.

4. GROVER’S ALGORITHM
In 1996, Lov K. Grover published a paper for a quantum

search algorithm with efficiency O(
√
N). This algorithm

is often referred to as Grover Search. He generalized the
problem which his algorithm was used in this way: Given
a system of N = 2n states which are labelled S1, S2, ..., SN ,
where the 2n states are represented as n bit strings and
C(Sv) is a boolean function that returns true when a given
state has the trait we’re looking for and false otherwise, there
is a unique state, called Sv, which satisfies the condition
C(Sv) = 1, while for the other states S, C(S) = 0. The
problem here is to identitfy the state of Sv. [5]

One noteworthy trait of this algorithm that should be
stated is that it is probabilistic. That is, while the prob-
ability of the final result being the one desired is sufficiently
high, it is not 1. Another important aspect noted by [3] is
that Grover Search does not search through lists. It actu-
ally searches through funtion inputs. The algorithm takes a
function, searches through the implicit list of possible inputs
to the function, and returns the single input that causes the
function to return true with high probablilty. [3]

The fundamental idea of this algorithm is to set the sys-
tem with an equal probability to be in each state and then
eliminate non-solutions. If a given state is rejected by func-
tion C, then it is already known to not be the solution. If
a given state is accepted by C, then it is disturbed slightly
to increase the probability that the final measurement is the
desired result. After this step, a diffusion transform D is
used. This transform D is defined by the matrix D as:

Dij = 2
N

if i 6= j & Dii = −1 + 2
N

.

In his paper, Grover describes his algorithm as follows:

(i) Initialize the system to the distribution:

(1√
N
, 1√

N
, 1√

N
... 1√

N
), i.e. there is the same prob-

ability to be in each of the N states. It is possible
to obtain this distribution in O(logN) steps.

(ii) Repeat the following unitary operationsO(
√
N)

times:

(a) Let the system be in any state S: in case
C(S) = 1, rotate the phase by π radians, in case
C(S) = 0, leave the system unaltered.

(b) Apply the diffusion transform D

(iii) Sample the resulting superposition. If there
is a unique state Sv such that C(Sv) = 1, the
final state is Sv with a probability of at least 1

2
.

The reason for this algorithm’s efficiency stems from the
exploitation of superposition. Grover search finds satisfying
inputs to a function by creating a uniform quantum superpo-
sition of states and then repeatedly cancels out non-solutions
[3]. In the algorithm above, step (i) puts all SN states in
a uniform superposition of 1√

N
S1 + 1√

N
S2 + ... + 1√

N
SN =

1√
N

(S1 + S2 + ... + SN). Step (ii), in which the state of

the system is disturbed slightly to cancel out some of the
non-solutions, is then performed O(

√
N) times. In the third

and final step the state is measured. If there actually was a
unique state Sv, such that C(Sv) = 1, then the probability
of step (iii) measuring the state of the system as Sv is at
least 1

2
.

When Grover’s Algorithm is applied to a graph, the func-
tion C is used to check the “markedness” of a vertex v. If v
is marked, then C(v) = 1, otherwise, C(v) = 0. With the
parallelized nature of Grover’s Algorithm, it is able to run
C on all vertices of a given graph at once.

5. QUANTUM TRIANGLE FINDING
ALGORITHM

5.1 The Problem
One instance of the Triangle Finding Problem is described

by [4]: An undirected simple graph G contains precisely one
triangle, 4. G is given by an oracle function f , such that for
any two nodes, v and w, of the graph, f(v, w) = 1 if (v, w)
is an edge of G and f(v, w) = 0 otherwise. To solve this
version of the Triangle Fnding Problem is to find the set of
vertices {e1, e2, e3} that form 4 by querying f .

5.2 Grover Based Subroutine
The triangle finding algorithm discussed in [6] is actually a

classical algorithm where a quantum speedup can be applied
to the partitioning of the edges. To do this, it uses a form of
Grover’s searching algorithm in its subroutines. This version
of the algorithm is known as Safe Grover Search(t), which
is based on t iterations of Grover Search. These iterations
of Grover Search are then followed by a checking process for
markedness of output instances. An important fact that [6]
notes is that Safe Grover Search will always reject if there
is no marked item or otherwise, find a marked item with a
probability of at least 1 - 1

Nc

5.3 The algorithm
Magniez et all defines their triangle finding algorithm as

follows:

Combinatorial Algorithm(ε, δ, ε′)

1. Let k = d4nεlogne
2. Randomly choose v1, ..., vk from [n] (with no
repetition)

3. Compute every νG(vi)

4. If G ∩ νG(vi)
2 6= ∅, for some i, then output

the triangle induced by vi

5. Let G′ = [n]2 \∪i(νG(vi)
2)

6. Classify the edges of G′ into T and E such
that:

-T contains only O(n3−ε′) triangles

-E ∩G has size O(n2−δ + n2−ε+δ+ε′)

7. Search for a triangle in G among all triangles
inside T

8. Search for a triangle of G intersecting with E

9.Output a triangle if it is found, otherwise reject

Here, n refers to the number of vertices in the given graph
G. This algorithm takes three numeric inputs: ε, δ, ε′.
These inputs determine the query complexity of the algo-
rithm. The query complexity for this algorithm is calulated
by the following formula:

O(loge(n)(n1+ε +n1+δ+ε′ +
√
n3−ε′ +

√
n3−min(δ,ε−δ−ε′)))

For example, with ε = 3
7
, ε′ = δ = 1

7
the total number of

queries is O(loge(n)n1+ 3
7). [6]

The algorithm begins by evaluating k, a constant integer
value, as described in the algorithm above. Then, k vertices
are randomly selected from G, with no repetitions. The
neighborhood of each vertex from the random sample is then
calculated. If the intersection of G and the complete set of
vertex pairs of one of these neighborhoods is not empty, then
this intersection is a triangle and is returned. This is one
step where Safe Grover Search would be used because we
are trying to find an edge in G. If no triangle is found here,
G′ is initialized to be the complete set of vertex pairs from
G, minus all the vertex pairs just checked from the sample
set.

At this point, a “classification” step, which is defined be-
low, is implemented. The classification method takes G′, δ,
and ε′ as inputs. Two empty sets, T and E, are initialized.
The goal of the classification step is to make T have a limited
number of triangles and make E have a limited size. The
following steps of this paragraph are then repeated until G′

is empty. While there exists an edge (v, w) such that the
number of paths of length two from v to w is strictly less

than n1−ε′ , add said edge to T and remove it from G′. Then,
a vertex of non-zero degree is picked. That is, a vertex with
at least one adjacent vertex is picked and its neighborhood
is calculated. If the degree, or the number of edges, of this
neighborhood is less than or equal to 10×n1−δ, then add all
of the edges to E and remove them from G′. If the degree
of this neighborhood is greater than or equal to 1

10
× n1−δ,

then this neighborhood is reexamined. Step 4 is reapplied
to this neighborhood to check for a triangle. This is another
instance where Grover Safe Search is used. If one is found,
then it is returned. If no triangle is found, then all edges
in G′(νG(v), νG′(v)) are added to E and removed from G′.
Here, G′(νG(v), νG′(v)) refers to all edges connecting ver-
tices in the neighborhood of v in G to vertices thereof for v
in G′.

Step 2b uses the following sampling strategy:

Set a counter C to 0. Query dnδe random edge
candidates from the complete set of pairs of v
with [n]. If there is an edge of G among them,
add one to C. Repeat this process K = c0log(n)
times, where c0 is a sufficiently large constant.
Accept the low degree hypothesis if by the end
C < K/2, otherwise accept the large degree hy-
pothesis.

Here, a certain number of random edges are selected from
the complete set of pairs of v with [n]. Safe Grover Search
is then used to check if one of these edges is also in G. If
so, then the counter C is incremented. This process is then
repeated a sufficient number of times. If, at the end of this
process, the counter is strictly less than K/2, then the low
degree hypothesis is accepted. Otherwise, the large degree
hypothesis is accepted.

This classification step is formally defined as:

Classification(G′, δ, ε′)

1. Set T = ∅, E = ∅
2. While G′ 6= ∅ do

(a) While there is an edge (v, w) ∈ G′ s.t. t(G′, v, w) <

n1−ε′ , Add (v, w) to T , and delete it from G′

(b) Pick a vertex v of G′ with non-zero degree
and decide

1. low degree hypothesis: |νG(v)| ≤ 10× n1−δ

2. high degree hypothesis: |νG(v)| ≥ 1
10
× n1−δ

(c) If Hypothesis 1, add all edges (v, w) of G′ to
E, and delete them from G′

(d) If Hypothesis 2, then

i. Compute νG(v)

ii. If G∩νG(v)2 6= ∅, output the triangle induced
by v and stop

iii. Add all edges in G′(νG(v), νG′(v)) to E, and
delete them from G′

Now we are out of the classification step. At this point,
we know that T contains a certain number of triangles and
E ∩ G has a fixed size. The final three steps are then self
explanatory. Safe Grover Search is used for both steps 7 and
8. This algorithm will always reject if there is no triangle in
the given graphG. Otherwise, ifG does contain one triangle,
this algorithm will return said triangle will probability 1 −
O(1

n
).

6. QUIPPER: A SCALABLE QUANTUM PRO-
GRAMMING LANGUAGE

While much has been done in the last twenty years to de-
velop quantum algorithms and the theoretical side of quan-
tum computing, relatively little advancement has been made
to develop applications of these algorithms and theories.
Namely, the subject of quantum programming languages has
not been explored extensively. However, in 2013, Green et
al introduced a new quantum programming language called
Quipper [4].

While there are very few functioning quantum comput-
ers in existence, there are benefits to developing quantum
programming languages. Namely, it allows discussion about
efficiency in terms of qubits and quantum gates needed to
implement the quantum algorithms that have already been
developed.

6.1 Knill’s QRAM Model
The authors of [4] describe Quipper as being run on a

quantum device known as Knill’s QRAM model for quan-
tum computation, in which a quantum computer is a spe-
cialized device that is attached and controlled by a classical
computer. The quantum device contains n individually ad-
dressable qubit (for some fixed n) and is controlled by only
two kinds of instructions. The first instruction is of the form:
“apply built-in unitary gate U to qubit k,”“apply gate V to
qubits j and k,” etc. The quantum device will respond with
an acknowledgement that the operation has been performed.
The second takes the form: “measure qubit k.” The quan-
tum device then returns the measurement result, which is
either 0 or 1.

Figure 4: A quantum circuit with two ancillas, and
the regions where the ancilla is in state |0〉 are high-
lighted.

6.2 Quantum Circuits: Ancillas and Scope
A number of quantum algorithms require ancillas. That

is, they require “scratch space” qubits whose state is |0〉 out-
side of certain well-defined regions where the ancilla is being
used. For situations where all gates must be unitary, ancillas
usually are treated as additional global inputs and outputs
to the algorithm. These variables are assumed to be in a
state |0〉 at the start at the algorithm and expected to be
reset to |0〉 after each use. The regions where an ancilla
could be used is referred to as the scope of the ancilla. Fig-
ure 4 shows an example of a quantum circiut with two an-
cillas (the bottom two lines). Circuits are read left to right,
where the horizontal lines represent wires, boxes represent-
ing quantum gates, and vertical wires representing controls
on a gate. [4] The box with an H label is an implementation
of the Hadamard transformation discussed in Section 3.

6.3 Automatic Generation of Oracles
Implementing a quantum oracle by hand typically requires

four steps. First, the oracle must be expressed as a classical
program acting on classical data types. Next, this program
is translated into a classical circuit for the given input size.
Then, the classical circuit is converted into a quantum cir-
cuit. This third step potentially introduces many ancillas
to hold intermediate, or “scratch space” values. The final
step is to make this circuit reversable. One of the powerful
aspects of Quipper is that it has buit in functionality that
automates the second, third, and fourth steps of this process.
So given a classical representation of an oracle, Quipper can
automatically generate an equivalent quantum oracle. [4]

6.4 Procedural Paradigm
The basic philosiphy of Quipper’s procedural paradigm

is that qubits are held in variables and gates are applied
to them one at a time. Subroutines can be used to group
gate-level operations together where the programmer finds
it useful. When writing this kind of procedural code, the
programmer may safely pretend (though this is not actually
true) that the variables hold actual physical qubits and that
the specified gates are aplied to them in real time. [4]

The basic abstraction offered by Quipper is that a quan-
tum operation is a function that inputs some quantum data,
performs state changes on it, and then outputs the changed
quantum data. A simple example is that the following code
produces the circuit shown in Figure 5:

mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)

mycirc a b = do

a <- hadamard a

b <- hadamard b

(a,b) <- controlled_not a b

return (a,b)

Figure 5: Result of the code sampling in Section 6.4

The Circ command can take a number of different types
of inputs to signify what to put into the circuit. Here, Circ
has two inputs of type Qubit to make a circuit with two
qubits.

6.5 Implementation of Triangle Finding
Algorithm

The authors of [4] implemented a different quantum trian-
gle finding algorithm than the one discussed in this paper.
This algorithm can be broken down to a number of parts,
one of which is the oracle used by the algorithm. What
we highlight here is their analysis of the number of qubits
and quantum gates needed to implement this algorithm as
a whole and specifically, the oracle it uses. Quipper has a
simple command that can be used to compute the gate and
qubit counts for a function. For the oracle portion of this
algorithm, this command counts a total of 2,051,926 gates
and 1,462 qubits. For the whole algorithm this produces a
count of over 30 trillion total gates and 4,676 qubits.

6.6 Quipper vs QCL
The authors of [4] briefly discuss a C-style language known

as QCL as arguably the oldest“concrete”quantum program-
ming language. The authors also compare the two languages
by implementing identical versions of another quantum al-
gorithm, called the Binary Welded Tree algorithm, as well
as a hand-coded oracle in each language. Knowledge of the
BWT algorithm is not necessary for understanding the fi-
nal results of this comparison. To compare the languages,
the authors tallied up the total number of quantum gates
and qubits used by each implementation. The results of this
comparison were that the QCL version of the algorithm pro-
duced a total of 17,358 gates and used 58 qubits total in the
circuit. The respective numbers for the Quipper verision
were 1,300 gates and 26 qubits.

7. CONCLUSIONS
In conclusion, while there are still many questions left in

the field of quantum computing, some of the more difficult
problems are being answered in a meaningful way. There
may still be a long wait in the development of practical im-
plementations for the hardware of a quantum device, but
recent developments in other facets of quantum computing
are allowing the field to be more prepared for the day that
useful quantum devices come into existence. There already
is a large base of quantum algorithms that allow complex
problems to be solved faster than they could be on a clas-
sical system. New developments in quantum programming
languages allows more discussion on how these algorithms
can be implemented by a programmer. It has even allowed
analysis on the optimization of some aspects, such as quan-
tum gate count, in these proposed systems. These kinds of
developments help ensure that the field will be ready when

a proper quantum device arrives in the world.

8. REFERENCES
[1] An introduction to quantum computing for

non-physicists. ACM Comput. Surv., 32(3):300–335,
Sept. 2000.

[2] S. S. Epp. Discrete Mathematics with Applications.
Brooks/Cole-Thomson Learning, Belmont, CA, USA,
2004.

[3] C. Gidney. Grover’s quantum search algorithm.
http://twistedoakstudios.com/blog/Post2644_

grovers-quantum-search-algorithm, 2013.

[4] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger,
and B. Valiron. Quipper: A scalable quantum
programming language. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 333–342,
New York, NY, USA, 2013. ACM.

[5] L. K. Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996.
ACM.

[6] F. Magniez, M. Santha, and M. Szegedy. Quantum
algorithms for the triangle problem. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’05, pages 1109–1117,
Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

