A Quantum Triangle Finding Algorithm and Quipper Programming Language

Geoffrey Schumacher

Dvision of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA
schum476@morris.umn.edu
April 29, 2014

Overview

(1) Background

(2) Quantum Computing
(3) Grover's Algorithm
(4) Quantum Triangle Algorithm
(5) Quipper

6 Conclusions

Outline

(1) Background

- Quantum Mechanics
(2) Quantum Computing
(3) Grover's Algorithm
(4) Quantum Triangle Algorithm
(5) Quipper
(6) Conclusions

Superposition

- Quantum state x represented by $|x\rangle$
- Superposition of $a|x\rangle+b|y\rangle$
- Coefficients usually form $\frac{1}{\sqrt{A}}$
- Probability of $|x\rangle$ is $|a|^{2}=\frac{1}{A}$
- $|a|^{2}+|b|^{2}=1$

Photon Polarization Experiment

- Light Source (Laser Pointer)
- Lens A is Polarized \rightarrow
- Lens B is Polarized $\nearrow=\frac{1}{\sqrt{2}}(|\rightarrow\rangle+|\uparrow\rangle)$
- Lens C is Polarized \uparrow

Photon Polarization Experiment

Photon Polarization Experiment

Photon Polarization Experiment

Outline

(1) Background

(2) Quantum Computing

- Qubits
- Quantum Gates
(3) Grover's Algorithm

4. Quantum Triangle Algorithm
(5) Quipper
(6) Conclusions

Qubits

- Classical Bits are represented by 0 and 1
- Quantum Bits are repsresented by $|0\rangle$ and $|1\rangle$
- Gates are used to put into superposition

Walsh-Hadamard Transformation

- Gates are transformation on bits
- H applied to n qubits is the Walsh-Hadamard, transformation W

Outline

(1) Background

(2) Quantum Computing

(3) Grover's Algorithm

- General Purpose
- Grover Example

(4) Quantum Triangle Algorithm

(5) Quipper

General Purpose

- Black box function
- Given a state of n elements (represented as qubits)
- Runs in $O(\sqrt{n})$ queries to "black box"
- Probabilistic: finds answer with at least $\frac{1}{2}$ chance

Grover Example

- Set qubits to uniform distribution:
$\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{N}}, \frac{1}{\sqrt{N}} \cdots \frac{1}{\sqrt{N}}$

Simple Example

- Grover Example
- $N=2^{n}$
- Disturb state to eliminate non answers

Outline

(1) Background

(2) Quantum Computing

(3) Grover's Algorithm
(4) Quantum Triangle Algorithm

- The Problem
- Triangle Finding Algorithm
- Triangle Finding Example
(5) Quipper
(6) Conclusions

The Problem

- An undirected simple graph G of n vertices contains, at most, one triangle, \triangle
- To solve is to find the set of vertices $\left\{e_{1}, e_{2}, e_{3}\right\}$ that form \triangle
- Graph is "stored" within "black box" function
- Can go through n^{2} edges in n time

Classical Algorithm with Quantum Speedup

- Always rejects if there is no triangle in G
- Probabilistic: will return \triangle with probability $1-O\left(\frac{1}{n}\right)$
- n is number of vertices
- Three inputs $\epsilon, \delta, \& \epsilon^{\prime}$
- Efficiency $O\left(n^{\frac{10}{7}} \log (n)\right)$ with $\epsilon=\frac{3}{7}, \epsilon^{\prime}=\delta=\frac{1}{7}$

Safe Grover Search

- Uses Safe Grover Search for subroutines
- Based on n iterations of Grover's Algorithm

Steps 1 \& 2: Set k \& Choose Random Sample

- Set $k=\left\lceil 4 n^{\epsilon} \log (n)\right\rceil=3$
- Choose vertices v_{1}, v_{6}, and v_{5}

Step 3: Find Neighborhoods

- Find nodes adjacent to v_{1}, v_{6}, and v_{5}
- Do not include node in question

Step 4: Check for Triangle

- Neighborhood $v_{1}=\left\{v_{2}, v_{3}\right\}$
- Complete set of pairs: $\left\{\left(v_{2}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{3}\right)\right\}$

- Find interseciton of G and complete set of pairs from neighborhoods
- Safe Grover Search
- If any edge is in G, return \triangle

Step 5: Set G^{\prime}

- New random sample: v_{4}, v_{5}, v6
- $[n]^{2}=\{(1,1),(1,2), \ldots$,
$(6,5),(6,6\}$
- Set $G^{\prime}=[n]^{2} \backslash \cup_{i} \nu_{G}\left(v_{i}\right)$

Steps 6.1 \& 6.2 (a): Add Edges to T

- Initialize graphs $T \& E$ as
 empty
- If $t\left(G^{\prime}, v, w\right)<n^{1-\epsilon^{\prime}}=4$, move to T

Step 6.2 (b): Sampling Strategy

- Try to find vertices with relatively high chance of being in \triangle
- If so, check neighborhood for \triangle
- If no reason to think so, put in E

Step 6.2 (b): Sampling Strategy

- Set a counter, C to 0
- Query 2 random edges from each pair of v from [n]
- If in G, increment C
- Safe Grover Search
- 2 evaluated from input δ

Step 6.2 (b): Sampling Strategy

- Repeat K (sufficient) times: 2.015
- If $C<K / 2$ accept low-degree: 1.0007
- Else accept high-degree

Step 6.2 (b): Sampling Strategy

2 Sampling Rounds
$v_{1} \rightarrow\left(v_{1}, v_{6}\right),\left(v_{1}, v_{4}\right) /\left(v_{1}, v_{1}\right),\left(v_{1}, v_{5}\right)$
$v_{2} \rightarrow\left(v_{2}, v_{5}\right),\left(v_{2}, v_{1}\right) /\left(v_{2}, v_{1}\right),\left(v_{2}, v_{6}\right)$
$v_{3} \rightarrow\left(v_{3}, v_{1}\right),\left(v_{3}, v_{5}\right) /\left(v_{3}, v_{4}\right),\left(v_{3}, v_{6}\right)$
$v_{4} \rightarrow\left(v_{4}, v_{2}\right),\left(v_{4}, v_{4}\right) /\left(v_{4}, v_{2}\right),\left(v_{4}, v_{3}\right)$
$v_{5} \rightarrow\left(v_{5}, v_{3}\right),\left(v_{5}, v_{4}\right) /\left(v_{5}, v_{3}\right),\left(v_{5}, v_{5}\right)$
$v_{6} \rightarrow\left(v_{6}, v_{6}\right),\left(v_{6}, v_{2}\right) /\left(v_{6}, v_{6}\right),\left(v_{6}, v_{5}\right)$

Counter
$3 \rightarrow$ High Hypothesis
$1 \rightarrow$ Low Hypothesis

Step 6.2 c

Step 6.2 (d) i \& ii: Check for Triangle

- Just like step 4

- Search neighborhoods of v_{1}, $v_{2}, \& v_{3}$
- Safe Grover Search

Remaining Steps: Search from G^{\prime} to G \&

 Search for Triangles in T \& E- Search for edges left in G^{\prime} in G
- Search for \triangle in G among \triangle in T
- Search for \triangle in $G \cap E$
- Output \triangle if found, otherwise reject

Outline

(1) Background

(2) Quantum Computing
(3) Grover's Algorithm

4 Quantum Triangle Algorithm
(5) Quipper

- QRAM Model
- Implementation of Triangle Finding Algorithm
- Quipper vs QCL
(6) Conclusions

Knil's QRAM Model for Quantum Computation

- Quantum computer is a quantum device that is controlled by a classical computer
- Quantum device contains n individually addressable qubit
- Instruction 1: Apply built-in gate U to qubit k, apply gate V to qubits j and k, etc
- Instruction 2: Measure qubit k

Aggregate Gate Counts

From implementing another quantum triangle finding algorithm

- Simple command for gate and qubit count
- Over 30 trillion total gates and 4,676 qubits

Quipper vs QCL

- QCL arguably the oldest "concrete" quantum programming language
- Comparison done implementeing Binary Welded Tree Algorithm
- QCL Version: 17,358 gates and used 58 qubits
- Quipper Version: 1,300 gates and 26 qubits

Outline

(1) Background
(2) Quantum Computing
(3) Grover's Algorithm

4 Quantum Triangle Algorithm
(5) Quipper

6 Conclusions

Conclusions

- Hardware implementation largest bottleneck
- Already many quantum algorithms
- Quantum programming languages allow more discussion
- Better equipt when quantum device arrives

Questions

Questions?

